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Abstract:

This work presents a unified approach to evaluate a class of
definite integrals involving the product of an M-series and an
incomplete H-function. These integrals are evaluated in terms of
the incomplete H-function, yielding generalized and unified
expressions. Several special cases are derived by specifying the
parameters of the M-series and the incomplete H-function, which
include the Fox H-function, incomplete Fox-Wright functions
and incomplete generalized hypergeometric functions. The
unified results presented here are broad in scope and hold
significant applicability in various fields such as science,
engineering, and finance.
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1. INTRODUCTION AND PRELIMINARIES

This section provides a brief overview of essential definitions
and notations have been investigated in several prior studies

[1-8] related to incomplete function, M-series, and Unified
integral, which are used throughout this work.

Incomplete Gamma Function (IGF)

The standard incomplete gamma function y(r,x) and

I'(r, x) expressed by

y(rx) =t dt; (%(r)>0;x20)
(1)

(XZO;ER(r)>O when x:O)

(2)
such that their sum yields the complete gamma function:

y(rx)+T(r,x)=T(r); (R(r)>0)
(3)

F(r,x):jjt"le"dt;

Incomplete Generalized Hypergeometric function (IGHF)
The incomplete generalized hypergeometric  function

»¥q and T introduced by Srivastava et al. [9] through

Mellin-Barnes integral representation involving the IGF
y(r,x)and I'(r,x)as given below
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(ai’x);(ai’ap)(z,p);
z
(bl’bq )(1q) ;

CT(a+l) ﬁ(a +1) "
- 1;1 Z q = E
° TIr(+1)

i=1 =t

prq

=
=
—_
o
—

. F(n)(-2) on;
IJ:!F(""J')3 gr(bj +1)
(Jarg(—n)| < 7) (4)
and
tara,y | T8 sl
p7q = J;:l Z q 2 TS
(BB, ) ()™ TIr(e+n) U

_ 1 =1 J‘ j=2 F( n
=— -n)(-z)"dn;
2 i P J 9
i Hr(aj) ‘ Hr(bi +1)
j= j=
(Jarg(—n)| < 7) (5)
here 3 is a Mellin-Barnes type contour extending from

&—iwto & +icowith (£ e R) ,and indented, when necessary to
separate the sets of poles of the integral in each case.

Incomplete H-function
Srivastava et al. [10] (equation (2.1) -(2.4)) define incomplete

H-function as follows:

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Published by :
http://lwww.ijert.org

(6\1, Ai’ X);(ai Ai )(z,p)
(bj ! BJ' )(1,q)
(@A) A) (g A |

(blaBl)a(bz,Bz) (bqqu _2_7Z'if£¢(77’x)27]7d77:

Mo (2) =T33 2

=W%Z

(6)
where
(1-a, - An, )m (b +Bjn) n (1-a,-An)
#(.x) = "
[T (b —Bn)HF(a +An)
j=m+1 j=n+1
and
mn( ) n (al'AL’X);(aJ Ai)(zyp)
Mz)=y"" z
7p,q 7/P:CI (bJ,B])lq)

IR GRS HCA S I CRV. I -
=Vpa |l (blvB1)v( ) (bqqu 27TIJ-¢ s X z"dn,

(7)
where
y(1-a - An,x Hr(b +B, 77) ; r(l—aj—qu)
¢(n,x): i=1 i=
H(l b, - B, n)HF(a +A77)
j=m+1 j=n+1

The incomplete H-function as defined in equation (6) and (7)
respectively, exist for all x>O0under the same set of
conditions and contour specifications as presented in the work
of Kilabs et al. [11], Mathai and Saxena [12], and Mathai et

al. [13].

The previously mentioned functions admit numerous special

cases, a few of which are enumerated below:

(1 By putting m=1, n=p and replacing g by g+1 with
relevant parameters, the functions (6) & (7) converges

to incomplete Fox-Wright functions pl//q and pz//( 7)

q
(see for details, [10] [P. 132, Equation (6.3) and (6.4)]):

[ je-aaska-aa),,

Dl (o)1, ),

(B AX)(aLA) o)
(bj’Bj)(l,q);

(8)

PWQ
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and
p (1-a,A.x)1-a, A, ,
oau| ™ (0!1);<1_bj'Bi)1q)
’ (9)
(a1 A1 X) (al Ai)Zp
= vy :

(bi /B )(1,q) ;

(i) Additionally puttingx =0 in equation (8), incomplete
Fox-Wright function converges to Fox-Wright function
(see for details, [14] ([P. 39, Equation (2.6.11)]):

(. A0)(a.A), (anA)i(aA), s
) (2.p) _ (2.p)
pl//q ) Z|= Pl//q . z
(bj /B, )(1,q) ’ (bj B )(1&1) '
(10)
(iii)

If we take A, =B, =1(j =

(8) & (9), then the incomplete H-function converges to
IGHF 7, and T"; (see details in Srivastava et al.

1,..,p, j=1..q)in equation

[90): )
e (2 1x)i(a 1) p);z o {(a\i,x),a2 ..... a, z}
(11)
and
p¥q (bj,l)(l‘q); p/q by,...0,;
(12)
M-series

Sharma et al. [15] proposed and examined the generalized M-
series in the following form:
(&) (e) 2

[, )
1reey by O(alﬂyzem,m(a)>o)
From the table of integration, series, and products by I. S.

(13)
Gradshteyn, M. I. Ryzhik the following Integral formula ([17],
p. 377 Equation (3.257)) is given as:

Il(”“%}zwyl dy=—\/;r(5+;j :

(3‘-*-1 '
2uw °T(5+1)
(u >0,v<0,w>0,5>—%j

(14)

2.Main Results
This section presents certain integrals involving the product of
M-series and Incomplete H-function.
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THEOREM 1: Suppose that sl ; with R(5)>0 and

-1 -1 1
y>0, u>0, v<0, w>0, 5>?, ?<u—v—w<5 then

the following integration hold:

w . +l 2+W -5-1 “b | e,..,e, z, y

![( ’ yj } ,M{ i 'fr’(uv+;)z+w}

o Zz2 (@, A, x)i (@ Ay) ’( p’ p) dy
| (uv+l) tw (bl‘Bl)’( )’ ’(bq’Bq)

Esoled )

o k---<f ), Tk A)w

7, (2 A x)i (3, Ay ). ,(ap,Ap)( 5—k+%,1j

I (BB (8B )i(-5 kD)

(15)
assume that the conditions for the incomplete H-function T"7

1—~m n+1

p+1,q+1

in equation [6] are fulfilled.
Proof: L.H.S. of equation (15) Let

= 2 T s ee z,
N !MW+_J } ’MS{wmﬁ«w+;f+w}
n [@AEA). ,(ap,Ap)]d

1—~m,n
" Luv+;)2 +w| (b,8B,),(b,,B,),....(b,. B,)
By the using of equation (6) and (13) in L we get

o-1

L=$:Huy+%]2+w] x
o <f)> <ai+ﬂ{ o3 |

Pcn
e
N
Ll

=2

)
k=0

(&)
(

f1 s) T(ak+ )

Ziri I [uy+—j r ) k+nj'¢(77,

x)z," dndy

0 3

Now by changlng the order of integration, we get

C(e)le), 2
kz >k--<f) Fak )

o3

-5-1-k+n

dydn
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By using the result of (14), we get

(o), (e), 2
(- <f> Fakp)

\/;F(5+k—n+;j

- #(n,x)z,"dn
uw(wk "2 j1"((5+k n+1)
el 2
N Z:( I'(ak+p)

F(5+k—n+1
L2 $(n,x)z;,"d
273 T(5+k—n+1) P70
7\
(e te (3]
- \12
ZUW( Ej k:o fS)k (ak+ﬁ)

1
Iro+k-n+=
. r(os ,,+2j

z,\"
27i s r(s+k-n+1) ¢(77'X)(Wj dn

Through the interpretation of equation (6), the desired result is
derived

7z < ) 1 2\
e 2]~
= B, (1), Tk )L w

z_z(%A,X);(az,Az),...,(ap,Ap);(—é—k+%,1j
(bl'Bl)"' ’(aq'Bq) ( 5_k’1)

Hence Theorem 1 is proved.
THEOREM 2: Suppose that

1—~m n+1

p+lg+1

sel ; with R(5)>0 and

-1 -1 1
y>0, u>0, v<0, w>0, 5>?, ?<u—v—w<5 then

the following integration hold:

MUHV) +W} 'M{fl (v 1)2+w]X
o z, (@ AX)i(aA) (8, A) N
. _(uv+l)_2+w (b, B,).(b,.B,).....(,. B,)

7;;:20 )k (f)) (alj+ﬂ)(21jkx

2uw

met | 2, (alaApX);(az,Az),...,(ap,Ap);(—5—k+%,1j

e (b,B,)....(,,B, );(-5—k.1)

(16)
assume that the conditions for the incomplete H-function '/

in equation [7] are fulfilled.
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Proof: L.H.S. of equation (16)

_w v 2 -5-1 AT - - z, y
L_Jo;[[uijYJ +W] rMS|:fl7"'lfr;(UV+\;,)2+W:|
A CYSBICWAIRICHS I

" (uv+§)2+w (b,B,).(b,.B,).....(b,. B,)

By the using of equation (7) and (13) in L we get

2 -5-1
1% v
L=—:||uy+—| +W X
27i 0{( yj ]

" v 2 -5-1-k+n
= Al X)z," dnd
- Huy+ yj +W] I¢(77 x)z," dndy

0 3
Now by changing the order of integration, we get
_ i (&), (&), zf y
= (), (), T(ak+p)

-5-1-k+n

= [4(n x)zz"muwg +w] dydy

3 0
By using the result of (14), we get
OO
k:O(fl)k"'(fs)k F(ak+ﬁ)

Jrl| 5 +k- +E

"5
— — $(n,x)z,"dn
+k—n+=

: 2UW( 2]1"(5+k—77+1)

Vi s@)(&) 7
= z(f

[ I S —— , *Ud
27if T(S+k-n+1) #m.x)z;"dn
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rNo+k-n+ 1 -
1 N V) 2] d
27iy T(5+k-n+1) TN\ W)
Through the interpretation of equation (7), the desired result is
derived

S sttt (),

a‘% = fs)k I'(ak+8) w

2uw
m,n+1 Z_g (al' Ai’x)’(aZ’ Az)’---:(ap, Ap),(_g—k +§,1j

p+Lg+1l
(BB, (3B, )i(-5-k.1)
Hence the Theorem 2 is proved.

2. Special Cases

We illustrate in this part some significant special cases
corresponding to the principal result of Theorem 1 and
Theorem 2.

Corollary 1.
. 1
For 5 el with ®(5)>0 and y>0, u>0, v<0, w>0, & >3

Furthermore, setting m=1, p=n and replacing q with q+1,

in equation (6) and (7), and assume that the incomplete H-
function reduces to the incomplete Wright function as given in
equation (8) and (9), we obtain the result here from those in
Theorems 1 and 2. The corresponding integral formula as
given:

© v 2 -6-1 a.p 91,---19,; z,

- M . B I
ll[uﬁyj +W} r s{fl""'fr?(uvw)zwi
(a'l’Ai’X);(aZYAZ)!"'!(ap;Ap):|dy

(b,B,).(b,,B,),....(b,.B,)
&), (), 1 [le" )

W

o 2, |(@ ,X);(az,Az),...,(ap,Ap);(5+k+%,1j

p+1qu+l
(5,.B,).... (2. B, )i(6 +k +11)

(17)
and
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o y fv---’fr7(uv+%) +W
L, <a1 A x>-(a2,Az>,.--,(ap,Ap)

N7 dy
' (uv+> B, (5,B,). (0,

: ) 1 Zj
ouw S%Z:: T(ak+p)\w

1 (18)

p+1 q+1
q’—q

B),.. (a B ) (6+k+11)

under the assumptlon that each element of equation (17) and
(18) are exists.

Corollary 2:
For 5 el with R(5)>0 and y>0, u>0, v<0, w>0, & >-%.

Furthermore, setting A, =B; =1, (Vj=1..,p;V]j=1..9)

in equation (8) and (9), and assume that the incomplete H-
function reduces to the incomplete  generalized
hypergeometric function as given in equation (11) and (12),
we obtain the result here from those in Theorems 1 and 2. The
corresponding integral formula as given:

© 2 ot B .
0 y flv---!frv(uv+§) +W
(a,%);3,m8,5 7,
r —2——ldy
pPTq bll.“’bp; ( )
Az Z r) 1 [Zl)kx
W5+% k=0 l S (ak+ﬂ) w
z, (&, p;(—é'—k+£j
p+1 g+l W 2
by (=6 k)
(19)
and
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F elahee) 1 (s}
_2uw‘$+% kZ:;(fl)k"'(fs)k F(ak+p’)( j

1
z, (al,x);az,...,ap;(—é—k+§J

p+1/q+1| T
bybys (<5 —K)

(20)
under the assumption that each element of equation (19) and
(20) are exists.

Corollary 3:
For 5 el with R(5)>0 and y>0, u>0, v<0, w>0, & >-%

Furthermore, setting x =0, in equation (8), and assume that
the incomplete H-function reduces to the incomplete Fox-
Wright generalized hypergeometric function as given in
equation (10), also M-series reduces into unity, we obtain the
result here from those in Theorems 1. The corresponding
integral formula as given:

Il[uy + %)2 N wyl x

” (awAi)v--’(ap’;Ap);Z{(uy%f+w}_l dy

(bj ’ Bj )(M)
1
’\/; z (ai’A)v---,(ap,Ap);(é.’_E,lj
- o p1¥ g W
e (bl'Bl)""’(aq'Bq);(5+1,1)
(21)
under the assumption that each element of equation (21) are

exists.

3. CONCLUSION

In the present study, we have established several significant
integrals involving the product of the M-series and incomplete
H-functions, represented in terms of incomplete H-functions
themselves. Additionally, we have presented certain special
cases by assigning certain values to the parameters of the M-
series and incomplete H-functions-such as Fox’s H-function,
incomplete Fox—Wright functions, Fox—Wright functions, and
incomplete generalized hypergeometric functions. Some
previously known results are also included as special cases.
The integrals derived in this analysis are of a general form and
may serve as a foundation for developing numerous results
relevant to practical and applied contexts
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