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Abstract— An analysis is performed to study the flow 

and heat transfer of two immiscible viscous fluids in a horizontal 

composite porous channel. The flow is modeled by Darcy-

Brinkman equation with suitable boundary and interface 

conditions. The partial differential equations governing the flow 

and heat transfer have been transformed into a system of 

ordinary differential equations. The obtained equations are 

solved analytically taking the viscous and Darcy dissipation into 

consideration. The effect of the variation in the porous 

parameter, Prandtl number, Eckert number, ratios of viscosities 

and thermal conductivities on the velocity and temperature 

fields for both the fluids is discussed.  

 

Keywords—Heat transfer, immiscible fluids, porous medium, 

horizontal channel 

NOMENCLATURE 

 

PC  specific heat at constant pressure 

Ec  Eckert number 

h  channel half width 

K  thermal conductivity 

P  pressure 

Pr  Prandtl number 
s  permeability of porous matrix 

T  temperature 

wT  wall temperature 

t  time 

0U  average velocity 

u  velosity component along the plate 

  

GREEK LETTERS 

  ratio of viscosities 

  ratio of thermal conductivities 

  porous parameter 

    fluid density 

  viscosity of fluid 

  non-dimensional temperature 

 

SUBSCRIPTS 

1,2 quantities for region-I and region-II respectively. 

 

 

 

 

I. INTRODUCTION 

Investigation of the flow through porous geometries 

has many scientific and engineering applications, such as in 

the utilization of geothermal energy, underground disposal of 

nuclear waste material, high-performance building insulation, 

crude oil extraction, petroleum industries, chemical catalytic 

reactor, solid matrix exchangers and many others. Berman [1] 

investigated the flow of two dimensional steady 

incompressible laminar viscous fluids through a porous 

channel where both channel plates have equal permeability 

and the flow at the center line of the channel attains 

maximum. Later Yuan [2] extended the problem for different 

values of suction and injection Reynolds numbers. The 

combined natural and force convective flows through a 

horizontal porous channel connecting two reservoirs have 

been investigated by Haajizzadeh and Tien [3]. Steady and 

transient Magnetohydrodynamic flow and heat transfer in a 

porous medium channel has been analyzed by Chamkha [4]. 

Mankinde and Mohane [5] investigated the combined effect 

of a transverse magnetic field and radiative heat transfer to 

unsteady flow of a conducting optically thin fluid through a 

channel filled with the saturated porous medium with no-slip 

boundary condition, further the work is extended by 

Mehmood and Ali [6] by considering the fluid slip at the 

lower wall. Nield and Bejan [7], Vafai [8,9], Pop and Ingham 

[10], Ingham et al. [11] and Bejan et al. [12] have made 

comprehensive reviews of the studies of heat transfer in 

relation to the above applications.  

 

In all the above-mentioned research pertain to single 

fluid model. Most of the problems relating to the 
petroleum industry, geophysics, plasma physics, and so 
forth involve multiphase flow situations. The multiphase 

flow in porous media has attracted considerable attention for 

many researchers. This is due to the fact that problem 

involving the multiphase flow, heat transfer and multi-

component mass transfer in porous media arises in 

engineering disciplines such as geothermal energy 

production, multiphase trickle bed reactors, high level 

radioactive waste repositories and paper machines. 

Multiphase flow in porous media has been approached by so 

called Multiphase Flow Model (MFM) (Abriola [13], Bear 

[14]) in which various phase are considered as distinct fluids 

with individual thermodynamic and transport properties and 

with different flow velocities. The transport phenomena are 

mathematically described by the basic principles of 

convection for each phase separately and by appropriate 

interfacial condition between various phases. Srinivasan and 
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Vafai [15] have reported a theoretical study on immiscible 

fluid systems in a porous medium, taking into account the 

non-Darcian boundary and inertia effects. Chamkha [16] 

analyzed the flow of two immiscible fluids in porous and 

non-porous channels. Two-fluid flow and heat transfer in an 

inclined channel containing porous and fluid layers was 

studied analytically by Malashetty et al. [17]. Umavathi et al. 

[18, 19] analyzed unsteady flow and heat transfer of 

immiscible fluids in a horizontal channel. Recently, Prathap 

Kumar [20] has studied the effect of homogeneous and 

heterogeneous reactions on the dispersion of a solute in a 

composite porous medium between two parallel plates. The 

unsteady magnetohydrodynamic flow of two immiscible 

fluids in a horizontal channel bounded by two parallel porous 

isothermal plates in the presence of an applied magnetic and 

electric field is investigated by Linga Raju and Nagavalli 

[21]. 

 

The object of the present work is to study flow and 

heat transfer of immiscible fluids through the porous media in 

which the differential equation governing the fluid motion is 

based on the Darcy’s law which accounts for the drag exerted 

by the porous medium. The two plates are maintained at two 

different but constant temperatures. This configuration is a 

good approximation of some practical situations such as heat 

exchangers and pipes that connect system components. The 

cooling of these devices can be achieved by utilizing a porous 

surface through which a coolant, either a liquid or gas, is 

forced. Therefore, the results obtained here are important for 

the design of the wall and the cooling arrangements of these 

devices.  

 

II. MATHEMATICALFORMULATION 

      Consider the flow of an incompressible 

viscous fluid in a horizontal composite channel as shown in 

Fig. 1 
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In order to derive basic equations for the problem 

under consideration following assumptions are made: 

i. The flow is steady, laminar and fully developed with 

constant physical properties. 

ii. The region-I ( hy 0 ) is occupied by a clear 

viscous fluid and the region-II ( 0− yh ) is filled 

with a porous matrix. 

iii. All the physical dependent variables except pressure 

will only dependent of y. 

iv. The plates of the channel are assumed to be finite 

and maintained at constant and different 

temperatures 1wT  and 2wT . 

v. Viscous and Darcy dissipation terms are included in 

this study. 

vi. The flow considered in both the regions is driven by 

a common pressure gradient 











−

x

p
 and 

temperature gradients 21 ww TT − . 

Under these assumptions and taking, 

PPP CCC ==
21

 and 021  ==  the governing equations 

of motion and energy are: 
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where u is the x-component of fluid velocity and T is the 

fluid temperature. The subscripts 1 and 2 correspond to 

region-I and region-II, respectively. The boundary conditions 

on velocity are the no-slip boundary conditions which 

required that the x-component of velocity must vanish at the 

wall. The boundary conditions on temperature are isothermal 

conditions. We also assume the continuity of velocity, shear 

stress, temperature and heat flux at the interface between the 

two fluid layers at y=0. 

 

The boundary and interference condition for this 

problem is written as  
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By use of the following non-dimensional quantities:  

 

)(
,Pr

,

,,

,,

21

2
0

1

1

01

2

2
2

21

2

**
0

wwp

p

ww

wwi
i

ii

TTC

U
Ec

K

C

x

p

U

h
P

s

h

TT

TT

hyyuUu

−
==













−=

=
−

−
=

==







 (6) 

 

and for simplicity dropping the asterisks, equations (1) to (5) 

becomes 
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where 
2

1




 =  is the ratio of viscosities and 

2

1

K

K
=  is the 

ratio of thermal conductivities.   

 

The boundary and interference condition in the non-

dimensional form becomes 
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Solution: The governing equations (7) to (10) are solved 

subject to the boundary and interface conditions (11) for the 

velocity and temperature distributions in both regions. 

The results are depicted graphically and are discussed in the 

next section. 

 

III. RESULTS AND DISCUSSION 

In this section, a detailed parametric study has been 

performed for the effects of the porous parameter, Prandtl 

number, Eckert number, ratios of viscosities and thermal 

conductivities on the velocity and temperature profiles which 

is presented graphically in figures 2 to 8. The following 

parameters are fixed values 0.2=P , 0.2= , 71.0Pr = , 

2.0=Ec , 0.1=  and 0.1=  except one the varying. 

Figs. 2 and 3 display the effects of the porous 

medium parameter   on the velocity and temperature 

profiles respectively. As the porous medium parameter  

increases, the velocity and temperature decrease in both 

regions of the channel. This is expected since the porous 

matrix represents an obstacle to flow and therefore, reduces 

its velocity and temperature. This result is also similar to the 

case of fully developed flow through a porous medium as 

predicted by Rudraiah and Nagraj [22]. 

 

Figs. 4 and 5 respectively shows that an increase in 

Prandtl number Pr and Eckert number Ec clearly boost 

temperature in both the regions. Eckert number signifies the 

quantity of mechanical energy converted via internal friction 

to thermal energy. Increasing Ec values will therefore cause 

an increase in thermal energy contribution to the temperature 

profiles. 

 

Fig. 6 depicts the effect of ratio of thermal 

conductivities   on the temperature profiles. From this 

figure it is observed that the temperature profile increases as 

  increases in both the regions. Also, the maximum 

temperature in the channel tends to move above the interface 

towards region-I.  

 

The effect of the viscosities ratio on the velocity and 

temperature distributions is shown in Figs 7 and 8, 

respectively. As the viscosity ratio increases, both the 

velocity and temperature profile decreases. This is due to the 

fact that as the viscous effects increase, the fluids in both 

regions become thicker and hence, the flow velocity in the 

channel is reduced causing the temperature distribution in the 

channel to reduce as well. 
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