Strength Characteristics of Hybrid Fibre Reinforced Concrete using Nano Silica

Download Full-Text PDF Cite this Publication

Text Only Version

Strength Characteristics of Hybrid Fibre Reinforced Concrete using Nano Silica

Hybrid Fibre Reinforced Concrete

Parthiban P B, Suryaram S, Mahesh. M, Punamalai. A Department of Civil Engineering Kalasalingam University Virudhunagar, India.

AbstractHybridFiberReinforcedConcrete (HFRC)is formedfromacombination ofdifferenttypesoffibres,which differinmaterial properties,remain bondedtogetherwhen addedinconcreteandretaintheiridentitiesandproperties.

Thecombining offibers,oftencalledhybridization,is investigatedforaM60gradeconcreteatavolumefractionof 4%NanoSilca,Steel fiber(1,1.25,1.5%)andpolypropylene fiber(0.03,0.06,0.09%)inthisproject.Control andfourhybrid fibercomposites werecastusingdifferentfiberproportionsof steelandpolypropylene.Compressive strength,splittensile strengthandflexuralstrengthtest wereperformedandresults wereanalyzedtoassociatewithabove fibercombinations. Basedonexperimental studies,theprojectidentifiesfiber combinations thatdemonstrate maximumcompressive,split tensile andflexuralstrengthofconcrete.Inadditiontothe above,SEM imagesarepresented.

KeywordsFibre,Concrete,HybridFibre,NanoSilica

INTRODUCTION

Acompositecan betermedashybrid, iftwoormoretypesoffibresarerationallycombined ina commonmatrixtoproduceacomposite thatdrivesbenefits fromeachoftheindividuals fibresandexhibitsasynergetic response.Additionofshortdiscontinuous fibresplaysan importantroleintheimprovementofmechanicalpropertiesof Concrete.Itincreaseselasticmodulus; decreasesbrittleness controls cracksinitiationanditssubsequentgrowthand propagation. Deboningandpull outofthefibrerequiremore energyabsorption,resulting inasubstantial increaseinthe toughnessandfractureresistance ofthematerialstothe cyclic anddynamicloads.

  1. HistoryofHFRC

    The concept of using fibres as reinforcement is not new. Fibreshavebeenusedasreinforcementsinceancient times. Historically,horsehairwasusedinmortar andstrawinmud bricks.Intheearly 1900s,asbestos fibreswereusedin concrete,therewasaneedtofindareplacement forthe asbestos used inthe concreteandotherbuildingmaterialsonce thehealth risksassociatedwiththesubstance werediscovered.

    Bythe 1960s,steel, glass,andsynthetic fibressuchas polypropylenefibreswereusedinconcrete, andresearchinto newfibre reinforced concretescontinuestoday.

  2. AdvantagesofHybridFibreReinforcedConcrete

    1. Toprovide asysteminwhichone typeoffibre,thisis stronger and stiffer, improves the first cracks stress and ultimatestrength,andthesecondtypesoffibre,whichismore flexible,andductile leadstoimprovedtoughnessandstainin thepastcrackingzone.

    2. To provide hybridreinforcement inwhichone typeoffibre issmaller, sothatitbridgesthemicrocracksofwhichgrowth canbecontrolled. Thisleadstoahighertensile strengthofthe composite. Thesecondtypeoffibreislarger,sothatitarrests thepropagatingmicrocracksandcansubstantiallyimprove thetoughnessofthecomposite.

    3. Toprovideahybridreinforcement,inwhichthedurability offibretypeisdifferent.Thepresenceofthe durablefibrecan increasethestrength andtoughnessrelation after age whilethe othertypeistoguaranteetheshorttermperformance during transportationandinstallationofthecompositeelements.

  3. ApplicationofHybrid FibreReinforcedConcrete HFRCcanbeusedinanykindofconstruction becauseofits unique Propertiesandalsoasitveryeasytoobtainhighrange ofstrengthvalues.Someofthepioneeringapplications areas follows

    • Bridges.

    • Tunnellinings.

    • Buildingcomponentslikecolumn.

    • Sandwichstructurelikesteelconcretestructure.

Thebenefitofhybridfibresinenhancing variouspropertiesof theHFRCinadditiontoNanosilicahasnotbeeninvestigated inthepast andhencetheeffectofhybridfibrescomprising of steel, PP fibres and Nano silica in the HFRC on the mechanical properties and flexural toughness of HFRC is beingexploredinthisresearch.Thus,themainobjectiveof

thisstudyistoinvestigate theeffectofsteel-PPhybridfibres andNanosilicainenhancing themechanicalproperties, flexuralstrengthofHybridFibre Reinforced Concrete(HFRC).

MATERIALPROPERTIES

  1. Sieve analysistestfor Fineaggregate

    Sieve Size

    Weight

    Retained (gms)

    Cumulative

    weight retained

    Cumulative

    % weight retained

    %

    Finer

    4.75mm

    26

    26

    2.6

    97.4

    2.36mm

    64

    90

    9.0

    91

    1.18mm

    177

    267

    26.7

    73.3

    600µ

    260

    527

    52.7

    47.3

    300µ

    385

    912

    91.2

    8.8

    150µ

    50

    962

    96.2

    3.8

    Pan

    38

    1000

    100

    0

    Finenessmodulusofthefine aggregate= F/100

    = 378.4 /100=3.78

    FromIS:383-1970, Table4 (Pg no:11),FineAggregates,

    Grading Zone = II

  2. SpecificGravityofFineAggregate

    W1= 660 g W2

    = 1858g W3 =

    2090g W4 =

    1365g

    Hence, SpecificGravity = 2.43

  3. Sieveanalysistest forCoarseaggregate

    ISSieve Size

    Weight retained

    %

    Weight retained

    %Weight passing

    Cumulative

    Weight retained

    80mm

    0

    0

    100

    0

    40mm

    0

    0

    100

    0

    20mm

    1.86

    37.2

    62.8

    37.2

    10mm

    1.62

    32.4

    67.6

    69.6

    4.75mm

    1.52

    30.4

    69.6

    100

    2.36mm

    0

    0

    100

    100

    1.18mm

    0

    0

    100

    100

    600µ

    0

    0

    100

    100

    300µ

    0

    0

    100

    100

    150µ

    0

    0

    100

    100

    Finenessmodulusofthecoarse aggregate= F/100

    = 7.06

  4. Specificgravityof coarseaggregate

    Emptyweightofthe container (A) = 3.59 kg

    Container+coarse aggregate (B) =7.09 kg Container+coarse aggregate+ water (C) =8.38 kg Container+water (D) = 6.1 kg Specificgravity = B-A/[(B-A)-(C-D)] Thespecific gravityofthe coarseaggregate is2.87

  5. WaterAbsorption TestforCoarseAggregate

    1. Weightof emptybasket =572gms

    2. Weightofbasket+gravel=1472gms 3)Weightofbasket+wetgravel =1484gms 4)Weightofbasket+drygravel =1472gms CALCULATION

    Ww= (w2-w3)= (1484-1472)

    =12

    Ws= (w3-w1)=(1472-572)

    =900

    W= (Ww/ws)=(12/900)

    =0.010

    Waterabsorption = 1.0%

  6. Specificgravity ofcement Emptyweightoftheflask W1=0.131 kg Borosil+ water W2= 0. 368 kg

    Borosil+ kerosene W3=0.318 kg Borosil+ kerosene+ cement W4=0.364 kg Eptyweightofthecement W5= 0.060 kg

    g =W3-W1/W2-W1

    =0.789

    G =W5/ (W5+W3-W4)× g =3.14.

  7. FinenessofCement

    ISSieve

    Weight

    retained(gms)

    %Weight

    retained

    %Finer

    90µ

    4

    4

    96

    Pan

    96

    96

    4

    % Finer= 4%

  8. Consistency ofCement

    Water%

    Water content

    Readingin

    plunger

    24%

    81.6

    32

    26%

    88.4

    26

    28%

    95.2

    22

    30%

    102

    18

    32%

    108.8

    16

    34%

    115.6

    5

    Consistencylimit= 34%

  9. SteelFibre Type:Hookedendsteelfibre AspectRatio= 50/1= 50

    Steelfibre

    0.67*101* 27 = 1826.3 lb/

    ;

  10. PolypropyleneFibre

    Polypropylenefibre

  11. PropertiesofNano silica

ACI MIXDESIGN

The most common method used in North America is thatestablishedbyACI RecommendedPractice211.1

      1. Calculation

        1. Select theslumpandrequiredconcretestrength

          = = 11224.75 Psi

          ;

          = 77.4 Mpa

        2. Select themax sizeofaggregate¾ inch (or)19mm

        3. Selecttheoptimumcoarse aggregate

          =1083 kg/

        4. TakeWatercementratioas0.3

        5. Weightof cement

          AsperACI211.1Clause6.3.3pgno.8Select approx.mixingwaterandairrequirementis265lb/

          Testitem

          Standard

          requirements

          TestResults

          Specific Surface

          Area (M2/G)

          200 +20

          202

          pH Value

          3.7 4.5

          4. 12

          Loss on

          Drying@105 DEG.C(5)

          <1.5

          0. 47

          SieveResidue(5)

          <0.04

          0. 02

          TampedDensityg/L

          40 60

          44

          SiContent(%)

          >99. 8

          99. 88

          CARBON

          CONTENT(%)

          <0.15

          0. 06

          Chloride Content (%)

          <0.0202

          0. 009

          <0.03

          0. 005

          Ti

          <0. 02

          0. 004

          <0. 003

          0. 001

          ParticleSize

          17 NANO

          Weightofcement= =885.33lb/ =525 kg/

        6. Volumeof coarse aggregate

          As perACI211.1-91 Table6.3.6

          For¾inchsizedaggregate&Finenessmodulusof Fine aggregate3.78 valueis0.64

          Coarse aggregatewilloccupy

          0.64*27

          TheODweightofCoarseaggregate, 18.26*100 =1826.26 lb/

        7. Proportionbasicmixturewith cementonly Cement= =4.503

Coarse Aggregate= = 10.19

Water= =4.25

Air= 0.02* 27 =0.54

19.48

27-19.48 = 7.52

7.52*62.4*2.43 =1140.27 lb/

lb/

kg/

Cement

885.33

525

Fine aggregate

1140.27

676

Coarseaggregate

1826

1083

Hence,the ratiois1:1.287:1.948

RESULTSANDDISCUSSION COMPRESSIVESTRENGTHOFCONCRETE

  • TheCompressivestrengthofConventionalconcrete on7th dayis37.86Mpaanditisincreased54.95%on

    28thday.

  • InadditiontoNanosilica4%totheConventional, thecompressivestrengthon7th dayis37.83Mpaand itisincreased53.31%on28th day.Ascomparedto conventional concrete,CompressiveStrength increased 3.09%on 28thday.

  • The hybridfibrecompositioninadditionto(1%Steel Fibre0.015%PolypropyleneFibre)inadditionto 4%Nanosilica,thecompressionstrengthofconcrete at the age of 7 days 37.92Mpa. It was increased 4.51%comparedtoconventionalconcreteattheage of28 daysrespectively.

  • Thehybrid fibre compositionin additionto (1% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,the compressionstrengthof concrete attheageof7days38.1Mpa.Itwas increased5.37%comparedtoconventionalconcrete atthe ageof28 daysrespectively.

  • The hybridfibrecompositioninadditionto(1%Steel Fibre0.04%PolypropyleneFibre)inadditionto 4%Nanosilica,thecompressionstrengthofconcrete at the age of 7 days 38.07Mpa. It was increased 6.34%comparedtoconventionalconcreteattheage of28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.015% Polypropylene Fibre) in addition to4%Nanosilica,thecompression strength ofconcrete attheageof7days38.6Mpa.Itwas increased7.74%comparedtoconventionalconcrete atthe ageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,the compressionstrengthof concrete attheageof7days38.54Mpa.Itwas increased8.17%comparedtoconventionalconcrete atthe ageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.04%Polypropylene Fibre)inaddition to4%Nanosilica,the compressionstrengthof concrete at the age of 7 days 38.57Mpa. It was

    increased7.09%comparedtoconventionalconcrete attheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.015% Polypropylene Fibre)in addition to4%Nanosilica,thecompressionstrength ofconcrete attheageof7days38.78Mpa.Itwas increased10.1%comparedtoconventionalconcrete attheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre0.03%PolypropyleneFibre)in addition to4%Nanosilica,thecompression strengthof concrete attheageof7days38.66Mpa.Itwas decreased3.95%comparedtoconventionalconcrete attheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre0.04%PolypropyleneFibre)in addition to4%Nanosilica,thecompression strengthof concrete attheageof7days38.78Mpa.Itwas decreased5.93%comparedtoconventionalconcrete attheageof28 daysrespectively.

    28thday

    7thday

    80

    70

    60

    50

    40

    30

    20

    10

    0

    Fig. Compressivestrengthofconcrete

    Standard

    Ns4

    S1P3

    S1P6

    S1P9

    S1.25P3

    S1.25P6

    S1.25P9

    S1.5P3

    S1.5P6

    S1.5P9

    SPLITTINGTENSILESTRENGTHOFCONCRETE

  • The Splitting tensile strength of Conventional concreteon7th dayis4.29Mpaanditisincreased

    6.98%on 28thday.

  • InadditionofNanosilica4%totheConventional, the Splitting tensile strengthon7th dayis4.2Mpaand itisincreased67.52%on28th day.Ascomparedto conventional concrete,SplittingtensileStrength increased1.5%on 28thday.

  • Thehybridfibrecompositioninadditionto(1% Steel Fibre0.015%PolypropyleneFibre)inadditionto 4% Nano silica, the splitting tensile strength of concrete at the age of 7 days 4.26Mpa. It was

    increased4.4%comparedtoconventional concreteat theageof28 daysrespectively.

  • The hybridfibrecompositioninadditionto(1%Steel Fibre0.03%PolypropyleneFibre)inadditionto 4%Nanosilica,the Splitting tensile strengthof concrete attheageof7days4.35Mpa.Itwas increased4.88%comparedtoconventionalconcrete atthe ageof28 daysrespectively.

  • The hybridfibrecompositioninadditionto(1%Steel Fibre0.04%PolypropyleneFibre)inadditionto 4% Nano silica, the splitting tensile strength of concrete at the age o 7 days 4.41Mpa. It was increased5.37%comparedtoconventionalconcrete atthe ageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25%Steel Fibre 0.015% Polypropylene Fibre) in addition to4%Nanosilica,thesplitting tensile strengthofconcreteattheageof7days4.5Mpa.It wasincreased6.82%compared toconventional concreteattheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,thesplittingtensile strengthof concrete attheageof7days4.56Mpa.Itwas increased7.78%comparedtoconventionalconcrete atthe ageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.04%Polypropylene Fibre)inaddition to4%Nanosilica,thesplittingtensile strengthof concrete attheageof7days4.59Mpa.Itwas increased8.27%comparedtoconventionalconcrete atthe ageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.015% Polypropylene Fibre) in addition to4%Nanosilica,thesplitting tensile strengthofconcrete attheageof7days4.64Mpa.It wasincreased11.17%compared toconventional concreteattheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,thesplittingtensile strengthof concrete attheageof7days4.65Mpa.Itwas increased14.07%comparedtoconventional concrete atthe ageof28 daysrespectively.

  • The hybridfibrecompositioninadditionto(1%Steel Fibre0.04%PolypropyleneFibre)inadditionto

    4%Nanosilica,thesplitting tensilestrengthof concrete attheageof7days4.67Mpa.Itwas increased15.52%comparedtoconventionalconcrete attheageof28 daysrespectively.

    28thday

    S1.25P3

    S1.25P6

    S1.25P9

    Fig. Splittingtensilestrengthof concrete

    8

    6

    4

    2

    0

    7thday

    Standard

    Ns4

    S1P3

    S1P6

    S1P9

    S1.5P3

    S1.5P6

    S1.5P9

    FLEXURALSTRENGTHOFCONCRETE

  • TheFlexuralstrengthofConventionalconcreteon 7th dayis2.75Mpaanditisincreased51.69%on28th day.

  • InadditionofNanosilica4%totheConventional, the Flexuralstrengthon7th dayis2.875Mpaanditis increased 51.16%on28th day.Ascompared to conventional concrete, Flexural Strength increased

    5.63%on 28thday.

  • Thehybridfibrecompositioninadditionto(1% Steel Fibre0.015%PolypropyleneFibre)inadditionto 4%Nanosilica,theflexuralstrengthofconcreteat the ageof7days3.22Mpa.Itwasincreased22.06% comparedtoconventionalconcreteattheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1% Steel Fibre0.03%PolypropyleneFibre)inadditionto 4%Nanosilica,theflexuralstrengthofconcreteat the ageof7days3.25Mpa.Itwasincreased25.35% comparedtoconventionalconcreteattheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1% Steel Fibre0.04%PolypropyleneFibre)inadditionto 4%Nanosilica,theflexuralstrengthofconcreteat the ageof7days3.27Mpa.Itwasincreased26.76% comparedtoconventionalconcreteattheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.015% Polypropylene Fibre) in

    addition to4%Nanosilica,theflexuralstrengthof concrete attheageof7days3.45Mpa.Itwas increased35.21%comparedtoconventional concrete atthe ageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,theflexuralstrengthofconcrete at theageof7days3.5Mpa.Itwasincreased37.08% comparedtoconventionalconcreteattheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.04%Polypropylene Fibre)inaddition to4%Nanosilica,theflexuralstrengthofconcrete at the ageof7days3.55Mpa.Itwasincreased39.09% comparedtoconventionalconcreteattheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.015% Polypropylene Fibre) in addition to4%Nanosilica,theflexuralstrengthof concrete attheageof7days3.85Mpa.Itwas increased49.29%comparedtoconventional concrete atthe ageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,theflexuralstrengthofconcrete at theageof7days3.9Mpa.Itwasincreased54.46% comparedtoconventionalconcreteattheageof28 daysrespectively.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.04%Polypropylene Fibre)inaddition to4%Nanosilica,theflexuralstrengthofconcrete at the ageof7days3.92Mpa.Itwasincreased55.86% comparedtoconventionalconcreteattheageof28 daysrespectively.

    Standard

    Ns4

    S1P3

    S1P6

    S1P9

    S1.25P3

    S1.25P6

    S1.25P9

    S1.5P3

    S1.5P6

    Fig. Flexuralstrengthofconcrete

    10

    8

    6

    4

    2

    0

    7thday

    28thday

    CONCLUSION

    COMPRESSIVESTRENGTH

  • Compressivestrengthattainsmaximum atadditionof 4%of Nanosilica, 1.5%SteelFibresand0.01% Polypropylene fibrestotheM60 grade concrete.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.015% Polypropylene Fibre)in addition to4%Nanosilica,thecompressionstrength ofconcrete attheageof7days38.78Mpa.Itwas increased10.1%comparedtoconventionalconcrete attheageof28 daysrespectively.

    SPLITTINGTENSILESTRENGTH

  • Splittingtensilestrengthattainsmaximumataddition of4%ofNanosilica,1.5%SteelFibresand0.04% Polypropylene fibrestotheM60 grade concrete.

  • Thehybridfibrecompositioninadditionto(1% Steel Fibre0.04%PolypropyleneFibre)inadditionto 4%Nanosilica,thesplitting tensilestrengthof concrete attheageof7days4.67Mpa.Itwas increased15.52%comparedtoconventionalconcrete attheageof28 daysrespectively.

    FLEXURALSTRENGTH

  • Flexuralstrengthattainsmaximumatadditionof4% of Nano silica, 1.5% Steel Fibres and 0.04% Polypropylene fibrestotheM60 grade concrete.

  • Thehybridfibrecompositioninadditionto(1.5% Steel Fibre0.04%PolypropyleneFibre)in addition to4%Nanosilica,theflexuralstrengthofconcrete at the ageof7days3.92Mpa.Itwasincreased55.86% comparedtoconventionalconcreteattheageof28 daysrespectively.

REFERENCES

  1. lker FatihKara,AshrafF.Ashour,(2015)FLEXURAL BEHAVIOROFHYBRIDFRP/STEEL REINFORCED

    CONCRETE BEAMS Science Direct, Composite Structures129 (2015)111121

  2. QinghuaLi,Xiang Gao,Shilang Xu,(2016)MULTIPLE EFFECTS OFNANO-SiO2ANDHYBRIDFIBERSON PROPERTIESOFHIGHTOUGHNESS FIBER REINFORCEDCEMENTITIOUS COMPOSITES WITH

    S1.5P9

    HIGHVOLUMEFLYASH ScienceDirect,Cementand ConcreteComposites72 (2016)201e212

  3. R.H. Mohankar, M.D. Pidurkar, P.V Thakre,(2016)

HYBRID FIBRE REINFORCED CONCRETE

InternationalJournalofScience,EngineeringandTechnology Research (IJSETR),Volume5, Issue1, January2016.

4.R.Yu,P.Tang,P.Spiesz,(2014)A STUDY OF MULTIPLE EFFECTS OF NANO-SILICA AND HYBRIDFIBRESONTHEPROPERTIESOFULTRA- HIGHPERFORMANCE FIBREREINFORCED CONCRETE(UHPFRC)INCORPORATING WASTE

BOTTOM ASH(WBA)ScienceDirect,Constructionand BuildingMaterials60 (2014)98110

5.R.Yu, P. Spiesz, H.J.H.Brouwers,(2014)STATIC PROPERTIES ANDIMPACTRESISTANCEOFA GREENULTRA-HIGH PERFORMANCEHYBRID FIBREREINFORCED CONCRETE(UHPHFRC) EXPERIMENTS ANDMODELINGScienceDirect,

Constructionand BuildingMaterials68 (2014)158171

  1. SelinaRubyG.,Geethanjali C.,JaisonVarghese,P.Muthu Priya,(2014)INFLUENCE OFYBRIDFIBERON

    REINFORCEDCONCRETE International Journalof Advanced Structures and Geotechnical Engineering ISSN

    2319-5347, Vol.03, No. 01, January2014

  2. SoonPohYap,Chun HooiBu,U.JohnsonAlengaram, (2014) FLEXURAL TOUGHNESS CHARACTERISTICS OFSTEEL-POLYPROPYLENE HYBRIDFIBREREINFORCED OILPALM SHELL

CONCRETE Science Direct, Materials and Design 57 (2014)652659

Leave a Reply

Your email address will not be published. Required fields are marked *