To Study the Vapour Liquid Equilibrium Data for Cellosolve Acetate and Toluene

Download Full-Text PDF Cite this Publication

Text Only Version

To Study the Vapour Liquid Equilibrium Data for Cellosolve Acetate and Toluene

VLE of Cellosolve and Toluene System

Uday Chavda, Shahnawaz Hala, Dhyey Savaliya, Milan Kathiriya

Chemical Engineering Department

Om Engineering College, Junagadh 362310

Gujarat Technological University Ahmedabad, Gujarat, India

Abstract Isobaric vapourliquid equilibrium data for pure components as well as binary mixtures of Cellosolve AcetateToluene was generated using a modified ebulliometer. Measurements are reported for four different pressures in the range of (61 to 101) kPa. Pure component vapor pressures were correlated using the Antoine correlation and compared with the literature data. Antoine constants are good match with literature and predicted data.

Keywords – Cellosolve Acetate; Toluene; VLE; Vapour-liquid

  1. INTRODUCTION

    PHASE EQUILIBRIA (VAPOUR LIQUID EQUILIBRIUM):

    Distillation occupies a very important position in chemical engineering. Distillation and chemical reactors represent the backbone of what distinguishes chemical engineering from other engineering disciplines. Operations involving heat transfer and fluid mechanics are common to several disciplines. But distillation is uniquely under the purview of chemical engineers.

    The basis of distillation is phase equilibrium, specifically, vaporliquid (phase) equilibrium (VLE) and in some cases vaporliquidliquid (phase) equilibrium (VLLE). Distillation can effect a separation among chemical components only if the compositions of the vapor and liquid phases that are in phase equilibrium with each other are different. A reasonable understanding of VLE is essential for the analysis, design, and control of distillation columns.

    Vapour liquid equilibrium (VLE) is a condition in which a liquid and vapour phase are in equilibrium with each other, a condition or state where the rate of evaporation equals the rate of condensation on molecular level such that there is no net vapour-liquid interconversion. A substance at vapour liquid equilibrium is generally referred to as a saturated fluid. For a pure chemical substance this implies that it is at its boiling point. Such VLE information is useful in designing columns for distillation, especially fractional distillation.

    EXPERIMENTALLY INVESTIGATED EQUILIBRIUM IN BINARY SYSTEM (CELLOSOLVE ACETATE- TOLUENE):

    VLE data on binary mixture of organic compounds are of significant importance for the design of numerous Industrial chemical processes or for the purpose of environmental

    protection. In the plants of various branches of Industry, where organic solvents are used, spend mixtures from a flow of toxic liquid wastes whose discharge in to the environmental is unacceptable. This makes necessary the development of technologies for recovering the starting solvents from the wastes and recycling them. For which phase equilibrium information is necessary. VLE studies of those systems are the goal of the present study. Following Systems have been studied,

    2-Ethoxyethanol (Cellosolve) Acetate- Pure component Toluene-Pure component

    2-Ethoxyethanol (Cellosolve) Acetate-TolueneBinary System

    This binary system finds application in Esterification Reaction and Reactive distillation. The Vapour- Liquid Equilibrium (VLE) of this system is difficult to model especially due to High Boiling point and no data is available in the literature on this aspect to the best of my knowledge.

    Experiment P-T-x data of 2-Ethoxyethanol (Cellosolve) Acetate -Toluene system are generated for eight different set of composition at five different pressure for each set of Mixture and This Experimental data are used to regress Activity coefficient model parameters which are further used to generate P-T-x-y data. Results are compared with GE based Models (Margules 2-sufffix, Margules 3-suffix, NRTL, Vanlaar, Wilson Model).

    GE BASED MODELING

    Isobaric VLE data for the binary mixture of 2-Ethanolethanol (Cellosolve) Acetate Toluene have been generated. The experimental data were correlated by using GE based Models (Margules 2-sufffix, Margules 3-suffix, NRTL, Vanlaar, Wilson Model).

    Two vapour pressure models are used for the given system. For Cellosolve Acetate and for Toluene Antoine equation is used, whose constants are fitted to experimental Vapour pressure. By using regressed parameter BUBBLE T is found out.

    Activity coefficient Model parameters are regressed using experimental P-T-x data. Then experimental binary P-T-x data modelled to find Vapour phase composition using regressed parameters and compared the vapour phase composition and temperature with BUBBLE T calculated data.

  2. CHEMICALS

    M.W

    B.P °C

    Purity %

    Cellosolve (AR) (2-Ethoxyethanol) Acetate

    132.16

    156.2

    99.0

    Toluene

    92.14

    110

    99.0

    IPA (Iso-propyl alcohol)

    99.5

    82.5

    60.10

  3. VLE DATA GENERATION

PURE COMPONENT:

  1. Component Name: CELLOSOLVE ACETATE (AR)

    P mmHg

    T ° C

    759.21

    156

    657.046

    150.8

    553.96

    143.8

    462.104

    139.6

    P mmHg

    T ° C

    759.21

    156

    657.046

    150.8

    553.96

    143.8

    462.104

    139.6

    Molecular Weight : 132.16

    Boiling Point 156

    Purity : 99 %

    Density @ 20 C : 0.9

    Volume In : 55 ml

    Volume Out : 51 ml Average Time for equilibrium: 60 min Vaporizing rate : 165 drops/min

  2. Component Name: Toluene

    P mmHg

    T ° C

    763.861

    111

    658.732

    105.2

    547.089

    100.2

    464.931

    94.8

    P mmHg

    T ° C

    763.861

    111

    658.732

    105.2

    547.089

    100.2

    464.931

    94.8

    Molecular Weight : 92.14

    Boiling Point : 110.4

    Purity : 99 %

    Density @ 20 C : 0.865

    Volume In : 55 ml

    Volume Out : 50 ml Average Time for equilibrium: 60 min Vaporizing rate : 165 drops/min

    PURE COPMONENT MODELNG

    GENERAL MODELS:

    Vapour pressure is calculated by generally used models which are described here.

    1. VAPOUR PRESSURE: Antoine Equation:

      MIXTURE MODELING:

      1. GENERAL EQUILIBRIUM MODEL:

sat

sat

Yi P Øi = Xii Pi for i = 1, 2 .N Øi = exp

P = P T Zi

Yi, Xi

=

Vapour and liquid mole fraction

P sat

=

Saturated pressure

P

=

Corrected total pressure

PT

=

Total pressure

R

=

Universal gas constant

i

=

Activity Coefficient

b) GE BASED MODELING:

Yi, Xi

=

Vapour and liquid mole fraction

P sat

=

Saturated pressure

P

=

Corrected total pressure

PT

=

Total pressure

R

=

Universal gas constant

i

=

Activity Coefficient

b) GE BASED MODELING:

Where:

Isobaric VLE data for the binary mixture of 2- Ethoxyethanol (Cellosolve) Toluene have been generated. The experimental data were correlated by using GE based models (Margules 2- suffix, Margules 3- suffix, Van laar, Wilson, and NRTL equations.) The experimental data were correlated by using the following GE based models:

  • Margules 2- suffix model

  • Margules 3- suffix model

  • Van Laar model

  • NRTL model

  • Uniquac model

Vapour Pressure was calculated using the Antoine Equation. Parameters were regressed using the above mentioned models for all the binary mixture data and using them, BUBBL T or the bubble temperature was estimated.

Experimental P-T-x data are modelled to find Vapour phase composition using GE based models with regressed parameters. Activity coefficient model parameters are regressed using experimental P-T-x data. Then experimental P-T-x are modelled to find vapour phase composition and the comparison of the vapor phase composition and temperature

GC PARAMETERS

CONDITIONS

Column

Packed

Range

0-0

Injection Port Temperature

200 C

Detector Temperature

210 C

Oven Temperature

180 C

Carrier Gas (N2) Pressure

0.8 bar

FID

(+Ve)

Injection Quantity

0.1 liter

GC PARAMETERS

CONDITIONS

Column

Packed

Range

0-0

Injection Port Temperature

200 C

Detector Temperature

210 C

Oven Temperature

180 C

Carrier Gas (N2) Pressure

0.8 bar

FID

(+Ve)

Injection Quantity

0.1 liter

Ln P = A

B

with the calculated BUBBLE T data was made.

T C

Where: P = Vapour pressure KPa

T = Temperature in K

A, B, C = Antoine Constants Cellosolve Acetate and Toluene Vapour Pressure is found by the Antoine Equation Literature Antoine Constant

Table : Cellosolve Acetate and Toluene Literature Antoine Constant

GC PARAMETERS

Component

A

B

C

Cellosolve Acetate (ref_2)

11.258

1620.024

-185.83

Toluene (ref_1)

14.0098

3100.01

-53.36

4. RESULT AND DISCUSSION

Pure component and binary VLE data for Toluene Cellosolve Acetate system have been generated using a differential Ebulliometer with a provision of drop counter. The parameters of the Antoine equation for pure components have been regressed from the experimental data. Similarly, the parameters of various GE based models have been determined by regression using BUBL T calculations.

Experimental P-T-x data generated in this work are reported in chapter 3, the above system is modelled using various combinations of activity coefficient models and Table 5.1 shows pure component PT data. Table 5.8 shows regressed parameters of Activity coefficient models. Parameters are regressed at experimental P-T-x data generated in this work. The compositions reported are in terms of mole fraction with components 1 and 2 being Toluene and Cellosolve acetate respectively. Activity coefficient model parameters of Margules 2-suffix, Margules 3-suffix, Vanlaar, NRTL, Wilson parameters are regressed at experimental P-T-x data generated. BUBBLE T calculations performed by GE based models are reported in Table 5.4, 5.5, 5.6 and 5.7 and plotted in figure

5.4, 5.5, 5.6 and 5.7, %ADD of experimental and model predicted BUBBLE T is calculated and tabulated in Tabls.

P-T diagrams for Predicted, experimental and literature values for Toluene.

P-T diagrams for Predicted, experimental and literature values for Cellosolve Acetate.

P KPa

61.32

74.66

87.99

101.325

Toluene

T in K

408.0

412.4

418.2

420.4

5

399.0

406.0

410.2

415.4

15

393.6

398.0

402.2

406.8

26

381.2

387.0

393.4

400.0

38

382.6

388.4

393.4

397.4

46

378.0

383.6

389.0

393.6

55

374.6

378.4

383.2

390.6

69

372.0

377.8

383.4

388.4

76

369.4

375.0

380.4

35.2

92

CELLOSOLVE ACETATE TOLUEN

Table :Toluene (1) – Cellosolve acetate (2) VLE by GE based models with regressed parameters at experimental P-T-x at P=61.32KPa

Model Predictions- Toluene(1)- Cellosolve acetate(2) at P= 61.32 kPa (460 mm Hg)

Experimental

Margules 2- suffix

Margules 3-suffix

Van Laar Model

NRTL Model

Wilson Model

Uniquac Model

X1

Texp (K)

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

0

412.8

411.8

0.0000

411.8

0.0000

411.8

0.0000

411.8

0.0000

411.8

0.0000

411.8

0.0000

0.05

408.0

405.6

0.2187

407.9

0.1605

406.5

0.1970

406.5

0.1964

406.5

0.1964

406.5

0.1963

0.15

399.0

396.7

0.4805

399.9

0.4321

397.8

0.4628

397.8

0.4634

397.8

0.4627

397.9

0.4621

0.26

393.6

389.9

0.6413

391.7

0.6363

390.4

0.6408

390.3

0.6425

390.4

0.6414

390.5

0.6407

0.38

381.2

384.4

0.7491

384.6

0.7702

384.1

0.7615

383.9

0.7632

384.1

0.7623

384.2

0.7620

0.46

382.6

381.5

0.8005

380.8

0.8265

380.7

0.8168

380.5

0.8179

380.6

0.8175

380.7

0.8175

0.55

378.0

378.6

0.8468

377.5

0.8707

377.4

0.8635

377.2

0.8638

377.4

0.8639

377.4

0.8643

0.69

374.6

374.8

0.9039

373.7

0.9171

373.4

0.9151

373.3

0.9141

373.4

0.9150

373.4

0.9156

0.76

372.0

373.1

0.9282

372.2

0.9352

371.8

0.9347

371.7

0.9332

371.8

0.9344

371.8

0.9350

0.92

369.4

369.3

0.9774

369.1

0.9753

368.9

0.9738

368.9

0.9726

368.8

0.9734

368.9

0.9738

1

368.0

367.543

1

367.54342

1

367.54342

1

367.54342

1

367.54342

1

367.5

1.0000

Average Absolute Deviation of Equilibrium T

x

T K

%AD

%AD

%AD

%AD

%AD

%AD

0

412.8

0.238

0.238

0.238

0.238

0.238

0.238

0.05

408.0

0.572

0.009

0.361

0.355

0.355

0.354

0.15

399.0

0.569

0.226

0.280

0.289

0.277

0.267

0.26

393.6

0.938

0.469

0.791

0.825

0.798

0.779

0.38

381.2

0.855

0.893

0.783

0.727

0.765

0.789

0.46

382.6

0.280

0.447

0.482

0.544

0.504

0.482

0.55

378.0

0.179

0.112

0.133

0.193

0.156

0.137

0.69

374.6

0.064

0.225

0.302

0.341

0.319

0.306

0.76

372.0

0.297

0.065

0.038

0.063

0.051

0.040

0.92

369.4

0.005

0.067

0.131

0.134

0.136

0.128

1

368.0

0.110

0.110

0.110

0.110

0.110

0.110

% AAD

0.373

0.260

0.332

0.347

0.337

0.330

Table : Toluene (1) – Cellosolve acetate (2) VLE by GE based models with regressed parameters at experimental P-T-x at P=74.66 KPa.

0.0000

Model Predictions- Toluene(1)- Cellosolve acetate(2) at P= 74.66 kPa (560 mm Hg)

Experimental

Margules 2- suffix

Margules 3- suffix

Van Laar Model

NRTL Model

Wilson Model

Uniquac Model

X1

Texp (K)

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

0

417.0

418.3

418.3

0.0000

418.3

0.0000

418.3

0.0000

418.3

0.0000

418.3

0.0000

0.05

412.4

412.1

0.2116

414.4

0.1552

412.9

0.1905

413.0

0.1893

413.0

0.1898

413.0

0.1902

0.15

406.0

403.1

0.4682

406.3

0.4205

404.2

0.4507

404.3

0.4501

404.3

0.4503

404.3

0.4504

0.26

398.0

396.2

0.6282

398.1

0.6235

396.8

0.6278

396.7

0.6283

396.8

0.6280

396.8

0.6280

0.38

387.0

390.7

0.7372

390.9

0.7589

390.4

0.7499

390.3

0.7506

390.4

0.7504

390.4

0.7505

0.46

388.4

387.7

0.7897

387.1

0.8167

387.0

0.8065

386.8

0.8069

386.9

0.8069

387.0

0.8073

0.55

383.6

384.9

0.8375

383.8

0.8625

383.7

0.8549

383.5

0.8546

383.6

0.8551

383.6

0.8556

0.69

378.4

381.0

0.8972

379.9

0.9111

379.6

0.9090

379.5

0.9077

379.6

0.9087

379.6

0.9093

0.76

377.8

379.2

0.9229

378.4

0.9302

378.0

0.9297

377.9

0.9282

377.9

0.9293

378.0

0.9299

0.92

375.0

375.5

0.9755

375.3

0.9733

375.0

0.9715

375.0

0.9708

375.0

0.9713

375.0

0.9716

1

373.3

373.7

1

373.7

1

373.7

1

373.7

1

373.7

1

373.7

1.0000

Average Absolute Deviation of Equilibrium T

x

T K

%AD

%AD

%AD

%AD

%AD

%AD

0

417.0

0.316

0.316

0.316

0.316

0.316

0.316

0.05

412.4

0.069

0.498

0.144

0.156

0.151

0.148

0.15

406.0

0.713

0.089

0.422

0.414

0.414

0.414

0.26

398.0

0.444

0.039

0.292

0.303

0.293

0.286

0.38

387.0

0.966

1.017

0.898

0.870

0.889

0.899

0.46

388.4

0.159

0.315

0.357

0.390

0.370

0.360

0.55

383.6

0.341

0.057

0.030

0.001

0.018

0.025

0.69

378.4

0.699

0.409

0.329

0.314

0.321

0.326

0.76

377.8

0.396

0.163

0.057

0.052

0.052

0.058

0.92

375.0

0.147

0.081

0.015

0.019

0.014

0.020

1

373.4

0.095

0.095

0.0948559

0.095

0.095

0.095

% AAD

0.395

0.280

0.260

0.266

0.267

0.268

Table : Toluene (1) – Cellosolve acetate (2) VLE by GE based models with regressed parameters at experimental P-T-x at P=87.99 KPa.

Model Predictions- Toluene(1)- Cellosolve acetate(2) at P= 87.99 kPa (660 mm Hg)

Experimental

Margules 2- suffix

Margules 3- suffix

Van Laar Model

NRTL Model

Wilson Model

Uniquac Model

X1

Texp (K)

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

0

424.0

424.0

0.0000

424.0

0.0000

424.0

0.0000

424.0

0.0000

424.0

0.0000

424.0

0.0000

0.05

418.2

417.7

0.2063

420.1

0.1512

418.6

0.1857

418.7

0.1839

418.6

0.1848

418.6

0.1856

0.15

410.2

408.6

0.4586

412.0

0.4117

409.8

0.4415

409.9

0.4398

409.9

0.4407

409.8

0.4414

0.26

402.2

401.7

0.6180

403.7

0.6135

402.3

0.6177

402.3

0.6171

402.3

0.6175

402.3

0.6180

0.38

393.4

396.1

0.7277

396.4

0.7500

395.9

0.7407

395.9

0.7405

395.9

0.7408

395.9

0.7413

0.46

393.4

393.2

0.7811

392.6

0.8088

392.4

0.7983

392.4

0.7980

392.4

0.7984

392.4

0.7990

0.55

389.0

390.3

0.8301

389.2

0.8558

389.1

0.8480

389.0

0.8472

389.0

0.8479

389.0

0.8485

0.69

383.2

386.4

0.8918

385.3

0.9062

384.9

0.9039

385.0

0.9025

384.9

0.9036

384.9

0.9041

0.76

383.4

384.6

0.9185

383.7

0.9262

383.2

0.9256

383.3

0.9241

383.3

0.9252

383.3

0.9256

0.92

380.4

380.8

0.9740

380.6

0.9715

380.3

0.9697

380.4

0.9692

380.3

0.9696

380.3

0.9697

1

378.3

379.0

1

379.0

1

379.0

1

379.0

1

379.0

1

379.0

1.0000

Average Absolute Deviation of Equilibrium T

x

T K

%AD

%AD

%AD

%AD

%AD

%AD

0

424.0

0.008

0.008

0.008

0.008

0.008

0.008

0.05

418.2

0.105

0.466

0.110

0.127

0.118

0.111

0.15

410.2

0.374

0.439

0.079

0.057

0.068

0.076

0.26

402.2

0.117

0.379

0.039

0.048

0.044

0.040

0.38

393.4

0.708

0.769

0.645

0.640

0.643

0.642

0.46

393.4

0.049

0.197

0.245

0.253

0.249

0.250

0.55

389.0

0.336

0.057

0.027

0.021

0.023

0.022

0.69

383.2

0.839

0.550

0.467

0.473

0.467

0.466

0.76

383.4

0.327

0.094

0.014

0.001

0.011

0.011

0.92

380.4

0.130

0.061

0.007

0.004

0.005

0.001

1

378.4

0.182

0.182

0.182

0.182

0.182

0.182

% AAD

0.289

0.291

0.149

0.165

0.165

0.164

Table : Toluene (1) – Cellosolve acetate (2) VLE by GE based models with regressed parameters at experimental P-T-x at P=101.325 KPa

Model Predictions- Toluene(1)- Cellosolve acetate(2) at P= 101.325 kPa (760 mm Hg)

Experimental

Margules 2- suffix

Margules 3- suffix

Van Laar Model

NRTL Model

Wilson Model

Uniquac Model

X1

Texp (K)

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

Tcal (K)

Y1cal

0

429.2

429.1

0.0000

429.1

0.0000

429.1

0.0000

429.1

0.0000

429.1

0.0000

429.1

0.0000

0.05

420.4

422.8

0.2021

425.2

0.1480

423.7

0.1819

423.8

0.1797

423.7

0.1809

423.7

0.1819

0.15

415.4

413.6

0.4510

417.0

0.4047

414.8

0.4341

414.9

0.4316

414.9

0.4331

414.8

0.4342

0.26

406.8

406.6

0.6097

408.6

0.6054

407.2

0.6095

407.3

0.6080

407.3

0.6091

407.2

0.6099

0.38

400.0

401.0

0.7200

401.3

0.7426

400.7

0.7331

400.8

0.7322

400.8

0.7330

400.7

0.7338

0.46

397.4

398.0

0.7741

397.4

0.8023

397.2

0.7916

397.3

0.7906

397.2

0.7914

397.2

0.7922

0.55

393.6

395.0

0.8239

394.0

0.8503

393.8

0.8422

393.9

0.8410

393.8

0.8419

393.8

0.8427

0.69

390.6

391.1

0.8872

390.0

0.9021

389.6

0.8997

389.8

0.8981

389.7

0.8992

389.7

0.8998

0.76

388.4

389.4

0.9149

388.4

0.9228

388.0

0.9256

388.1

0.9206

388.1

0.9217

388.0

0.9221

0.92

385.2

385.6

0.9726

385.3

0.9701

385.0

0.9697

385.1

0.9680

385.1

0.9681

385.1

0.9682

1

384.15

383.7

1

383.7

1

383.7

1

383.7

1

383.7

1

383.8

1.0000

Average Absolute Deviation of Equilibrium T

x

T K

%AD

%AD

%AD

%AD

%AD

%AD

0

429.2

0.008

0.008

0.008

0.008

0.008

0.008

0.05

420.4

0.574

1.153

0.792

0.815

0.802

0.792

0.15

415.4

0.429

0.393

0.131

0.097

0.116

0.131

0.26

406.8

0.045

0.461

0.114

0.142

0.125

0.112

0.38

400.0

0.256

0.325

0.195

0.212

0.201

0.190

0.46

397.4

0.156

0.014

0.039

0.025

0.035

0.045

0.55

393.6

0.380

0.106

0.071

0.087

0.075

0.066

0.69

390.6

0.147

0.139

0.225

0.200

0.216

0.223

0.76

388.4

0.259

0.024

0.086

0.057

0.076

0.080

0.92

385.2

0.110

0.039

0.031

0.013

0.026

0.024

1

384.2

0.101

0.101

0.100

0.101

0.101

0.101

% AAD

0.224

0.251

0.154

0.160

0.162

0.161

GE BASED EQUATION FOR BINARY MIXTURES:

  1. Margules 2 suffix model:

    sat

    sat

    sat

    sat

    1 1 1

    1 1 1

    2 2 2

    2 2 2

    1

    1

    2

    2

    Model parameter: A

    P X P X P

    ln ln A

    P X P X P

    ln ln A

    Yi

    Xi i Pi

    P

    sat

    G E

    RTX 1 X 2

    A

    Yi

    Xi i Pi

    P

    sat

    G E

    RTX 1 X 2

    A

    ln AX

    2

    2

    ln AX 2

    ln AX

    2

    2

    ln AX 2

    1

    1

    2

    2

    1

    1

  2. Margules 3 suffix model:

Model parameter: A12 and A21

P X P X P

sat

sat

sat

sat

P X P X P

1 1 1

1 1 1

2 2 2

2 2 2

ln

X 2 A 2(A A )X

1 2 12 21 12 1

Yi

Xi i Pi

P

sat

GE

RTX1 X 2

A21 X1 A12 X 2

Yi

Xi i Pi

P

sat

GE

RTX1 X 2

A21 X1 A12 X 2

ln

X 2 A 2(A A )X

ln A

ln A

1 12

1 12

ln A

ln A

2 21

2 21

2 1 21 12 21 2

Table : Regressed Activity Coefficient Model Parameters.

Model

Parameters

Best Value

Margules 2-suffix Model

A

0.41008394

Margules 3-suffix Model

A12

-0.068947524

A21

0.64200984

Vanlaar Model

A12

0.250650104

A21

0.887837473

NRTL Model

b12

-343

b21

1089

-2.961983475

Wilson Model

a12

-675.233481

a21

4047.48825

Uniquac Model

u12

2160.261655

u21

-1284.739473

Table : Final Result (% AAD) at different pressure for GE Based Model

Models

Margules 2- suffix

Margules 3-suffix

Vanlaar

NRTL

Wilson

Uniquac

P(kPa)

P(mm Hg)

(T)2

61.3283

460

38.854

20.869

28.325

29.571

28.596

28.006

74.6605

560

39.033

26.131

22.121

21.640

21.855

22.007

87.9928

660

24.913

24.273

11.385

11.480

11.402

11.354

101.3250

760

14.364

32.033

13.350

13.873

13.571

13.280

Average

29.291

25.826

18.795

19.141

18.856

18.662

P(kPa)

P(mm Hg)

RMSD T

61.3283

460

0.567

0.415

0.484

0.494

0.486

0.481

74.6605

560

0.568

0.465

0.032

0.423

0.425

0.426

87.9928

660

0.454

0.448

0.307

0.308

0.307

0.306

101.3250

760

0.345

0.515

0.332

0.339

0.035

0.306

Average

0.483

0.461

0.289

0.391

0.313

0.380

P(kPa)

P(mm Hg)

%AAD T

61.3283

460

0.373

0.260

0.332

0.347

0.337

0.330

74.6605

560

0.395

0.280

0.269

0.423

0.267

0.268

87.9928

660

0.289

0.291

0.166

0.165

0.165

0.164

101.3250

760

0.224

0.251

0.163

0.339

0.153

0.161

Average

0.320

0.271

0.232

0.318

0.231

0.231

Figure : Toluene-Cellosolve Acetate T-x-y diagram at P = 61.32 KPa.

Figure : Toluene-Cellosolve Acetate T-x-y diagram at P = 74.66 KPa.

Figure : Toluene-Cellosolve Acetate T-x-y diagram at P = 87.99 kPa.

Figure : Toluene-Cellosolve Acetate T-x-y diagram at P = 101.325 KPa

Figure : Toluene-Cellosolve Acetate X Y (VLE) by GE based models with regressed parameters at experimental P-T-x.

Figure : Toluene-Cellosolve Acetate X Y (VLE) by GE based models with regressed parameters at experimental P-T-x.

Figure : Toluene-Cellosolve Acetate T X (VLE) by GE based models with regressed parameters at experimental P-T-x.

5. CONCLUSION

The experimental work in this project involved generating pure component and binary VLE data for Cellosolve Acetate (2-Ethoxyethyl Acetate) Toluene. The purpose of taking up this work was that 2-ethoxyethyl acetate is synthesized by the esterification of 2-ethoxy ethanol and acetic acid using reactive distillation. To increase the yield of the product and minimize energy consumption toluene is added as an entrainer. This makes the knowledge of VLE of the species along with toluene also necessary. The data for the above-mentioned system was generated at four different pressures. The conclusions drawn from this study are given below:

  1. Vapour pressure data for Toluene and Cellosolve Acetate were generated at four different pressures ranging 61.32 kPa to 101.325 kPa. Antoine constants for both the species were regressed using excel.

  2. Experimental, predicted and literature values of Vapour pressure for Toluene and Cellosolve acetate match.

6. REFERENCES

  1. Rana BK, Bhate NV, Mahajani SM, Dabke SP. VaporLiquid Equilibrium for the 2Ethoxyethanol-2 – Ethoxyethyl Acetate System. J. Chem. Eng. Data. 2012, 57:34833487.

  2. Smith JM, Van ness HM, Abbott MM. Introduction to chemical engineering thermodynamics. The McGraw-Hill Companies, Inc. New York; 2003:346.

  3. Cortinovis GF, Salvagnini WM, Tavares DT, Taqueda ME. Estimation of Activity Coefficients for the Pairs of the System 2-Ethoxyethanol + 2-Ethoxyethyl Acetate + 2- Butoxyethanol + 2-Butoxyethyl Acetate. J. Chem. Eng. Data. 2011, 56:41574163.

  4. Martin, MC, Cocero MJ, Mato RB. Vapourliquid equilibrium data at 298.15 K for binary systems containing methyl acetate or methanol with 2-methoxyethanol or 2-ethoxyethanol. J. Chem. Eng. Data 1994, 39:535537.

  5. Thomas EA, Newman BA, Nicolaides GL, Eckert CA. Limiting Activity Coefficients from Differential Ebulliometry. J. Chem. Eng. Data 1982, 27:233240.

  6. Gorlova NN, Gredneva TM, Vasileva SA, Polyakova LV, Komarova LF. A study of liquidvapor phase equilibrium in binary organic mixtures. Russ. J. Chem. 2001, 74: 12851288.

Leave a Reply

Your email address will not be published. Required fields are marked *