Physical and Mechanical Characterization of a Swelling Clay: the Case of Dabanga Karal in the Far North Region of Cameroon

DOI : 10.17577/IJERTV5IS010666

Download Full-Text PDF Cite this Publication

Text Only Version

Physical and Mechanical Characterization of a Swelling Clay: the Case of Dabanga Karal in the Far North Region of Cameroon

Limaleba Roger Blaise1 & 2; Ayina Ohandja Louis Max1

1Laboratory of Civil Engineering and Town Planning, Graduate school of Fundamental and Applied Sciences, The University of Douala,

Douala, Cameroon.

Abstract The purpose of this paper was to determine certain physical and mechanical characteristics of a swelling clay called Karal, at Dabanga in the Far North Region of Cameroon. Not limited to, the following tests were carried out natural moisture content, consistency characteristics (Atterberg limits), Modified Proctor, California Bearing Ratio tests (CBR) and linear swelling, weight density … These tests were carried out on five samples reworked of Karal and results show that it is a swelling clay with a fairly high plasticity (of about 40%) of A7-6 class in the American classification Highway Research Board (HRB).

Keywords Karal; Dabanga; Geotechnical; Characteristics; Swelling Clay; Swelling;

  1. INTRODUCTION

    In Africa, the road network is essentially composed of dirt roads poorly maintained, which contributes to the problems of landlocked countries of this continent. According to the latest reports from the World Bank, Africa is particularly affected in its sub-Saharan part with only 12% of paved roads [Gumisai, 2002]. In Cameroon, the statistics of CTIN1 of the Ministry of Public works (MINTP) reveals that in 2011, for a road network which stretched over about 77 589 km (including lanes and ways), only 5145 km of roads were bituminized (6.62 %). According this same report, the far North is not spared by this issue of isolation; Indeed, there are 586 km of roads paved out of a total of 12 533 km in this Region (4.68% only).

    The Karal (classified as vertisols), is a clayey soil abundant in the northern part of Cameroon, specifically in the Far North, where it covers about 73% of soils in this region (Ekodek, 1976). To address the lack of laterite in this region, the Karal is frequently used both in the construction of paved roads in the development of earth roads. This very resistant clay dry season is quite swelling in the presence of water, making the dirt roads impassable during rainy seasons and paved roads subject to significant degradation, due to the phenomenon of shrinkage and swelling. This is a serious issue as far as the movement of people is concern.

    Madjadoumbaye Jérémie2;

    2Laboratory of Civil Engineering, National Advanced School of Public Works,

    Yaounde, Cameroon.

    This work is entitled "Physical and mechanical characterization of a swelling clay: The case of Dabanga Karal in the Far North Region of Cameroon". The objective of this paper concerns the geotechnical characterization of Dabanga Karal alone, in order to determine its physical and mechanical properties such as natural moisture content, consistency characteristics (Atterberg limits), Modified Proctor, California Bearing Ratio tests (CBR) and linear swelling, weight density … This approach has the purpose to contribute in geotechnical road to deal with the poor performance of the roads in the northern part of Cameroon where the phenomenon of shrinkage and swelling of Karal is the origin of early destruction of roads, whether coated or uncoated.

  2. THE KARAL OF CAMEROON

    It is a clay of more or less dark gray color that soil scientists call tropical black clay. The bulk of the Cameroonian Karal is located in the far North, where Ekodek (1976) located it between the 14th and the 16th degree of longitude east and then the 10th and the 13th latitude north; He considers the area occupied by the Karal at about 25,000 km2, nearly 73% of the soils of this region.

    The Karal, consisting of a mixture of montmorillonite, kaolinite and illite and some other mineral, like which have the aptitude for the collection-swelling would be linked to the quantity of montmorillonite (30 %) and the importance of lower fraction in 2 m that it contains (Livet, 1988).

    When a sample of Karal is sieved, we find it consists essentially of fines which sometimes third is composed of montmorillonite. With a liquid limit of around 70%, the Karal has a plasticity index close to 40% which in the rainy season it is almost impossible to move; clay (the Karal) becomes subject to large deformations due to the action of traffic resulting in deep ruts that make movement almost impossible (Liautaud 1972).

    1 The Centre de Traitement de lInformation Numérique (CTIN) uses data collected in the field by the various operational departments of the Ministry of Public Works and the results of research institutions such as SODECOTON.

    DABANGA

    DABANGA

    Fig. 1.1. Location of the site of sample of the Karal in Dabanga

    Another feature of Karal is its plasticity is ability to withdrawal – swelling. Indeed, in the dry season, it shrinks and cracks of up to 1 m deep and open up to 4-8 cm wide are formed on the surface (Liautaud 1972). During the rains, the cracks are filled with water so that the clay absorbs and starts to swell.

    Fig. 1.2. Picture on the Dabanga Karal: opening of cracks greater than 10

    cm

    All these properties make Karal a material whose mechanical properties are often poor: in fact Liautaud (1972) and Livet (1988) show that the CBR of Karal soaked in 4 days rarely give a better result than 5%.

  3. SOME RESULTS OF PREVIOUS WORK ON THE KARAL

    Table 1.1 presents the results of previous work done on the Karal by various authors (Lyon Associates Inc. 1971 Liautaud 1972 Laroche 1973 Ekodek 1976 Livet 1988). These results relate to certain mechanical and physical characteristics of various types of Karal.

    Table 1.1. Summary of some previous results on Cameroonian Karal

    td>

    22,1

    N°

    Authors

    Physical Characteristics

    Identification

    Atterberg limits (%)

    Swelling

    W (%)

    granulometry

    LL

    PL

    PI

    LS

    free

    potential

    1

    Lyon Associates Inc., 1971

    coarse sand 5-8%;

    > 50%

    28%

    fine sand: 10 – 15 %;

    slits:

    20 – 30 %;

    clays 60-75%

    2

    Liautaud G., 1972

    59 –

    85

    29 – 45

    30- 40

    15

    3

    Laroche C., 1973

    %tage < 80: 94%;

    %tage < 5: 47%

    67

    29

    38

    15

    4

    Ekodek

    G. E., 1976

    Maroua region

    46

    2,6

    40,8

    19,3

    21,5

    85

    Kousseri region

    2,5

    58,2

    26,6

    31,6

    95

    Makari region

    2,5

    46,2

    24,1

    81

    5

    Livet Marc, 1988

    %tage < 80: 94%;

    %tage < 5: 47%

    58 à

    72

    26 à 33

    33 à

    39

    15

    N°

    Authors

    mechanical characteristics

    Modified Proctor

    CBR (%)

    Shearing Test

    d opt (g/cm3)

    Wopt (%)

    n (%)

    Wopt (%)

    After 4 days of imbibition

    u

    Cu (bar)

    Rc(bar)

    1

    Lyon Associates Inc., 1971

    1,66 à 1,91

    13 à 20

    CBR = 1,6 à 5,3 (No

    further details)

    2

    Liautaud G., 1972

    1,7

    18,5

    3

    Laroche C., 1973

    1,61 à 1,86

    14 à 22

    31 à 34

    2 à 4

    5°

    0,15

    4

    Ekodek

    G. E., 1976

    Maroua region

    1,92

    13,2

    26,15

    38 à 44

    7 à 13

    42°

    0,625

    37,68

    Kousseri region

    1,84

    16,2

    31,09

    20 à 48

    2 à 6

    30°

    2,675

    22,82

    5

    Livet Marc, 1988

    1,66

    20

    30

    3

  4. THE TESTS CONDUCTED IN LABORATORY

Laboratory tests carried out are shown in Table 1.2; there are compiled types of tests, the test materials, the required parameters and the standards defining the procedures of these tests.

Table 1.2. Program tests of characterization of Karal.

17

Tamisat the 2 (%)

49,92

68,19

58,99

58,90

70,01

61,203

18

Activity of karal

A

0,761

0,658

0,687

0,620

0,543

0,654

19

Index empty

e0

0,648

0,615

0,675

0,59

0,657

0,637

Table 1.4. summary sheet of the results of physical and mechanical characterization, the example of G1 sample

LABORATOIRE NATIONAL DE GENIE CIVIL

BP 349 – LABOGENIE – YAOUNDE

Tél. et Fax 22 30 30 06

Dossier: Travaux de Recherche РLIMALEBA РEtude d'am̩lioration du karal de Dabanga

Type of tests

Parameters sought

Number of samples.

Number of tests/ sample

total tests

Norms

Tests on Dabanga Karal

Identification tests

Water content

5

4

20

NF P 94

050

density of solid particles

5

4

20

NF P 94

054

Particle size analysis

Soil grain diameter

5

2

10

NF P 94-056 & NF P 94-057

clay content test

Activity of the clay fraction of soil

5

1

5

NF P 94-068

Atterberg limits

Liquid Limit (LL) and Plastic Limit (WP); Plasticity Index (PI)

5

5

25

NF P 94-051

Modified Proctor

Proctor Optimum

5

5

25

NF P 94-093

CBR test

Indices CBR

5

3

15

NF P 94-078

Oedometer tests

Consolidation pressure, oedometric module swelling and compression coefficients.

5

2

10

NF XP P 94-

091

triaxialn shear tests

Cohesion, internal friction angle

5

2

10

NF P 94-070

Type of tests

Parameters sought

Number of samples.

Number of tests/ sample

total tests

Norms

Tests on Dabanga Karal

Identification tests

Water content

5

4

20

NF P 94

050

density of solid particles

5

4

20

NF P 94

054

Particle size analysis

Soil grain diameter

5

2

10

NF P 94-056 & NF P 94-057

clay content test

Activity of the clay fraction of soil

5

1

5

NF P 94-068

Atterberg limits

Liquid Limit (LL) and Plastic Limit (WP); Plasticity Index (PI)

5

5

25

NF P 94-051

Modified Proctor

Proctor Optimum

5

5

25

NF P 94-093

CBR test

Indices CBR

5

3

15

NF P 94-078

Oedometer tests

Consolidation pressure, oedometric module swelling and compression coefficients.

5

2

10

NF XP P 94-

091

triaxialn shear tests

Cohesion, internal friction angle

5

2

10

NF P 94-070

Provenance: Dabanga – Echantillon G 1

ESSAIS D'IDENTIFICATION

Nature: Karal grisâtre

Classification

WL 64,1

S ( KN/m3 ) 25,7

d ( KN/m3 )

CBR Wsat ( après 4jrs im. )

H.R.B.

G.T.R.

WP 26,1

M.O.

55cps 17,4 11

21,6

A – 7 – 6(20 ) A 3

IP 38,0

Gonflement 2,13 25cps 16,6

6 22,4

CBR à 95% OPM après 4jours d'immersion

1,75

1,65

IC 1,2

Wnat. ( % ) 18,0 10cps 15,7

13,0 1,67 20,9

15,7 1,73 19,0

17,6 1,74 18,4

19,8 1,69 20,3

22,9 1,60 23,8

13,0 1,67 20,9

15,7 1,73 19,0

17,6 1,74 18,4

19,8 1,69 20,3

22,9 1,60 23,8

d OPM = 17.4kN/m3 WOPM = 17.6%

2 23,5 6,5

Date: 20 /03 / 2014

1,75

Densité sèche

Densité sèche

1,65

1,55

12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0

100

1,55

0 1 2 3 4 5 6 Va7leur C8BR 9 10 11 12 13 14 15

p>Tamis en mm % Tamisats

80

90

63

50

40 80

31,5

25

70

20

16

% DES TAMISATS

% DES TAMISATS

10

8

100,0

50

5

99,6

2

95,3

1

89,1

40

0,5

82,2

0,315

78,1

30

0,160

69,6

0,080

65,4

20

0,05

63,5

0,02

61,0

10

8

100,0

50

5

99,6

2

95,3

1

89,1

40

0,5

82,2

0,315

78,1

30

0,160

69,6

0,080

65,4

20

0,05

63,5

0,02

61,0

12,5 60

ANALYSE GRANULOMETRIQUE

  1. SUMMARY OF SOME RESULTS ALREADY OBTAINED

    Several results are currently available from the current analysis. Table 1.3 presents the summary of some of them. The Table 1.4 shows a summary sheet of the results of physical and mechanical characterization of the G1 sample.

    Table 1.3. summary of some results already obtained (Samples G1, G2, G3, G4 and G5)

    0,01 58,9

    0,005 53,8

    0,002 49,9

    10

    0

    100 10

    1 0,1

    0,01

    0,001

    N°

    Designation

    SYMBOL

    G1

    G2

    G3

    G4

    G5

    AVERAGE

    1

    Natural Water Content (%)

    W nat

    18

    13

    13

    11

    13,75

    2

    Liquidity Limit (%)

    LL

    64,1

    66,2

    62,5

    57,6

    64,1

    62,90

    3

    Plasticity Limit (%)

    PL

    26,1

    21,3

    22

    21,1

    26,1

    23,32

    4

    Plasticity Index (%)

    PI

    38

    44,9

    40,5

    36,5

    38

    39,58

    5

    Linear Swelling (%)

    G

    2,13

    3,07

    4,17

    3,15

    3,31

    3,17

    6

    Soil Dry Density (kN/m3)

    d

    16,6

    17

    17

    17,6

    16,6

    16,96

    7

    CBR after 4 days of immersion

    CBR

    6,6

    4,5

    5

    6

    6,5

    5,72

    8

    Saturation water content (%)

    Wsat

    22,4

    17,6

    23,5

    18,4

    22,4

    20,86

    9

    Greatest density (kN/m3)

    d opt

    17,4

    17,8

    17,6

    18,6

    17,4

    17,76

    10

    Optimum water Content (%)

    Wopt

    17,6

    15

    19

    14,6

    17,6

    16,76

    11

    Tamisat to 80 (%)

    65,38

    90,99

    82,42

    91,69

    91,70

    84,44

    12

    consolidation pressure (bar)

    0

    0,515

    0,575

    0,550

    0,350

    0,600

    0,518

    13

    compression coefficient

    Cc

    0,170

    0,134

    0,160

    0,129

    0,133

    0,145

    14

    swelling coefficient (free)

    Cg

    0,015

    0,013

    0,017

    0,014

    0,012

    0,014

    15

    Cohesion (bar)

    c

    0,220

    0,460

    0,390

    0,320

    0,520

    0,382

    16

    internal friction angle (°)

    20,00

    13,22

    9,00

    23,00

    19,00

    16,844

    N°

    Designation

    SYMBOL

    G1

    G2

    G3

    G4

    G5

    AVERAGE

    1

    Natural Water Content (%)

    W nat

    18

    13

    13

    11

    13,75

    2

    Liquidity Limit (%)

    LL

    64,1

    66,2

    62,5

    57,6

    64,1

    62,90

    3

    Plasticity Limit (%)

    PL

    26,1

    21,3

    22

    21,1

    26,1

    23,32

    4

    Plasticity Index (%)

    PI

    38

    44,9

    40,5

    36,5

    38

    39,58

    5

    Linear Swelling (%)

    G

    2,13

    3,07

    4,17

    3,15

    3,31

    3,17

    6

    Soil Dry Density (kN/m3)

    d

    16,6

    17

    17

    17,6

    16,6

    16,96

    7

    CBR after 4 days of immersion

    CBR

    6,6

    4,5

    5

    6

    6,5

    5,72

    8

    Saturation water content (%)

    Wsat

    22,4

    17,6

    23,5

    18,4

    22,4

    20,86

    9

    Greatest density (kN/m3)

    d opt

    17,4

    17,8

    17,6

    18,6

    17,4

    17,76

    10

    Optimum water Content (%)

    Wopt

    17,6

    15

    19

    14,6

    17,6

    16,76

    11

    Tamisat to 80 (%)

    65,38

    90,99

    82,42

    91,69

    91,70

    84,44

    12

    consolidation pressure (bar)

    0

    0,515

    0,575

    0,550

    0,350

    0,600

    0,518

    13

    comression coefficient

    Cc

    0,170

    0,134

    0,160

    0,129

    0,133

    0,145

    14

    swelling coefficient (free)

    Cg

    0,015

    0,013

    0,017

    0,014

    0,012

    0,014

    15

    Cohesion (bar)

    c

    0,220

    0,460

    0,390

    0,320

    0,520

    0,382

    16

    internal friction angle (°)

    20,00

    13,22

    9,00

    23,00

    19,00

    16,844

    0,001 45,4

    OUVERTURE DES TAMIS EN mm

    Provenance :

    Travaux de Recherche LIMALEBA

    Prof:

    1,5m

    Sondage :

    G1 OPM 95%

    Nature :

    KARAL DE DABANGA

    Date: 03 / 04 / 2014

    Réalisation :

    Contraintes à la rupture

    ' =28°

    = 20°

    c' =0.07bar c =0.22bar

    3 (bar)

    1

    2

    3

    1-3 (bar)

    1,669

    2,596

    3,725

    U (bar)

    0,176

    0,227

    0,995

    '1=1-U (bar)

    2,493

    4,369

    5,730

    '3=1-U (bar)

    0,824

    1,773

    2,00477

    Paramètre des cercles en contraintes totales

    Cercle n°1

    Cercle n°2

    Cercle n°3

    Centre

    1,83

    3,30

    4,86

    Rayon

    0,83

    1,30

    1,86

    Paramètre des cercles en contraintes effectives

    Cercle n°1

    Cercle n°2

    Cercle n°3

    Centre

    1,66

    3,07

    3,87

    Rayon

    0,83

    1,30

    1,86

  2. DISCUSSION OF RESULTS

    According to the classification American soils of the Highway Research Board (HRB) based on the particle size analysis and Atterberg limits, Dabanga Karal is classified in the A7-6 group, which corresponds to clayey soils. Indeed, it has a percentage of passing through a sieve of 80µ 84.44% (> 36%), a liquid limit of 62.90% (> 41%) and a plasticity index of 39.58% (> LL-30).

    Furthermore, with a 62.90% of liquid limit and a plasticity index of 39.58%, the Dabanga Karal is classified, on the Casagrande plasticity abacus, from the group of the minerals clays of high plasticity.

    The results of the study show that the mechanical properties of Dabanga Karal are rather weak; in fact it has a CBR of 5.72% (with a linear swelling of 3.17%), optimum dry density of 17.76 kN / m3 (with optimum water content of 16.76%).

    The consolidation pressure of Karal is 0.518 bars with a coefficient of compression of 0.145, whilst its cohesion is in the order of 0.382 with an internal friction angle of about 16.844°.

    All these results show in adequacy that the Karal of Dabanga, to be used in road building, requires an improvement of its geotechnical characteristics.

  3. CONCLUSION

In this paper, the issue was to determine the physical and mechanical characteristics of Dabanga Karal, in the region of the Far North of Cameroon. Laboratory tests were the basis of this characterization; the results thereof show that Karal of Dabanga is a swelling clay which to be used as fill material in the construction of roads in this area, should be treated or enhanced.

REFERENCES

  1. BISHOP & BRIGHT (1963), Some aspects of effective stress in unsaturated and saturated soils, Géotechnique, vol. 13 pp. 177- 197;

  2. BOUASSIDA M. & BOUSSETA S. (2007), Manuel de Travaux Pratiques de Mécanique des Sols, Centre de Publication Universitaire, Tunis ;

  3. CHEN F.H. & al. (1999), Overall volume change, water volume change, and yield associated with unsaturated compacted loess, Revue canadienne de géotechnique, vol. 36, pp. 321-329;

  4. EKODECK G. E. (1976), Contribution à l'étude de la nature et du comportement géotechnique des dépôts superficiels gonflants du nord Cameroun, Thèse de doctorat, Université de Grenoble, France;

  5. FLEUREAU & al. (1993), Aspect of the behavior of compacted clayey soils on drying-wetting paths, Revue canadienne de géotechnique, vol. 30, pp. 287-296;

  6. GUMISAI Mutume (2002), Construire un réseau routier performant, Le partenariat public/privé : la solution au problème des infrastructures régionales, Afrique Relance [en ligne]

    ;

  7. HOLTZ W. G and GIBBS H.J. (1956), Engineering properties of expansive soils, ASCE, vol.121, pp. 641-677;

  8. LAROCHE C. (1973), étude de sol pour la route Waza Maltam sur argile gonflante, Revue Générale des Routes et Aérodromes N° 483 avril 1973, France ;

  9. LIAUTAUD G. A. et al. (1972), Les Argiles Gonflantes, Laboratoire des Travaux Publics du Cameroun, Yaoundé- Cameroun ;

  10. LIVET Marc (1988), Sol argileux Gonflants ; site expérimental de Waza-Maltam, Rapport de synthèse, ISTED, France ;

  11. MAGNAN P. J. & G. PILOT, Description, identification et classification des sols, LCPC, France ;

  12. Mathias YAKUBU and all (2013), Geotechnical Characteristics Of expansive Soils from GRA, Mubi, Adamawa State, Nigeria, International Journal of Engineering Research & Technology (IJERT), Vol. 2 Issue 6, June – 2013

  13. Ministère des Travaux Publics du Cameroun (2011), statistiques du sous-secteur des travaux publics, site officiel, www.mintp.cm;

  14. SEED & al. (1962), Prediction of swelling potential for compacted clays, Journal of the Soil Mechanics and Foundations Division, vol. 88, pp. 107-131.

Leave a Reply