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Abstract: 

This work presents a unified approach to evaluate a class of 

definite integrals involving the product of an M-series and an 

incomplete H-function. These integrals are evaluated in terms of 

the incomplete H-function, yielding generalized and unified 

expressions. Several special cases are derived by specifying the 

parameters of the M-series and the incomplete H-function, which 

include the Fox H-function, incomplete Fox-Wright functions 

and incomplete generalized hypergeometric functions. The 

unified results presented here are broad in scope and hold 

significant applicability in various fields such as science, 

engineering, and finance. 
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1. INTRODUCTION AND PRELIMINARIES

This section provides a brief overview of essential definitions 

and notations have been investigated in several prior studies 

 1 8− related to incomplete function, M-series, and Unified 

integral, which are used throughout this work. 

Incomplete Gamma Function (IGF) 

The standard incomplete gamma function ( ),r x and 

( ),r x expressed by 

( ) 1

0
,

x
r tr x t e dt − −=  ; ( )( )0; 0r x  

(1)                                 

( ) 1, r t

x
r x t e dt
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− − =  ; ( )( )0; 0 when 0x r x   =

(2) 
such that their sum yields the complete gamma function:                 
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Incomplete Generalized Hypergeometric function (IGHF) 

The incomplete generalized hypergeometric function 

p q and p q introduced by Srivastava et al.  9 through

Mellin-Barnes integral representation involving the IGF 

( ),r x and ( ),r x as given below
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( )( )arg  −   (5)

here   is a Mellin-Barnes type contour extending from 

i −  to i + with ( )  ,and indented, when necessary to

separate the sets of poles of the integral in each case. 

Incomplete H-function 

Srivastava et al.  10  (equation (2.1) -(2.4)) define incomplete

H-function as follows:
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The incomplete H-function as defined in equation (6) and (7) 

respectively, exist for all 0x  under the same set of 

conditions and contour specifications as presented in the work 

of Kilabs et al.  11 , Mathai and Saxena  12 , and Mathai et 

al.  13 . 

The previously mentioned functions admit numerous special 

cases, a few of which are enumerated below: 

(i) By putting m=1, n=p and replacing q by q+1 with 

relevant parameters, the functions (6) & (7) converges 

to incomplete Fox-Wright functions 
( )

p q


 and 
( )

p q


    

(see for details, [10] [P. 132, Equation (6.3) and (6.4)]): 
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(ii) Additionally putting 0x =  in equation (8), incomplete 

Fox-Wright function converges to Fox-Wright function 

(see for details, [14] ([P. 39, Equation (2.6.11)]): 
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(iii)         

If we take ( )1 1,..., , 1,...j jA B j p j q= = = = in equation 

(8) & (9), then the incomplete H-function converges to 

IGHF p q  and p q  (see details in Srivastava et al. 

[9]): 
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M-series 

Sharma et al. [15] proposed and examined the generalized M-

series in the following form: 
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From the table of integration, series, and products by I. S. 

Gradshteyn, M. I. Ryzhik the following Integral formula ([17], 

p. 377 Equation (3.257)) is given as: 
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2.Main Results 

This section presents certain integrals involving the product of 

M-series and Incomplete H-function. 
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Now by changing the order of integration, we get 
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Through the interpretation of equation (6), the desired result is 

derived  
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Hence Theorem 1 is proved. 
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 (16) 

assume that the conditions for the incomplete H-function ,

,

m n

p q  

in equation [7] are fulfilled. 
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Proof: L.H.S. of equation (16) 
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Now by changing the order of integration, we get 
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By using the result of (14), we get 
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Through the interpretation of equation (7), the desired result is 

derived  
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Hence the Theorem 2 is proved. 

 

2. Special Cases 

We illustrate in this part some significant special cases 

corresponding to the principal result of Theorem 1 and 

Theorem 2. 

 

Corollary 1.  

For    with ( ) 0   and  y>0, u>0, v<0, w>0,  >-
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Furthermore, setting 1,m p n= =  and replacing q  with 1q+ , 

in equation (6) and (7), and assume that the incomplete H-

function reduces to the incomplete Wright function as given in 

equation (8) and (9), we obtain the result here from those in 

Theorems 1 and 2. The corresponding integral formula as 
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and 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS070052
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 07, July - 2025

www.ijert.org
www.ijert.org


 
( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

1
2

,
1 1

2

10

1 1 2 2
2

2

1 1 2 2

,..., ;

,..., ;

, , ; , ,..., ,

, , , ,..., ,

r

r s
v

r
y

p p

p q
v

q qy

e e zv
uy w M

f fy uv w

a A x a A a Az
dy

b B b B b Buv w


 




− −
      + +        + +   

 
 
 + +
 



 

( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

1 1

1
0 12

1 1 2 2
2

1 1

1 1

... 1

...
2

1
, , ; , ,..., , ; ,1

2

, ,..., , ; 1,1

k

rk k

k sk k

p p

p q

q q

e e z

f f k w
uw

a A x a A a A kz

w
b B a B k







 








+ =

+ +

 
=  

 +  

  
+ +  

  
 + +
 



(18)

under the assumption that each element of equation (17) and 

(18) are exists. 
 

Corollary 2: 

For    with ( ) 0   and y>0, u>0, v<0, w>0,  >-
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2
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Furthermore, setting 1j jA B= = , ( )1,..., ; 1,...,j p j q =  =  

in equation (8) and (9), and assume that the incomplete H-

function reduces to the incomplete generalized 

hypergeometric function as given in equation (11) and (12), 

we obtain the result here from those in Theorems 1 and 2. The 
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under the assumption that each element of equation (19) and 

(20) are exists. 

 

Corollary 3: 

For    with ( ) 0   and y>0, u>0, v<0, w>0,  >-
1

2
 

Furthermore, setting 0x = , in equation (8), and assume that 

the incomplete H-function reduces to the incomplete Fox-

Wright generalized hypergeometric function as given in 

equation (10), also M-series reduces into unity, we obtain the 

result here from those in Theorems 1. The corresponding 

integral formula as given: 
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 (21) 
under the assumption that each element of equation (21) are 

exists. 

 

3. CONCLUSION 

In the present study, we have established several significant 

integrals involving the product of the M-series and incomplete 

H-functions, represented in terms of incomplete H-functions 

themselves. Additionally, we have presented certain special 

cases by assigning certain values to the parameters of the M-

series and incomplete H-functions-such as Fox’s H-function, 

incomplete Fox–Wright functions, Fox–Wright functions, and 

incomplete generalized hypergeometric functions. Some 

previously known results are also included as special cases. 

The integrals derived in this analysis are of a general form and 

may serve as a foundation for developing numerous results 

relevant to practical and applied contexts 
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