

Evaluation of Unified Integrals Involving Products of Generalized M-Series and Incomplete H-Functions

Dr. Amit Mathur

Department of Mathematics,
Maulana Azad University, Jodhpur, India

Keshav Charan Pareek

Department of Mathematics,
Maulana Azad University, Jodhpur, India

Abstract:

This work presents a unified approach to evaluate a class of definite integrals involving the product of an M-series and an incomplete H-function. These integrals are evaluated in terms of the incomplete H-function, yielding generalized and unified expressions. Several special cases are derived by specifying the parameters of the M-series and the incomplete H-function, which include the Fox H-function, incomplete Fox-Wright functions and incomplete generalized hypergeometric functions. The unified results presented here are broad in scope and hold significant applicability in various fields such as science, engineering, and finance.

Keywords: M-series, Incomplete H-function, Improper integral.

1. INTRODUCTION AND PRELIMINARIES

This section provides a brief overview of essential definitions and notations have been investigated in several prior studies [1–8] related to incomplete function, M-series, and Unified integral, which are used throughout this work.

Incomplete Gamma Function (IGF)

The standard incomplete gamma function $\gamma(r, x)$ and $\Gamma(r, x)$ expressed by

$$\gamma(r, x) = \int_0^x t^{r-1} e^{-t} dt; \quad (\Re(r) > 0; x \geq 0) \quad (1)$$

$$\Gamma(r, x) = \int_x^\infty t^{r-1} e^{-t} dt; \quad (x \geq 0; \Re(r) > 0 \text{ when } x = 0) \quad (2)$$

such that their sum yields the complete gamma function:

$$\gamma(r, x) + \Gamma(r, x) = \Gamma(r); \quad (\Re(r) > 0) \quad (3)$$

Incomplete Generalized Hypergeometric function (IGHF)

The incomplete generalized hypergeometric function ${}_p\gamma_q$ and ${}_p\Gamma_q$ introduced by Srivastava et al. [9] through Mellin-Barnes integral representation involving the IGF $\gamma(r, x)$ and $\Gamma(r, x)$ as given below

$$\begin{aligned} {}_p\Gamma_q \left[\begin{matrix} (a_1, x); (a_j, a_p)_{(2,p)}; z \\ (b_1, b_q)_{(1,q)}; \end{matrix} \right] &= \frac{\prod_{j=1}^q \Gamma(b_j)}{\prod_{j=1}^p \Gamma(a_j)} \sum_{l=0}^{\infty} \frac{\Gamma(a_1 + l) \prod_{j=2}^p (a_j + l)}{\prod_{j=1}^q \Gamma(b_j + l)} \frac{z^l}{l!} \\ &= \frac{1}{2\pi i} \frac{\prod_{j=1}^q \Gamma(b_j)}{\prod_{j=1}^p \Gamma(a_j)} \int_{\mathfrak{I}} \frac{\Gamma(a_1 + \eta, x) \prod_{j=2}^p \Gamma(a_j + \eta)}{\prod_{j=1}^q \Gamma(b_j + \eta)} \Gamma(-\eta) (-z)^\eta d\eta; \end{aligned} \quad (4)$$

$(|\arg(-\eta)| < \pi)$

and

$$\begin{aligned} {}_p\gamma_q \left[\begin{matrix} (a_1, x); (a_j, a_p)_{(2,p)}; z \\ (b_1, b_q)_{(1,q)}; \end{matrix} \right] &= \frac{\prod_{j=1}^q \Gamma(b_j)}{\prod_{j=1}^p \Gamma(a_j)} \sum_{l=0}^{\infty} \frac{\gamma(a_1 + l) \prod_{j=2}^p (a_j + l)}{\prod_{j=1}^q \Gamma(b_j + l)} \frac{z^l}{l!} \\ &= \frac{1}{2\pi i} \frac{\prod_{j=1}^q \Gamma(b_j)}{\prod_{j=1}^p \Gamma(a_j)} \int_{\mathfrak{I}} \frac{\gamma(a_1 + \eta, x) \prod_{j=2}^p \Gamma(a_j + \eta)}{\prod_{j=1}^q \Gamma(b_j + \eta)} \Gamma(-\eta) (-z)^\eta d\eta; \end{aligned} \quad (5)$$

$(|\arg(-\eta)| < \pi)$

here \mathfrak{I} is a Mellin-Barnes type contour extending from $\xi - i\infty$ to $\xi + i\infty$ with $(\xi \in \Re)$, and indented, when necessary to separate the sets of poles of the integral in each case.

Incomplete H-function

Srivastava et al. [10] (equation (2.1) -(2.4)) define incomplete H-function as follows:

$$\begin{aligned} \Gamma_{p,q}^{m,n}(z) &= \Gamma_{p,q}^{m,n} \left[z \left| \begin{matrix} (a_1, A_1, x); (a_j, A_j)_{(2,p)} \\ (b_j, B_j)_{(1,q)} \end{matrix} \right. \right] \\ &= \Gamma_{p,q}^{m,n} \left[z \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p) \\ (b_1, B_1), (b_2, B_2), \dots, (b_q, B_q) \end{matrix} \right. \right] = \frac{1}{2\pi i} \int_{\mathfrak{S}} \phi(\eta, x) z^{-\eta} d\eta, \end{aligned} \quad (6)$$

where

$$\phi(\eta, x) = \frac{\Gamma(1-a_1-A_1\eta, x) \prod_{j=1}^m \Gamma(b_j+B_j\eta) \prod_{j=2}^n \Gamma(1-a_j-A_j\eta)}{\prod_{j=m+1}^q (1-b_j-B_j\eta) \prod_{j=n+1}^p \Gamma(a_j+A_j\eta)}$$

and

$$\begin{aligned} \gamma_{p,q}^{m,n}(z) &= \gamma_{p,q}^{m,n} \left[z \left| \begin{matrix} (a_1, A_1, x); (a_j, A_j)_{(2,p)} \\ (b_j, B_j)_{(1,q)} \end{matrix} \right. \right] \\ &= \gamma_{p,q}^{m,n} \left[z \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p) \\ (b_1, B_1), (b_2, B_2), \dots, (b_q, B_q) \end{matrix} \right. \right] = \frac{1}{2\pi i} \int_{\mathfrak{S}} \phi(\eta, x) z^{-\eta} d\eta, \end{aligned} \quad (7)$$

where

$$\phi(\eta, x) = \frac{\gamma(1-a_1-A_1\eta, x) \prod_{j=1}^m \Gamma(b_j+B_j\eta) \prod_{j=2}^n \Gamma(1-a_j-A_j\eta)}{\prod_{j=m+1}^q (1-b_j-B_j\eta) \prod_{j=n+1}^p \Gamma(a_j+A_j\eta)}$$

The incomplete H-function as defined in equation (6) and (7) respectively, exist for all $x \geq 0$ under the same set of conditions and contour specifications as presented in the work of Kilabs et al. [11], Mathai and Saxena [12], and Mathai et al. [13].

The previously mentioned functions admit numerous special cases, a few of which are enumerated below:

(i) By putting $m=1$, $n=p$ and replacing q by $q+1$ with relevant parameters, the functions (6) & (7) converges to incomplete Fox-Wright functions ${}_p\psi_q^{(\Gamma)}$ and ${}_p\psi_q^{(\gamma)}$ (see for details, [10] [P. 132, Equation (6.3) and (6.4)]:

$$\begin{aligned} \Gamma_{p,q+1}^{1,p} \left[-z \left| \begin{matrix} (1-a_1, A_1, x); (1-a_1, A_j)_{(2,p)} \\ (0,1); (1-b_j, B_j)_{(1,q)} \end{matrix} \right. \right] \\ = {}_p\psi_q^{(\Gamma)} \left[\begin{matrix} (a_1, A_1, x); (a_1, A_1)_{(2,p)}; \\ (b_j, B_j)_{(1,q)}; \end{matrix} z \right] \end{aligned} \quad (8)$$

and

$$\begin{aligned} \gamma_{p,q+1}^{1,p} \left[-z \left| \begin{matrix} (1-a_1, A_1, x); (1-a_1, A_j)_{(2,p)} \\ (0,1); (1-b_j, B_j)_{(1,q)} \end{matrix} \right. \right] \\ = {}_p\psi_q^{(\gamma)} \left[\begin{matrix} (a_1, A_1, x); (a_1, A_1)_{(2,p)}; \\ (b_j, B_j)_{(1,q)}; \end{matrix} z \right] \end{aligned} \quad (9)$$

(ii) Additionally putting $x=0$ in equation (8), incomplete Fox-Wright function converges to Fox-Wright function (see for details, [14] ([P. 39, Equation (2.6.11)])]:

$${}_p\psi_q^{(\Gamma)} \left[\begin{matrix} (a_1, A_1, 0); (a_j, A_j)_{(2,p)}; \\ (b_j, B_j)_{(1,q)}; \end{matrix} z \right] = {}_p\psi_q \left[\begin{matrix} (a_1, A_1); (a_j, A_j)_{(2,p)}; \\ (b_j, B_j)_{(1,q)}; \end{matrix} z \right] \quad (10)$$

(iii)

If we take $A_j = B_j = 1$ ($j = 1, \dots, p, j = 1, \dots, q$) in equation (8) & (9), then the incomplete H-function converges to IGHF ${}_p\gamma_q$ and ${}_p\Gamma_q$ (see details in Srivastava et al. [9]):

$${}_p\psi_q^{(\Gamma)} \left[\begin{matrix} (a_1, 1, x); (a_j, 1)_{(2,p)}; \\ (b_j, 1)_{(1,q)}; \end{matrix} z \right] = {}_p\Gamma_q \left[\begin{matrix} (a_1, x); a_2, \dots, a_p; \\ b_1, \dots, b_p; \end{matrix} z \right] \quad (11)$$

and

$${}_p\psi_q^{(\gamma)} \left[\begin{matrix} (a_1, 1, x); (a_j, 1)_{(2,p)}; \\ (b_j, 1)_{(1,q)}; \end{matrix} z \right] = {}_p\gamma_q \left[\begin{matrix} (a_1, x); a_2, \dots, a_p; \\ b_1, \dots, b_p; \end{matrix} z \right] \quad (12)$$

M-series

Sharma et al. [15] proposed and examined the generalized M-series in the following form:

$${}_rM_s^{(\alpha, \beta)} \left[\begin{matrix} e_1, \dots, e_r; \\ f_1, \dots, f_r; \end{matrix} z \right] = {}_rM_s^{(\alpha, \beta)}(z) = \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_r)_k} \frac{z^k}{\Gamma(\alpha k + \beta)}, \quad (\alpha, \beta, z \in \mathbb{C}, \Re(\alpha) > 0) \quad (13)$$

From the table of integration, series, and products by I. S. Gradshteyn, M. I. Ryzhik the following Integral formula ([17], p. 377 Equation (3.257)) is given as:

$$\int_0^{\infty} \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} dy = \frac{\sqrt{\pi} \Gamma\left(\delta + \frac{1}{2}\right)}{2uw^{\delta+\frac{1}{2}} \Gamma(\delta+1)}; \quad (14)$$

$$\left(u > 0, v < 0, w > 0, \delta > -\frac{1}{2} \right)$$

2. Main Results

This section presents certain integrals involving the product of M-series and Incomplete H-function.

THEOREM 1: Suppose that $\delta \in \mathbb{C}$; with $R(\delta) > 0$ and $y > 0, u > 0, v < 0, w > 0, \delta > \frac{-1}{2}, \frac{-1}{2} < u - v - w < \frac{1}{2}$ then

the following integration hold:

$$\begin{aligned}
 & \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} {}_r M_s^{\alpha, \beta} \left[\begin{matrix} e_1, \dots, e_r; \\ f_1, \dots, f_r; \end{matrix} \frac{z_1}{\left(uv + \frac{v}{y} \right)^2 + w} \right] \times \\
 & \Gamma_{p, q}^{m, n} \left[\frac{z_2}{\left(uv + \frac{v}{y} \right)^2 + w} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p) \\ (b_1, B_1), (b_2, B_2), \dots, (b_q, B_q) \end{matrix} \right. dy \\
 & = \frac{\sqrt{\pi}}{2uw} \sum_{k=0}^{\delta+1} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left(\frac{z_1}{w} \right)^k \times \\
 & \Gamma_{p+1, q+1}^{m, n+1} \left[\frac{z_2}{w} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p); \left(-\delta - k + \frac{1}{2}, 1 \right) \\ (b_1, B_1), \dots, (a_q, B_q); (-\delta - k, 1) \end{matrix} \right. \quad (15)
 \end{aligned}$$

assume that the conditions for the incomplete H-function $\Gamma_{p, q}^{m, n}$ in equation [6] are fulfilled.

Proof: L.H.S. of equation (15) Let

$$\begin{aligned}
 L &= \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} {}_r M_s^{\alpha, \beta} \left[\begin{matrix} e_1, \dots, e_r; \\ f_1, \dots, f_r; \end{matrix} \frac{z_1}{\left(uv + \frac{v}{y} \right)^2 + w} \right] \times \\
 & \Gamma_{p, q}^{m, n} \left[\frac{z_2}{\left(uv + \frac{v}{y} \right)^2 + w} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p) \\ (b_1, B_1), (b_2, B_2), \dots, (b_q, B_q) \end{matrix} \right. dy
 \end{aligned}$$

By the using of equation (6) and (13) in L we get

$$\begin{aligned}
 L &= \frac{1}{2\pi i} \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} \times \\
 & \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left[z_1 \left\{ \left(uy + \frac{v}{y} \right)^2 + w \right\}^{-1} \right]^k \times \\
 & \int_0^\infty \left[z_2 \left\{ \left(uy + \frac{v}{y} \right)^2 + w \right\}^{-1} \right]^{-\eta} \phi(\eta, x) d\eta dy \\
 &= \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{z_1^k}{\Gamma(\alpha k + \beta)} \times \\
 & \frac{1}{2\pi i} \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1-k+\eta} \int_0^\infty \phi(\eta, x) z_2^{-\eta} d\eta dy
 \end{aligned}$$

Now by changing the order of integration, we get

$$\begin{aligned}
 &= \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{z_1^k}{\Gamma(\alpha k + \beta)} \times \\
 & \frac{1}{2\pi i} \int_0^\infty \phi(\eta, x) z_2^{-\eta} \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1-k+\eta} dy d\eta
 \end{aligned}$$

By using the result of (14), we get

$$\begin{aligned}
 &= \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{z_1^k}{\Gamma(\alpha k + \beta)} \times \\
 & \frac{1}{2\pi i} \int_0^\infty \frac{\sqrt{\pi} \Gamma \left(\delta + k - \eta + \frac{1}{2} \right)}{2uw^{\left(\delta+k-\eta+\frac{1}{2} \right)} \Gamma(\delta + k - \eta + 1)} \phi(\eta, x) z_2^{-\eta} d\eta \\
 &= \frac{\sqrt{\pi}}{2uw^{\left(\delta+k-\eta+\frac{1}{2} \right)}} \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{z_1^k}{\Gamma(\alpha k + \beta)} \times \\
 & \frac{1}{2\pi i} \int_0^\infty \frac{\Gamma \left(\delta + k - \eta + \frac{1}{2} \right)}{\Gamma(\delta + k - \eta + 1)} \phi(\eta, x) z_2^{-\eta} d\eta \\
 &= \frac{\sqrt{\pi}}{2uw^{\left(\delta+\frac{1}{2} \right)}} \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{\left(\frac{z_1}{w} \right)^k}{\Gamma(\alpha k + \beta)} \times \\
 & \frac{1}{2\pi i} \int_0^\infty \frac{\Gamma \left(\delta + k - \eta + \frac{1}{2} \right)}{\Gamma(\delta + k - \eta + 1)} \phi(\eta, x) \left(\frac{z_2}{w} \right)^{-\eta} d\eta
 \end{aligned}$$

Through the interpretation of equation (6), the desired result is derived

$$\begin{aligned}
 &\Rightarrow \frac{\sqrt{\pi}}{2uw^{\left(\delta+\frac{1}{2} \right)}} \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left(\frac{z_1}{w} \right)^k \times \\
 & \Gamma_{p+1, q+1}^{m, n+1} \left[\frac{z_2}{w} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p); \left(-\delta - k + \frac{1}{2}, 1 \right) \\ (b_1, B_1), \dots, (a_q, B_q); (-\delta - k, 1) \end{matrix} \right.
 \end{aligned}$$

Hence Theorem 1 is proved.

THEOREM 2: Suppose that $\delta \in \mathbb{C}$; with $R(\delta) > 0$ and $y > 0, u > 0, v < 0, w > 0, \delta > \frac{-1}{2}, \frac{-1}{2} < u - v - w < \frac{1}{2}$ then the following integration hold:

$$\begin{aligned}
 & \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} {}_r M_s^{\alpha, \beta} \left[\begin{matrix} e_1, \dots, e_r; \\ f_1, \dots, f_r; \end{matrix} \frac{z_1}{\left(uv + \frac{v}{y} \right)^2 + w} \right] \times \\
 & \gamma_{p, q}^{m, n} \left[\frac{z_2}{\left(uv + \frac{v}{y} \right)^2 + w} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p) \\ (b_1, B_1), (b_2, B_2), \dots, (b_q, B_q) \end{matrix} \right. dy \\
 &= \frac{\sqrt{\pi}}{2uw^{\left(\delta+\frac{1}{2} \right)}} \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left(\frac{z_1}{w} \right)^k \times \\
 & \gamma_{p+1, q+1}^{m, n+1} \left[\frac{z_2}{w} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p); \left(-\delta - k + \frac{1}{2}, 1 \right) \\ (b_1, B_1), \dots, (a_q, B_q); (-\delta - k, 1) \end{matrix} \right.
 \end{aligned} \quad (16)$$

assume that the conditions for the incomplete H-function $\gamma_{p, q}^{m, n}$ in equation [7] are fulfilled.

Proof: L.H.S. of equation (16)

Let

$$L = \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} {}_r M_s \left[\begin{matrix} e_1, \dots, e_r; \\ f_1, \dots, f_r; \end{matrix} \left(uv + \frac{v}{y} \right)^2 + w \right] \times \gamma_{p,q}^{m,n} \left[\begin{matrix} z_2 \\ \left(uv + \frac{v}{y} \right)^2 + w \end{matrix} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p) \\ (b_1, B_1), (b_2, B_2), \dots, (b_q, B_q) \end{matrix} \right. dy$$

By the using of equation (7) and (13) in L we get

$$\begin{aligned} L &= \frac{1}{2\pi i} \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} \times \\ &\quad \sum_{k=0}^\infty \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left[z_1 \left\{ \left(uy + \frac{v}{y} \right)^2 + w \right\}^{-1} \right]^k \times \\ &\quad \int_{\mathfrak{H}} \left[z_2 \left\{ \left(uy + \frac{v}{y} \right)^2 + w \right\}^{-1} \right]^{-\eta} \phi(\eta, x) d\eta dy \\ &= \sum_{k=0}^\infty \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{z_1^k}{\Gamma(\alpha k + \beta)} \times \\ &\quad \frac{1}{2\pi i} \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1-k+\eta} \int_{\mathfrak{H}} \phi(\eta, x) z_2^{-\eta} d\eta dy \end{aligned}$$

Now by changing the order of integration, we get

$$\begin{aligned} &= \sum_{k=0}^\infty \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{z_1^k}{\Gamma(\alpha k + \beta)} \times \\ &\quad \frac{1}{2\pi i} \int_{\mathfrak{H}} \phi(\eta, x) z_2^{-\eta} \int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1-k+\eta} dy d\eta \end{aligned}$$

By using the result of (14), we get

$$\begin{aligned} &= \sum_{k=0}^\infty \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{z_1^k}{\Gamma(\alpha k + \beta)} \times \\ &\quad \frac{1}{2\pi i} \int_{\mathfrak{H}} \frac{\sqrt{\pi} \Gamma\left(\delta + k - \eta + \frac{1}{2}\right)}{2uw^{\left(\delta+k-\eta+\frac{1}{2}\right)} \Gamma(\delta + k - \eta + 1)} \phi(\eta, x) z_2^{-\eta} d\eta \\ &= \frac{\sqrt{\pi}}{2uw^{\left(\delta+k-\eta+\frac{1}{2}\right)}} \sum_{k=0}^\infty \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{z_1^k}{\Gamma(\alpha k + \beta)} \times \\ &\quad \frac{1}{2\pi i} \int_{\mathfrak{H}} \frac{\Gamma\left(\delta + k - \eta + \frac{1}{2}\right)}{\Gamma(\delta + k - \eta + 1)} \phi(\eta, x) z_2^{-\eta} d\eta \end{aligned}$$

$$= \frac{\sqrt{\pi}}{2uw^{\left(\delta+\frac{1}{2}\right)}} \sum_{k=0}^\infty \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{\left(\frac{z_1}{w}\right)^k}{\Gamma(\alpha k + \beta)} \times \\ \frac{1}{2\pi i} \int_{\mathfrak{H}} \frac{\Gamma\left(\delta + k - \eta + \frac{1}{2}\right)}{\Gamma(\delta + k - \eta + 1)} \phi(\eta, x) \left(\frac{z_2}{w}\right)^{-\eta} d\eta$$

Through the interpretation of equation (7), the desired result is derived

$$\Rightarrow \frac{\sqrt{\pi}}{2uw^{\left(\delta+\frac{1}{2}\right)}} \sum_{k=0}^\infty \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left(\frac{z_1}{w}\right)^k \times \\ \gamma_{p+1,q+1}^{m,n+1} \left[\begin{matrix} z_2 \\ w \end{matrix} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p); \left(-\delta - k + \frac{1}{2}, 1\right) \\ (b_1, B_1), \dots, (b_q, B_q); (-\delta - k, 1) \end{matrix} \right]$$

Hence the Theorem 2 is proved.

2. Special Cases

We illustrate in this part some significant special cases corresponding to the principal result of Theorem 1 and Theorem 2.

Corollary 1.

For $\delta \in \mathbb{C}$ with $\Re(\delta) > 0$ and $y > 0, u > 0, v < 0, w > 0, \delta > -\frac{1}{2}$

Furthermore, setting $m=1, p=n$ and replacing q with $q+1$, in equation (6) and (7), and assume that the incomplete H-function reduces to the incomplete Wright function as given in equation (8) and (9), we obtain the result here from those in Theorems 1 and 2. The corresponding integral formula as given:

$$\begin{aligned} &\int_0^\infty \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} {}_r M_s \left[\begin{matrix} e_1, \dots, e_r; \\ f_1, \dots, f_r; \end{matrix} \left(uv + \frac{v}{y} \right)^2 + w \right] \times \\ &\quad {}_p \psi_q^{(\Gamma)} \left[\begin{matrix} z_2 \\ \left(uv + \frac{v}{y} \right)^2 + w \end{matrix} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p) \\ (b_1, B_1), (b_2, B_2), \dots, (b_q, B_q) \end{matrix} \right. dy \\ &= \frac{\sqrt{\pi}}{2uw^{\left(\delta+\frac{1}{2}\right)}} \sum_{k=0}^\infty \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left(\frac{z_1}{w}\right)^k \times \\ &\quad {}_{p+1} \psi_{q+1}^{(\Gamma)} \left[\begin{matrix} z_2 \\ w \end{matrix} \right] \left| \begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p); \left(\delta + k + \frac{1}{2}, 1\right) \\ (b_1, B_1), \dots, (b_q, B_q); (\delta + k + 1, 1) \end{matrix} \right. \end{aligned} \quad (17)$$

and

$$\begin{aligned}
 & \int_0^{\infty} \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} {}_r M_s \left[\begin{matrix} e_1, \dots, e_r; & z_1 \\ f_1, \dots, f_r; & \left(uv + \frac{v}{y} \right)^2 + w \end{matrix} \right] \times \\
 & {}_p \psi_q^{(\gamma)} \left[\begin{matrix} z_2 \\ \left(uv + \frac{v}{y} \right)^2 + w \end{matrix} \right] \left(\begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p) \\ (b_1, B_1), (b_2, B_2), \dots, (b_q, B_q) \end{matrix} \right) dy \\
 & = \frac{\sqrt{\pi}}{2uw} \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left(\frac{z_1}{w} \right)^k \times \\
 & {}_{p+1} \psi_{q+1}^{(\gamma)} \left[\begin{matrix} z_2 \\ w \end{matrix} \right] \left(\begin{matrix} (a_1, A_1, x); (a_2, A_2), \dots, (a_p, A_p); \left(\delta + k + \frac{1}{2}, 1 \right) \\ (b_1, B_1), \dots, (a_q, B_q); (\delta + k + 1, 1) \end{matrix} \right) \quad (18)
 \end{aligned}$$

under the assumption that each element of equation (17) and (18) are exists.

Corollary 2:

For $\delta \in \mathbb{C}$ with $\Re(\delta) > 0$ and $y > 0, u > 0, v < 0, w > 0, \delta > -\frac{1}{2}$.

Furthermore, setting $A_j = B_j = 1, (\forall j = 1, \dots, p; \forall j = 1, \dots, q)$ in equation (8) and (9), and assume that the incomplete H-function reduces to the incomplete generalized hypergeometric function as given in equation (11) and (12), we obtain the result here from those in Theorems 1 and 2. The corresponding integral formula as given:

$$\begin{aligned}
 & \int_0^{\infty} \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} {}_r M_s \left[\begin{matrix} e_1, \dots, e_r; & z_1 \\ f_1, \dots, f_r; & \left(uv + \frac{v}{y} \right)^2 + w \end{matrix} \right] \times \\
 & {}_p \Gamma_q \left[\begin{matrix} (a_1, x); a_2, \dots, a_p; & z_2 \\ b_1, \dots, b_p; & \left(uv + \frac{v}{y} \right)^2 + w \end{matrix} \right] dy \\
 & = \frac{\sqrt{\pi}}{2uw} \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left(\frac{z_1}{w} \right)^k \times \\
 & {}_{p+1} \Gamma_{q+1} \left[\begin{matrix} z_2 \\ w \end{matrix} \right] \left(\begin{matrix} (a_1, x); a_2, \dots, a_p; \left(-\delta - k + \frac{1}{2} \right) \\ b_1, \dots, b_p; (-\delta - k) \end{matrix} \right) \quad (19)
 \end{aligned}$$

and

$$\begin{aligned}
 & \int_0^{\infty} \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} {}_r M_s \left[\begin{matrix} e_1, \dots, e_r; & z_1 \\ f_1, \dots, f_r; & \left(uv + \frac{v}{y} \right)^2 + w \end{matrix} \right] \times \\
 & {}_p \gamma_q \left[\begin{matrix} (a_1, x); a_2, \dots, a_p; & z_2 \\ b_1, \dots, b_p; & \left(uv + \frac{v}{y} \right)^2 + w \end{matrix} \right] dy
 \end{aligned}$$

$$\begin{aligned}
 & = \frac{\sqrt{\pi}}{2uw} \sum_{k=0}^{\infty} \frac{(e_1)_k \dots (e_r)_k}{(f_1)_k \dots (f_s)_k} \frac{1}{\Gamma(\alpha k + \beta)} \left(\frac{z_1}{w} \right)^k \times \\
 & {}_{p+1} \gamma_{q+1} \left[\begin{matrix} z_2 \\ w \end{matrix} \right] \left(\begin{matrix} (a_1, x); a_2, \dots, a_p; \left(-\delta - k + \frac{1}{2} \right) \\ b_1, \dots, b_p; (-\delta - k) \end{matrix} \right) \quad (20)
 \end{aligned}$$

under the assumption that each element of equation (19) and (20) are exists.

Corollary 3:

For $\delta \in \mathbb{C}$ with $\Re(\delta) > 0$ and $y > 0, u > 0, v < 0, w > 0, \delta > -\frac{1}{2}$

Furthermore, setting $x = 0$, in equation (8), and assume that the incomplete H-function reduces to the incomplete Fox-Wright generalized hypergeometric function as given in equation (10), also M-series reduces into unity, we obtain the result here from those in Theorems 1. The corresponding integral formula as given:

$$\begin{aligned}
 & \int_0^{\infty} \left[\left(uy + \frac{v}{y} \right)^2 + w \right]^{-\delta-1} \times \\
 & {}_p \psi_q \left[\begin{matrix} (a_1, A_1), \dots, (a_p, A_p); & z \left\{ \left(uy + \frac{v}{y} \right)^2 + w \right\}^{-1} \\ (b_1, B_1), \dots, (a_q, B_q); & \end{matrix} \right] dy \\
 & = \frac{\sqrt{\pi}}{2uw} {}_{p+1} \psi_{q+1} \left[\begin{matrix} z \\ w \end{matrix} \right] \left(\begin{matrix} (a_1, A_1), \dots, (a_p, A_p); \left(\delta + \frac{1}{2}, 1 \right) \\ (b_1, B_1), \dots, (a_q, B_q); (\delta + 1, 1) \end{matrix} \right) \quad (21)
 \end{aligned}$$

under the assumption that each element of equation (21) are exists.

3. CONCLUSION

In the present study, we have established several significant integrals involving the product of the M-series and incomplete H-functions, represented in terms of incomplete H-functions themselves. Additionally, we have presented certain special cases by assigning certain values to the parameters of the M-series and incomplete H-functions-such as Fox's H-function, incomplete Fox-Wright functions, Fox-Wright functions, and incomplete generalized hypergeometric functions. Some previously known results are also included as special cases. The integrals derived in this analysis are of a general form and may serve as a foundation for developing numerous results relevant to practical and applied contexts

REFERENCES

1. M.K. Bansal, D. Kumar, I. Khan, J. Singh and K. S. Nisar, Certain Unified Integrals Associated with Product of M-Series and Incomplete H-functions, Mathematics, 7(12), 1191, (2019).
2. Bansal, M.K.; Choi, J. A Note on Path way Fractional Integral Formulas Associated with the Incomplete H-functions. Int. J. Appl. Comput. Math. **2019**, 5, 133.

3. Bansal, M.K.; Jolly, N.; Jain, R.; Kumar, D. An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results. *J. Anal.* **2019**, *27*, 727–740.
4. Chaurasia, V.B.L.; Kumar, D. The integration of certain product involving special functions. *Sci. Ser. A Math. Sci.* **2010**, *19*, 7–12.
5. Chaurasia, V.B.L.; Singh, J. Certain integral properties pertaining to special functions. *Sci. Ser. A Math. Sci.* **2010**, *19*, 1–6.
6. Kumar, D.; Ayant, F.; Kumar, D. A new class of integrals involving generalized hypergeometric function and multivariable Aleph-function. *Kragujevac J. Math.* **2020**, *44*, 539–550.
7. Brychkov, Y.A. *Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas*; CRC Press: Boca Raton, FL, USA, 2008.
8. Garg, M.; Mittal, S. On a new unified integral. *Proc. Indian Acad. Sci. Math. Sci.* **2004**, *114*, 99–101.
9. Srivastava, H.M.; Chaudhary, M.A.; Agarwal, R.P. The Incomplete Pochhammer Symbols and Their Applications to Hypergeometric and Related Functions. *Integral Transform. Spec. Funct.* **2012**, *23*, 659–683.
10. Srivastava, H.M.; Saxena, R.K.; Parmar, R.K. Some Families of the Incomplete H-functions and the Incomplete H-functions and Associated Integral Transforms and Operators of Fractional Calculus with Applications. *Russ. J. Math. Phys.* **2018**, *25*, 116–138.
11. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. *Theorem and Applications of Fractional Differential Equations*; (North-Holland Mathematical Studies); Elsevier (North Holland) Science Publishers: Amsterdam, The Netherland; London, UK; New York, NX, USA, 2006; p. 204.
12. Mathai, A.M.; Saxena, R.K. *The H-Function with Applications in Statistics Other Disciplines*; Wiley Eastern: New Delhi, India; Wiley Halsted: New York, NX, USA, 1978.
13. Mathai, A.M.; Saxena, R.K.; Haubold, H.J. *The H-function: Theorem and Applications*; Springer: New York, NX, USA, 2009.
14. Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. *The H-Functions of One and Two Variables with Applications*; South Asian Publishers: New Delhi, India, 1982.
15. Sharma, M.; Jain, R. A Note on a Generalized M-Series as a Special Function of Fractional Calculus. *Frac., Calc. Appl. Anal.* **2009**, *12*, 449–452.
16. Choi, J.; Hasanov, A.; Srivastava, H.M.; Turaev, M. Integral representations for Srivastava's triple hypergeometric functions. *Taiwan. J. Math.* **2011**, *15*, 2751–2762.
17. Gradshteyn, I.S. and Ryzhik, I.M., *Table of Integrals, Series and product*, Fourth Editions 1965, Enlarged Edition by A. Jeffrey Academic press, New York 1994.