on the degree of Approximation of function Belonging to the Lip(alpha, r) Class by (C,2) (E,1)

DOI : 10.17577/IJERTV2IS110928

Download Full-Text PDF Cite this Publication

Text Only Version

on the degree of Approximation of function Belonging to the Lip(alpha, r) Class by (C,2) (E,1)

On the degree of Approximation of function Belonging to the Lip(, r) Class by (C,2) (E,1)

Aditya Kumar Raghuvanshi, B.K. Singh & Ripendra Kumar,

Department of Mathematics

IFTM University, Moradabad, (U.P.) India, 244001

Abstract

In this paper we obtained a theorem on the degree of approximation of functions belonging to Lip(, r) class by (C,2)(E,1) product mean of its Fourier series.

Keywords: Cesaro matrices, Euler matrices, degree of approximation.

  1. Let f (t) be a periodic function with period 2 and integrable in the sense of Lebesgue. The Fourier series of f (t) is given by

    .

    .

    1

    f (t) 2 a0

    A function f Lip if

    + (an

    n=1

    cos nt + bn sin nt) (1.1)

    |f (x + t) f (x)| = O(|t| ) for 0 < 1 (1.2) And a function f Lip (, r) if

    r

    r

    (r 2

    0

    0

    |f (x + t) f (x)| dx

    \1/r

    = 0(|t|

    ) for 0 < |f r | (1.3)

    0

    0

    The degree of approximation of a function f : R R by a trigonometric polynomial tn of order n is defined by (Zygmund [3])

    ||tn f || = sup{|tn(x) f (x)| : x R} (1.4)

    if

    n

    n

    E1 = 2n

    .k=0

    (n\

    k

    k

    n

    n

    sk s as n (1.5)

    ,

    ,

    n

    then an infinite series ak with the partial sums sn is said to be summable

    k=0

    n

    n

    (E,1) to the S, (Hardy [2]). The (C,2) transform of the (E,1) transform E1

    ,

    ,

    defines the (C,2) (E,1) transform of the partial sums sn of the series ak .

    k=0

    Thus if

    n

    n

    2

    2

    n

    n

    (n + 1)(n + 2)

    (n + 1)(n + 2)

    k

    k

    (C , E)1 (x) = , 2(n k + 1) E1 s as n

    k=0

    k=0

    k=0

    k=0

    n

    n

    where E1

    ,

    ,

    denotes the (E,1) transform of sn, then the series ak is said to

    k=0

    be summable by (C,2) (E,1) means to s. We shall use the following notations:

    (t) = f (x + t) + f (x t) 2f (x)

  2. We shall generalize the theorem of Albayrak [1].

    Theorem 2.1. If f : R R is 2 periodic, Lebesgue integrabble on [ , ] and belonging to Lip (, r) class then the degree of approximation of f by the (C,2) (E,1) product means of its Fourier series satisfies for n = 0, 1, 2, . . .

    1

    1

    2

    2

    n

    n

    ||(C E) f ||

    = O / 1 \ for 0 < 1 & r 1

    2

    2r

    2

    2r

    2

    2r

    2

    2r

    1

    (n + 1)

    1

    (n + 1)

The nth partial sum Sn(x) of the series (1.1) at t = x is defined as

{

{

1

0

0

Sn(x) = f (x) + 2

(t)

sin(n + 1/2)t

dt

sin t/2

So the (E,1) means of the series (1.1) are

E = 2

E = 2

1 n

n

k=0

(n\ s

(x) for n = 0, 1, 2, . . .

k

k

= f (x) +

2n+1

= f (x) +

2n+1

k=0

k=0

k

k

r

r

1 r (t) / n

0

sin t/2

0

sin t/2

(n\ (

k

k

1\ \

sin t/2

k

sin

sin

t

t

dt

dt

sin t/2

k

k +

2

k +

2

= f (x) +

1 (t)

Im

(e 2 (1 + eit)n

2n+1

0 sin t/2

= f (x) +

1 r (t)

it

it

n

n

it

Im (e 2 )(1 + cos t + sin t) dt

2n+1

0 sin t/2

= f (x) +

= f (x) +

1 r (t)

2n+1

0

sin t/2

2n+1

0

sin t/2

( it

t ( t

2

2

2

2

Im

Im

e 2 2n cosn

e 2 2n cosn

cos

cos

+ i sin

+ i sin

dt

dt

t\n1

2

2

1 r (t)

2n+1

0

sin t/2

2n+1

0

sin t/2

t

2

2

(( t

2

2

t\ (

2

2

nt

2

2

nt\1

2

2

= f (x) +

0

0

2n cosn Im

cos

+ i sin

cos

+ i sin dt

= f (x) +

1

2 0

0

0

r

r

(t) sin t/2

cosn

t t

sin(n + 1) dt

2 2

therefore (C,2) (E,1) product means of the series (1.1) are

n

n

(C , E)1 (x) = 2(n k + 1) E1(x)

2 n

n=0

(n + 1)(n + 2) k

n n

2(n + 1) 2

(n + 1)(n + 2)

(n + 1)(n + 2)

k

k

(n + 1)(n + 2)

(n + 1)(n + 2)

k

k

= E1(x) k · E1(x)

k=0

k=0

k=0

k=0

k=0

k=0

r /

r /

1 (t) n

= f (x) +

2

2

k · cos

( t\

sin(k + 1)

t\ dt

(n + 2) 0

sin t

2 2

k

k

k=0

1 r (t) / n

0

0

k t

1\

(n + 1)(n + 2)

sin t/2

k=0

k · cos

sin(k + 1) dt

2 2

Now

= f (x) + I1 I2 (3.1)

I2 =

1 r (t) / n

2

2

k · cos

( t\

sin(k + 1)

t\ dt

(n + 1)(n + 2) 0

sin t

2 2

k

k

k=0

=

=

n+1

+ t

n+1

+ t

1 /r 1

(n + 1)(n + 2)

0

(n + 1)(n + 2)

0

r \ (t) / n

1

n+1

sin 2

1

n+1

sin 2

( t\

2

2

sin(k + 1)

sin(k + 1)

dt

dt

t\

2

2

(n + 1)(n + 2)

0

1

n+1

sin 2

k=0

2

2

(n + 1)(n + 2)

0

1

n+1

sin 2

k=0

2

2

k

k · cos

k

k · cos

I2 = I21 + I22 (3.2)

t t

t t

Applying the fact that f Lip (, r) and sin . We have

2

n r 1 O|t|

n+1

2

2

|I21| 2(n + 2)

n r

0

1

n+1

sin t dt

|t|

0

0

2(n + 2)

Using H¨older inequality.

t dt

r 1

l1 (r 1 1

n n+1 (t) r

n+1 s

r

r

|I21| dt

  1. sdt

(

(

·

·

2(n + 2) 0 t 0

O 1

(n + 1)/2

1

(n + 1)1/2s

(n + 1)/2

(n + 1)/2

1 1

(n + 1)

1 1

(n + 1)

/ \

/ \

= O ( 1 / 1 \

2

2r

2

2r

2

2r

2

2r

1 1

1 1

O 1 (3.3)

2

2

2

2

2r

2r

(n + 1) +

2

2

By using k · cosk ( t ) =

2(cosk ( t ))

2

2

2

2

sin t

  • cos

t , we estimate I22.

1 r

(n + 1)(n + 2)

(n + 1)(n + 2)

(t) n

sin 2

sin 2

2

2

p/>

2(cosk ( t ))

2

2

sin 2

sin 2

t

2

2

t

2

2

|I22|

2

2

1

n+1

1

n+1

k=0

k=0

t t

2

2

· cos

sin(k + 1)

dt

t2

t2

dt

dt

2 r (cosn+1 t 1

(n + 1)(n + 2)

1

n+1

cos 2 1

(n + 1)(n + 2)

1

n+1

cos 2 1

(n + 1)(n + 2)

t

(n + 1)(n + 2)

t

(cos 1

(cos 1

2 r

t2

n+1 t

2

2

t dt

=

=

(n + 1)(n + 2)

1

r

r

n+1

cos 2 1

2

=

t2 sin t

(cosn+1 t 1)

dt

(n + 1)(n + 2)

1

n+1

(cos t 1)2

= A B. (3.4)

Now

2 r cosn t · sin t

t2

t2

(n + 2)

(n + 2)

1

n+1

1

n+1

cos t 1

cos t 1

|A| = dt

t3dt =

t3dt =

dt

dt

c1 r

(n + 2)

(n + 2)

C1 r

(n + 2)

(n + 2)

(t)

t3

t3

(n + 2)

1

n+1

(n + 2)

1

n+1

t3

(n + 2)

1

n+1

(n + 2)

1

n+1

t3

Using h older inequality.

C1

1 (t) \r

l1/r

1/s

l

l

s

|A| 3 dt · (1) dt

(n + 2)

1 t

/ \

/ \

n+1

1

n+1

C1 1 1

3

3

1

1

(n + 2)

(n + 2)

(n + 1) 2 2

(n + 1) 2 2

(n + 1) 2s

(n + 1) 2s

/ \

/ \

O ·

C1 1 1

3

3

1

1

1

1

(n + 2)

(n + 2)

(n + 1) 2 2

(n + 1) 2 2

(n + 1) 2 2r

(n + 1) 2 2r

O ·

1

1

O / 1 \ (3.5)

(n + 1) 2 2r

2

2

where C1 is positive constant.

t2

t2

(n + 1)(n + 2)

(n + 1)(n + 2)

|B| =

1

n+1

1

n+1

sin t(cosn+1 t 1)

(cos t 1)2

(cos t 1)2

dt

1

n+1

1

n+1

3 dt

3 dt

C2 (t)

(n + 1)(n + 2)

Using H¨older inequality

1 t

n+1

C2 (t) r

(n + 1)(n + 2)

1

n+1

t3

(n + 1)(n + 2)

1

n+1

t3

l1/r

l1/s

|B|

1

n+1

1

n+1

dt · (1)sdt

1

n+1

1

n+1

(t3)rdt ·

1

(t3)rdt ·

1

1

n+1

1

n+1

/ \ / \

/ \ / \

C2

(n + 1)(n + 2)

(n + 1)(n + 2)

/ 1 \

(n + 1) 2s

(n + 1) 2s

(n + 1)(n + 2)

(n + 1)(n + 2)

C2 1 1

3

3

1

1

1

1

(n + 1)(n + 2)

(n + 1)(n + 2)

(n + 1) 2 2

(n + 1) 2 2

(n + 1) 2 2r

(n + 1) 2 2r

| | / \

| | / \

|B| O ·

1

1

B O 1 (3.6)

2

2

2r

2r

(n + 1) +1

In similar way, we can obtain

1

1

1

1

I = O / 1 \ (3.7)

(n + 1) 2 2r

1

(n + 1)

1

(n + 1)

from (3.1), (3.2), (3.3), (3.4), (3.5), (3.6) and (3.7) we have

1

1

2

2

n

n

||(C , E) f (x)||

= O / 1 \

2

2r

2

2r

2

2r

2

2r

This completes the proof of the theorem.

If r = then above theorem reduces to Inci (Albayrak [1]).

1

1

2

2

n

n

(n + 1) 2

(n + 1) 2

||(C , E) f (x)|| = O ( 1 \ .

  1. Albayrak Inci etc; On the degree of approximation of function belonging to the Lip by (C,2) (E,1) Int. J. of Math. Analysis, Vol. 4, 2010.

  2. Hardy, G.H.; Divergent Series, First Ed. Oxford Uni. Press, 1949.

  3. Zygmund, A.; Trigonometric series, 2nd rev. Ed. Cambridge Uni. Press, Cambridge. 1968.

Leave a Reply