International Engineering Publisher
Serving Researchers Since 2012
IJERT-MRP IJERT-MRP

Evaluation of Unified Integrals Involving Products of Generalized M-Series and Incomplete H-Functions

DOI : 10.17577/IJERTV14IS070052

Download Full-Text PDF Cite this Publication

Text Only Version

Evaluation of Unified Integrals Involving Products of Generalized M-Series and Incomplete H-Functions

Dr. Amit Mathur

Department of Mathematics, Maulana Azad University, Jodhpur, India

Keshav Charan Pareek

Department of Mathematics, Maulana Azad University, Jodhpur, India

Abstract:

a , x;a , a ;

1

This work presents a unified approach to evaluate a class of j p 2, p z

definite integrals involving the product of an M-series and an

p q b , b ;

incomplete H-function. These integrals are evaluated in terms of

1

q 1,q

the incomplete H-function, yielding generalized and unified q p

expressions. Several special cases are derived by specifying the parameters of the M-series and the incomplete H-function, which

bj a1 l aj l l

j 1 j 2 z

include the Fox H-function, incomplete Fox-Wright functions and incomplete generalized hypergeometric functions. The unified results presented here are broad in scope and hold

p

l

aj

j 1

l 0

q

bj l

j 1

significant applicability in various fields such as science, q p

engineering, and finance.

bj

1 j 1

a1 , xa1

j2 z d ;

Keywords: M-series, Incomplete H-function, Improper integral.

2 i p q

  1. INTRODUCTION AND PRELIMINARIES

    This section provides a brief overview of essential definitions and notations have been investigated in several prior studies

    1 8 related to incomplete function, M-series, and Unified

    aj

    j 1

    arg

    and

    bj

    j 1

    q p

    (4)

    integral, which are used throughout this work.

    a1 , x;aj , ap

    ; bj

    a1 l aj l l

    2, p

    z j 1 j 2 z

    q

    p q b , b ; p

    l 0 l

    Incomplete Gamma Function (IGF)

    The standard incomplete gamma function

    r, x

    and

    1

    q 1,q

    aj

    j 1

    bj l

    j 1

    r, x expressed by q p

    r, x

    x

    t r 1et dt ;

    r 0; x 0

    bj

    1 j 1

    a1 , xa1

    j2 z d ;

    0 2 i p q

    x

    r, x t r1et dt ;

    (1)

    x 0;r 0 when x 0

    (2)

    aj

    j 1

    arg

    bj

    j 1

    (5)

    such that their sum yields the complete gamma function:

    here is a Mellin-Barnes type contour extending from

    r, x r, x r ;

    r 0

    (3)

    i to iwith ,and indented, when necessary to separate the sets of poles of the integral in each case.

    Incomplete Generalized Hypergeometric function (IGHF)

    The incomplete generalized hypergeometric function

    Incomplete H-function

    Srivastava et al. 10 (equation (2.1) -(2.4)) define incomplete

    p q

    and p q introduced by Srivastava et al. 9

    through

    H-function as follows:

    Mellin-Barnes integral representation involving the IGF

    r, x and r, x as given below

    a1 , A1 , x;aj , Aj

    and

    (1 a , A , x);(1 a , A )

    m,n z m,n z

    2, p

    1, p

    z

    1 1 1

    j 2, p

    p,q p,q

    bj , Bj

    1,q

    p,q 1

    0,1;1 bj , Bj

    1,q

    (9)

    a1 , A1 , x;a2 , A2 ,…, ap , Ap 1

    a1, A1, x;a1, A1 ;

    2, p

    m,n z

    , x z d,

    z

    p,q

    b , B , b , B ,…, b , B

    2 i

    1. q

      b , B ;

      1 1 2 2

    2. q

    j j

    1,q

    (ii) Additionally putting x 0

    in equation (8), incomplete

    where

    (6)

    Fox-Wright function converges to Fox-Wright function (see for details, [14] ([P. 39, Equation (2.6.11)]):

    m n a1 , A1 , 0;aj , Aj ; a1 , A1 ;aj , Aj ;

    1 a A, x

    b

    B 1 a A

    2, p

    z

    2, p z

    q p

    , x

    1 1

    j 1

    j j j j

    j 2

    1. q

      bj , Bj

      1,q ;

      p q

      bj , Bj

      1,q ;

      1 bj Bj aj Aj

      (10)

      j m1

      j n1

      (iii)

      If we take

      Aj Bj 1 j 1,…, p, j 1,…q in equation

      and

      (8) & (9), then the incomplete H-function converges to

      a , A , x;a A

      IGHF p q

      and p q

      (see details in Srivastava et al.

      z z

      m,n m,n

      p,q p,q

      1 1 j ,

      bj , Bj

      j 2, p

      [9]):

      a ,1, x;a ,1 ;

      1,q

      1

      j 2, p

      z

      a1, x; a2 ,…, ap ;

      z

      p q

      b ,1 ;

      p q

      b ,…, b ;

      a1 , A1 , x;a2 , A2 ,…, ap , Ap 1

      j

      1,q

      1 p

      m,n z

      p,q

      b , B , b , B ,…, b , B

      2 i

      , x z d,

      (11)

      where

      1 1 2 2

    2. q

    (7)

    and

    2, p

    a1 ,1, x;aj ,1 ;

    a , x; a ,…, a ;

    j

    z 1 2

    1 p

    p z

    m n

    1 a1 A1, xbj Bj 1 aj Aj

    p q

    b ,1 ;

    1,q

    p q

    b ,…, b ;

    (12)

    , x

    j 1

    q p

    j 2

    M-series

    1 bj Bj aj Aj

    Sharma et al. [15] proposed and examined the generalized M-

    j m1

    j n1

    series in the following form:

    The incomplete H-function as defined in equation (6) and (7)

    respectively, exist for all x 0 under the same set of

    ,

    e ,…, e ;

    ,

    e1 …er zk

    k k ;

    conditions and contour specifications as presented in the work

    M s 1

    r z

    M s z f1

    … fr

    k

    r f ,…, f ; r k k

    of Kilabs et al. 11 , Mathai and Saxena 12 , and Mathai et al. 13 .

    1 r

    k 0 , , z

    , 0

    (13)

    The previously mentioned functions admit numerous special cases, a few of which are enumerated below:

    (i) By putting m=1, n=p and replacing q by q+1 with

    From the table of integration, series, and products by I. S. Gradshteyn, M. I. Ryzhik the following Integral formula ([17],

    p. 377 Equation (3.257)) is given as:

    relevant parameters, the functions (6) & (7) converges

    2 1

    1

    v 2

    1

    to incomplete Fox-Wright functions

    p q

    and

    p q

    uy

    w

    dy ;

    (see for details, [10] [P. 132, Equation (6.3) and (6.4)]):

    0

    p>y

    2uw 2 1

    (14)

    u 0, v 0, w 0, 1

    (1 a1 , A1 , x);(1 a1 , Aj )2, p 2

    1, p

    z

    p,q 1

    0,1; 1 bj , Bj

    1,q

    (8)

  2. Main Results

a1, A1, x;a1, A1

2, p ;

z

This section presents certain integrals involving the product of

p q

bj , Bj

1,q ;

M-series and Incomplete H-function.

THEOREM 1: Suppose that ; with

R 0

and

By using the result of (14), we get

1 1 1

e1

…er k

k k

z

1

y 0,

u 0,

v 0, w 0, ,

2

u v w

2 2

then

k k

k 0 f1 … fs k

the following integration hold:

k 1

1

1 2

2

,

, x z d

v

e1,…, er ;

z 1 2

uy w M

1

2 i

k 2

y

r s f ,…, f ; v 2

2uw k 1

z

0 1 r uv y w

a , A , x; a , A ,…, a , A

e1

…er k

k k

2 k 0 1 k

1

m,n z2

1 1 2 2

p p dy

k 1

f

… f

k

p,q uv v

w b , B , b , B ,…, b , B

2uw

2

y

s

k

1 1 2 2

q q

k

k 1

k k

1

e1 …er

1 z1

1 2 , x z d

f

… f

k w

2 i k 1 2

2uw

2 k 0 1 k s k

k

z

a , A , x;a , A ,…, a , A ; k 1 ,1

e 1

m, n1

z2 1 1 2 2

p p

2

1 …er

w

p 1,q 1 w

1

k k

b , B ,…, a , B ; k,1

k 0 f1 … fs k

1 1 q q

(15)

2uw

2 k k

k 1

m,n 1

2 z

assume that the conditions for the incomplete H-function p ,q

, x 2 d

in equation [6] are fulfilled.

2 i

k 1

w

Proof: L.H.S. of equation (15) Let

2

1

Through the interpretation of equation (6), the desired result is

derived

v

k k

L uy w

, e1 ,…, er ;

z1 k

r M s 2

e1 …er

1 z1

y

k k

0

y

f1 ,…, fr ; uv v

w

2uw

1

2 k 0 1

… fs

k w

z a1 , A1 , x;a2 , A2 ,…, ap , Ap

1

f

m,n 2

dy

a , A , x;a , A ,…, a , A ;

k ,1

p,q

v 2

b , B , b , B ,…, b , B

m, n1

z2

1 1 2 2

  1. p

    2

    uv y w

    1 1 2 2

    q q

    p 1,q 1 w

    By the using of equation (6) and (13) in L we get

    b1 , B1 ,…, aq , Bq ; k,1

    1 v 2

    2 i y

    L uy

    0

    1

    w

    Hence Theorem 1 is proved.

    THEOREM 2: Suppose that ; with R 0

    and

    k k

    e1 …er

    1 v 2

    z uy

    w

    1 k

    y 0,

    u 0,

    v 0, w 0, 1 ,

    2

    1 u v w 1

    2 2

    then

    f

    … f

    k 1

    y

    the following integration hold:

    k 0 1 k s k

    2

    1

    2

    1

    v

    uy w

    , e1 ,…, er ;

    z1

    v

    r M s 2

    z2 uy y

    w

    , x ddy

    0

    y f1 ,…, fr ; uv v

    w

    k

    y

    z a1 , A1 , x;a2 , A2 ,…, ap , Ap

    e1 …er z

    m,n 2

    2

    k k 1

    p,q

    • v

      b , B , b , B ,…, b , B

      dy

      k k

      k 0 f1

      … fs

      k

      uv y w

      1 1 2 2

  2. q

1

v 2

1k

e

…e

1 z k

uy

w

, x z ddy

1 k r k 1

2 i y 2

1 k 0 f

… fs

k w

1

0 2uw 2 k k

Now by changing the order of integration, we get

a , A , x;a , A ,…, a , A ; k 1 ,1

e

…e zk

m, n1

z2

1 1 2 2

  1. p

    2

    1 k r k 1

    p 1,q 1 w

    k k

    2

    k 0 f1 … fs k

    b1 , B1 ,…, aq , Bq ; k,1

    1

    2 i

    , x z

    uy

    0

    v 2

    y

    1k

    w

    dyd

    (16)

    p , q

    assume that the conditions for the incomplete H-function m,n

    in equation [7] are fulfilled.

    Proof: L.H.S. of equation (16) Let

    e

    …e

    z k

    1

    2

    1

    1

    1 k r k w

    v

    ,

    e ,…, e ; z

    k 0 f1 … fs k

    L uy

    w

    M 1

    r 1

    2uw

    y

    r s f ,…, f ;

    v 2

    2 k k

    0 1

    r uv y

    w

    k 1

    1 2 z

    a , A , x;a , A ,…, a , A

    , x 2 d

    m,n z2

    1 1 2 2

    p p dy

    2 i

    k 1

    w

    p,q uv v

    w b , B , b , B ,…, b , B

    2

    y

    1 1 2 2

  2. q

Through the interpretation of equation (7), the desired result is

By the using of equation (7) and (13) in L we get

derived

2 1

e

…e

1 z k

1 v

1 k r k 1

L uy

w

1 k 0 f

… f

k w

2 i 0 y

2uw 2

1 k s k

2 1 k

a , A , x;a , A ,…, a , A ; k 1 ,1

e1 …er 1

v

m, n1

z2

1 1 2 2

p p

2

k k

z1 uy

  • w

    p 1,q 1 w

    k 0 f1 … fs k

    y

    b , B ,…, a , B ; k,1

    k k

    1. 1 q q

      2

      1

      Hence the Theorem 2 is proved.

      z uy v w

      , x ddy

      2 y

      e1 …er z

      k

      k k 1

      k k

      k 0 f1 … fs k

      1. Special Cases

        We illustrate in this part some significant special cases

        corresponding to the principal result of Theorem 1 and Theorem 2.

        1

        uy

        v 2

        1k

  • w

    , x z ddy

    0

    2 i y 2

    Now by changing the order of integration, we get

    e1 …er zk

    Corollary 1.

    For with 0

    and y>0, u>0, v<0, w>0, >- 1

    2

    k k 1

    k k

    k 0 f1 … fs k

    Furthermore, setting m 1, p n and replacing q with q 1,

    in equation (6) and (7), and assume that the incomplete H-

    1

    2 i

    , x z

    uy

    0

    v 2

    y

    1k

  • w

    dyd

    function reduces to the incomplete Wright function as given in equation (8) and (9), we obtain the result here from those in Theorems 1 and 2. The corresponding integral formula as

    2

    By using the result of (14), we get given:

    e1

    …er zk

    1

    2

    k k 1

    v

    ,

    e1,…, er ; z

    f … f k

    uy

  • w M

    1

    k 0 1 k s k

    y

    r s f ,…, f ;

    v 2

    1

    0 1

    r uv y

  • w

    2

    1 k 2

    , x z d

    z a1 , A1 , x;a2 , A2 ,…, ap , Ap

    2

    2 i

    k 1

    1. p q

    dy

    2uw k 1

    uv v

    w b , B , b , B ,…, b , B

    y

    2

    1 1 2 2

    q q

    e1 …er zk k

    k k

    k k 1

    1

    e1 …er

    w

    1 z1

    2 k k

    k k 0 f1 … fs k

    1

    k 0 f1

    … fs

    k

    2uw

    k 1

    2uw 2 k k

    1

    1 2

    z

    a1 , A1 , x;a2 , A2 ,…, ap , Ap ; k ,1

    , x z d

    2

    2

    2 i k 1 2

    and

    p 1

    w

    q 1

    b1 , B1 ,…, aq , Bq ; k 1,1

    (17)

    M

    2

    1

    e

    …e

    1 z k

    v

    ,

    e1,…, er ; z

    1 k r k 1

    uy

    w 1

    f

    … f

    k w

    r s

    2

    y

    f1 ,…, fr ;

    v

    2uw

    2 k 0 1 k s k

    0

    uv y

  • w

1

z

a , x; a ,…, a ; k 1

z a1 , A1 , x;a2 , A2 ,…, ap , Ap

2 1 2 p

2

2

dy

p 1

q 1

p q uv v

w b , B , b , B ,…, b , B

w b ,…, b ; k

2

y

e

…e

1 1 2 2 q q

1 z k

1 p

(20)

1 k r k 1

under the assumption that each element of equation (19) and

1 k 0 f

… f

k w

2uw 2

1 k s k

(20) are exists.

a , A , x;a , A ,…, a , A ; k 1 ,1 (18)

Corollary 3:

z2

1 1 2 2

p p

2

p 1 q 1 w

1

b1 , B1 ,…, aq , Bq ; k 1,1

For with 0 and y>0, u>0, v<0, w>0, >-

under the assumption that each element of equation (17) and

2

Furthermore, setting x 0 , in equation (8), and assume that

(18) are exists.

Corollary 2:

For with 0

and y>0, u>0, v<0, w>0, 1

>- .

2

the incomplete H-function reduces to the incomplete Fox- Wright generalized hypergeometric function as given in equation (10), also M-series reduces into unity, we obtain the result here from those in Theorems 1. The corresponding integral formula as given:

Furthermore, setting Aj Bj 1, j 1,…, p; j 1,…, q

v 2

1

in equation (8) and (9), and assume that the incomplete H- function reduces to the incomplete generalized

uy

y

0

w

hypergeometric function as given in equation (11) and (12),

a , A ,…, a , A ;

v 2

1

1 1

p p

z uy w

dy

we obtain the result here from those in Theorems 1 and 2. The

p q b , B ;

y

corresponding integral formula as given:

j j

1,q

v 2

1

w

,

M

e ,…, e ; z

1

uy

y

r

r s f ,…, f ;

v 2

1 p 1 q 1

2

1

1

z a1 , A1 ,…, ap , Ap ;

,1

0 1

r uv y

w

w

2uw 2

b1 , B1 ,…, aq , Bq ; 1,1

a , x; a ,…, a ;

1 2

1 p

p z2

uv y

dy

w

(21)

p q

b ,…, b ;

v 2

e

…e

1 z k

under the assumption that each element of equation (21) are

exists.

1 k r k 1

1 k 0 f

… f

k w

  1. CONCLUSION

2uw 2 1 k s k

z a , x; a ,…, a ; k 1

In the present study, we have established several significant integrals involving the product of the M-series and incomplete

2 1 2 p

2

H-functions, represented in terms of incomplete H-functions

p 1

q 1 w

themselves. Additionally, we have presented certain special

and

2 1

b1,…, bp ; k

(19)

cases by assigning certain values to the parameters of the M- series and incomplete H-functions-such as Foxs H-function, incomplete FoxWright functions, FoxWright functions, and

incomplete generalized hypergeometric functions. Some

v

uy w

, e1 ,…, er ;

z1

previously known results are also included as special cases.

y r M s f ,…, f ;

v 2

The integrals derived in this analysis are of a general form and

0

1

r uv y w

may serve as a foundation for developing numerous results

a , x; a ,…, a ; z

relevant to practical and applied contexts

1 2

p 2 dy

1 p

uv y w

p q

b ,…, b ;

v 2

REFERENCES

  1. M.K. Bansal, D. Kumar, I. Khan, J. Singh and K. S. Nisar, Certain Unified Integrals Associated with Product of M-Series and Incomplete H- functions, Mathematics, 7(12), 1191, (2019).

  2. Bansal, M.K.; Choi, J. A Note on Path way Fractional Integral Formulas Associated with the Incomplete

    H-functions. Int. J. Appl. Comput. Math. 2019, 5, 133.

  3. Bansal, M.K.; Jolly, N.; Jain, R.; Kumar, D. An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results. J. Anal. 2019, 27, 727740.

  4. Chaurasia, V.B.L.; Kumar, D. The integration of certain product involving special functions. Sci. Ser. A Math. Sci. 2010, 19, 712.

  5. Chaurasia, V.B.L.; Singh, J. Certain integral properties pertaining to special functions. Sci. Ser. A Math. Sci. 2010,

    19, 16.

  6. Kumar, D.; Ayant, F.; Kumar, D. A new class of integrals involving generalized hypergeometric function and multivariable Aleph-function. Kragujevac J. Math. 2020, 44, 539550.

  7. Brychkov, Y.A. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas; CRC Press:

    Boca Raton, FL, USA, 2008.

  8. Garg, M.; Mittal, S. On a new unified integral. Proc. Indian Acad. Sci. Math. Sci. 2004, 114, 99101.

  9. Srivastava, H.M.; Chaudhary, M.A.; Agarwal, R.P. The Incomplete Poch hammer Symbols and Their Applications to Hypergeometric and Related Functions. Integral Transform. Spec. Funct., 2012, 23, 659683.

  10. Srivastava, H.M.; Saxena, R.K.; Parmar, R.K. Some Families of

    the Incomplete H-functions and the Incomplete

    Hfunctions and Associated Integral Transforms and Operators of Fractional Calculus with Applications. Russ. J. Math. Phys. 2018, 25, 116138.

  11. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theorem and Applications of Fractional Differential Equations; (North-Holland Mathematical Studies); Elsevier (North Holland) Science Publishers: Amsterdam, The Netherland; London, UK; New York, NX, USA, 2006; p. 204.

  12. Mathai, A.M.; Saxena, R.K. The H-Function with Applications in Statistics Other Disciplines; Wiley Eastern: New Delhi, India; Wiley Halsted: New York, NX, USA, 1978.

  13. Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-function: Theorem and Applications; Springer: New York, NX, USA, 2009.

  14. Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H-Functions of One and Two Variables with Applications; South Asian Publishers: New Delhi, India, 1982.

  15. Sharma, M.; Jain, R. A Note on a Generalized M-Series as a Special Function of Fractional Calculus. Frac., Calc. Appl. Anal. 2009, 12, 449452.

  16. Choi, J.; Hasanov, A.; Srivastava, H.M.; Turaev, M. Integral representations for Srivastavas triple hypergeometric functions. Taiwan. J. Math. 2011, 15, 27512762.

  17. Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals, Series and product, Fourth Editions 1965, Enlarged Edition by A. Jeffrey Academic press, New York 1994.