 Open Access
 Total Downloads : 17
 Authors : P.Arjunan
 Paper ID : IJERTCONV1IS06087
 Volume & Issue : ICSEM – 2013 (Volume 1 – Issue 06)
 Published (First Online): 30072018
 ISSN (Online) : 22780181
 Publisher Name : IJERT
 License: This work is licensed under a Creative Commons Attribution 4.0 International License
FPGA implementation of MBOFDM with parallel architecture
P.ARJUNAN
M.E.(Applied electronics) Arunai engineering college Tiruvannamalai
arjunan0403@gmail.com
ABSTRACT
MULTIBAND orthogonal frequencydivision multiplexing is one of ultra wideband radio standards, which provides highspeed connectivity in a wireless personal area network and needs to process large amount of computations in short time for support of high data rates. In order to satisfy the performance requirement while reducing power consumption, a multiway parallel architecture based on biorthogonal encoder is proposed. The several novel optimization techniques for resource efficient implementation of the baseband modem which has highly, i.e., 8way, parallel architecture, such as new processing structures for a (de)interleaver and a packet synchronizer was introduced this project. The designed OFDM system is integrated with MIMO Architecture for high data rate applications. This designed system can be able to detect and correct random as well as burst errors.
Index TermsBaseband modem, multiband orthogonal frequencydivision multiplexing (MBOFDM), parallel architecture, resource optimization, ultra wideband (UWB),multi input multi output(MIMO).
1. INTRODUCTION
Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier digital modulation technique that has been recognized as an excellent method for high speed bi directional wireless data communication. OFDM effectively squeezes multiple modulated carriers tightly together, reducing the required bandwidth but keeping the modulated signals orthogonal so they do not interfere with each other. OFDM is similar to FDM but much more spectrally efficient by spacing the subchannels much closer together (until they are actually overlapping). This is done by finding frequencies that are orthogonal, which means that they are perpendicular in a mathematical sense, allowing the spectrum of each sub channel to overlap another without interfering with it. In Figure the effect of this is seen, as the required bandwidth is greatly reduced by removing guard bands (which are present in FDM) and allowing signals to overlap.
Fig: Spectrum overlaps in OFDM
MULTIBAND orthogonal frequencydivision multiplexing (MBOFDM) is one of ultra wideband (UWB) radio standards, which provides highspeed connectivity in a wireless personal area network (PAN) with specification of the data rates from 53.3 to 480 Mbps. Due to the high data rates, the MBOFDM standard requires to process large amount of computations in very short time; its modem has to compute one symbol that consists of 165 complex numbers in every 312.5 ns. Even though its performance requirement results in large hardware complexity, a low power design with small chip size is absolutely essential for applying this technology to portable handheld devices. Also, an operating frequency of a circuit is one of the dominant factors that determine power consumption.
In MBOFDM, the standard specification defines a sampling frequency of 528 MHz Such high frequency is problematic when we use it as a system clock speed; it consumes too much power and it is hard to implement due to timing constraints. Therefore, parallel architectures have been proposed in an effort to reduce power consumption as well as to relax timing constraints. Exploiting parallelism with way parallel architecture enables to keep throughput constraint at – times lower clock speeds, whereas it may increase the hardware resources by a factor of (n). Despite of the increased
P.Arjunan
419
hardware resources, it is possible to reduce power consumption as well as to relax timing constraints due to two reasons. First, way parallel architecture compensates for – times longer gate delays. Therefore, the parallel hardware can operate at reduced supply voltages and consequently consume less power. However, supply voltage scaling is beyond this papers scope: our work focused on high level resource optimization. Second, a resource efficient design, on which this paper focuses, is able to avoid the linear, i.e., times, resource increments.
It is possible to share hardware resources among independent parallel datapaths. For example, a packet synchronizer with the cross correlation scheme requires a single set of shift registers which holds only one OFDM symbol. Four parallel datapaths can share an output of a single coefficient generator at cost of negligible performance loss in a carrier frequency offset (CFO) compensation unit. However, the topic of this paper is resource efficient designing without hurting the overall system performance at all.
The contribution of this paper is to present resource efficient (gate count reduction) implementation techniques for the highly parallel MBOFDM baseband modem with low power consumption. We used the 8way parallel architecture in order to use 8times lower clock frequency for saving power consumption and demonstrating our proposal on the fieldprogrammable gatearray (FPGA)based prototyped system of bioorthogonal convolution encoding technique (BOCE). This paper is the first presentation about an 8way parallel architecture in MBOFDM baseband modem design which is optimized by new processing structures and algorithm reconstruction. While several 4way parallel architectures have been already introduced we believe that more highly parallel systems are desirable to satisfy strong demand of batterylong operation of mobile devices. The previous literature presented only one resource optimization technique which sacrifices the overall system performance although the degradation is negligible.
The proposed system of this project include that Encoding based on Biorthogonal Encoder,Multi user transmission Scheme, Speed is High compared with existing system,MIMO Architecture based design and It detects and corrects both random and burst errors.
MBOFDM PHY baseband modem that supports both transmission (TX) and reception (RX) according the MB OFDM protocol in the standard. The baseband modem is composed of various components which process the incoming data and then deliver the processing results to each following component in a streaming fashion.
OPERATION

OFDM Transmitter Section
Fig : OFDM Transmitter section

OFDM Receiver Section
Fig: OFDM Receiver section
Proposed biorthogonal interleaved OFDM system is used in Multiuser and multicarrier technique that has been recognized as an excellent method for high speed bi directional wireless mobile communication. In conventional interleaved OFDM system, convolution encoder is used as the channel encoder, but it leads to Bandwidth inefficiency and also reduces the throughput of the transmission and reception. This system is ultimately designed for the Bandwidth optimization and also it supports the Multi user transmission and reception of interleaved OFDM system.
UWB band (3432, 3960, and 4488 MHz) radio frequency (RF) signals are up/downconverted from/to baseband analog signals through RF/analog circuits.
And the analog signals are converted from/to digital signals by DAC and ADC at the sampling frequency of 528 MHz The DAC and ADC drivers, which are interface logics for the converters, are basically paralleltoserial and serial toparallel data converters between 66 and 528 MHz clock domains
The puncturer omits some of coded bits in order to support different code rates with one Biorthogonal
P.Arjunan
420
convolution encoder. The depuncturer inserts dummy bits for the omitted bits.
Qadrature amplitude modulation (QAM) is a modulation scheme which conveys data by changing (modulating) the amplitude of two carrier waves. These two waves, usually sinusoids, are out of phase with each other by 90Â° and are thus called quadrature carriers. Like all modulation schemes, QAM conveys data by changing some aspect of a carrier signal, or the carrier wave, (usually a sinusoid) in response to a data signal. In the case of QAM, the amplitude of two waves, 90 degrees outofphase with each other (in quadrature) are changed (modulated or keyed) to represent the data signal.
Phase modulation (analog PM) and phaseshift keying (digital PSK) can be regarded as a special case of QAM, where the amplitude of the modulating signal is constant, with only the phase varying. This can also be extended to frequency modulation (FM) and frequencyshift keying (FSK), for these can be regarded a special case of phase modulation.
As with many digital modulation schemes, the constellation diagram is a useful representation. In QAM, the constellation points are usually arranged in a square grid with equal vertical and horizontal spacing, although other configurations are possible (e.g. CrossQAM). Since in digital telecommunications the data is usually binary, the number of points in the grid is usually a power of 2 (2, 4, 8 ). Since QAM is usually square, some of these are rarethe most common forms are 16QAM, 64QAM, 128QAM and 256 QAM.
By moving to a higherorder constellation, it is possible to transmit more bits per symbol. However, if the mean energy of the constellation is to remain the same (by way of making a fair comparison), the points must be closer together and are thus more susceptible to noise and other corruption; this results in a higher bit error rate and so higher order QAM can deliver more data less reliably than lower order QAM, for constant mean constellation energy.
If datarates beyond those offered by 8PSK are required, it is more usual to move to QAM since it achieves a greater distance between adjacent points in the IQ plane by distributing the points more evenly.
The complicating factor is that the points are no longer all the same amplitude and so the demodulator must now correctly detect phase and amplitude, rather than just phase.64QAM and 256QAM are often used in digital cable television and cable modem applications. In the US, 64QAM and 256QAM are the mandated modulation schemes for digital cable (see QAM tuner) as standardized by the SCTE in the standard ANSI/SCTE 07 2000. Note that many marketing people will refer to these as QAM64 and QAM256. In the UK, 16QAM and 64QAM are currently used for digital terrestrial television (Free view and Top Up TV).
For the resource efficient implementation, our highly parallel baseband modem was designed with the following novel optimization techniques: 1) in a (de)interleaver which is based on intercell networking, an efficient asymmetric cell structure reduces the resource usage from a symmetric structure by abating multiplexing costs for the networking. 2) in a packet synchronizer, a small amount of shared pre computation among multiple data paths allows the data paths to eliminate about a half of their computations without significant inputmultiplexing costs that offset the benefit of the add elimination, thus reduces resource usage from a conventional parallel implementation. 3) in a carrier frequency offset compensator which involves intertracking compensation, algorithm reconstruction enables sharing a single set of complex multipliers for both offset tracking and compensation without increasing the processing latency and buffer memory and therefore this technique reduces the resource usage from an implementation with a conventional intertracking compensation.

INTERLEAVING
Interleaving is a form of time diversity that mitigates the effects of error bursts over the radio fading channels.
1.3.1. ERRORS

Random Errors: The bit errors are independent of each other.Random errors can be corrected by Repetition Coder.

Burst Errors: The bit errors occur sequentially in time and as groupsBurst errors can be corrected by Interleaving Techniques.
2.3.2 Bit interleaving

A technique called bit (or binary digit) interleaving keeps track of the number and sequence of the bits from each specific transmission so that they can be quickly and efficiently reassembled into their original form upon receipt.

Interleaving is mainly used in digital data transmission technology, to protect the transmission against burst errors.
P.Arjunan
421


WITH OUT INTERLEAVING
our system: one (1/3) is for both interleaving and deinterleaving while the others (2/3) are for deinterleaving only.
Fig: without interleaving

WITHINTERLEAVING
Fig: with interleaving
Conventional interleaver systems perform three sub processes stepbystep: symbol interleaving, tone interleaving, and cyclic shift. And their implementation requires dedicated memories for each step for bit permutation. Consequently this approach costs much chip resource for such storages between subprocesses and tends to have long latency for a series of the subprocesses. In order to resolve the problem, a new novel interleaving method based on mixed radix system (MRS) had been developed. By applying MRS on interleaving processes, a powerful interleaver architecture was derived to perform all the three subprocesses concurrently. Its structure is a 2D array of simple cells and each cell consists of two flipflops with multiplexing logics. Also, the proposed design allows us to use the same architecture for both the interleaver and the deinterleaver and supports perfect modular design for multiple data rates. The size of the array is quite compact compared to the required memories for the conventional interleaver: 40.3% smaller. Our demapper makes a 3bit soft decision from received subcarrier(s) to recover originally mapped each single bit. Therefore, we have three (de)interleaver paths in
It is possible to further optimize by combining the proposed interleaver architecture with constellation mapping processes. MBOFDM defines two constellation mapping schemes: QPSK and DCM modulations. The QPSK spreads data into several subcarriers and the DCM requires data reordering. The spreading and reordering processes involve nontrivial amount of buffer storages and also latency. Conventionally those processes are done as separate phases: interleaving first and then spreading or reordering. But, we can unify the spreading and the (inverse)reordering with the (de)interleaving process. With the proposed interleaver architecture, we can perform the spreading before the interleaving process by fully utilizing array cells of our interleaver. The DCM (inverse)reordering pattern can be combined into the (de)interleaving process so that the reordering is done in parallel with the interleaving process. This way removes the additional buffer storages as well as latency for the spreading and the (inverse)reordering. Since DCMdemapped bit streams are inversereordered, which is more storage demanding than the spreading, in a group of 100 soft decision bits basis, the storage reduction is 300bits: 100 soft decision bits 3bits per soft decision bit.
However, to satisfy throughput demands of its output consuming units, the interleaver needs to be implemented with a highly unfolded intercell network: 10 and 20 times unfolding for the QPSK and DCM modulations, respectively. A serial implementation requires a few cells to have wide input multiplexers for changing intercell connections according to various interleaving parameters determined by data rates. In contrast, such cells are dominant with the highly unfolded intercell network. The number of input ports of each cellinput multiplexer increases from 2 to around 4, in case of the unified (de)interleaver, due to 10/20 times unfolding. asically, the cell has a symmetric structure. With this FF0) is moved to a horizontally connected cell for storing inputs to be interleaved (inputphase).
After a block of inputs is stored, in turn, the stored datum is moved in a vertical direction (outputphase). At the same time, another flipflop (e.g., FF1) takes the input storing process for the next incoming input block in a horizontal direction. Deinterleaving can be done simply by moving data in the opposite directions.
P.Arjunan
422

Symmetric structure
Fig: Symmetric structure

Asymmetric structure
Fig: Asymmetric structure
Fig: Cell structures for the MRSbased (de)interleaver. (a) Symmetric structure.
(b) Asymmetric structure.
To reduce the multiplexing costs, we propose an asymmetric cell structure. With the proposed cell structure, instead of changing intercell datamoving directions between input and outputphases, one flipflip moves its datum to another flip flip, i.e., intracell move, once at the beginning of output phase. Because intercell datamoving direction is now fixed, this way eliminates celloutput multiplexers. In fact, intercell connections are consistent across all interleaving parameters in inputphase of interleaving and outputphase of deinterleaving. Therefore, one flipflop (FF0) needs just a twoinput multiplexer: one input for intercell move and another for intracell move. In addition, another flipflop (FF1) of deinterleaving only
cells does not need multiplexing for intracell move; two third cells (type B in Table I) take advantage of no intracell move because there are two deinterleavingonly paths out of three paths with the 3bit soft decision.
scheme correlates a received signal with a known preamble pattern. The autocorrelation scheme is more advantageous than the cross correlation scheme in terms of hardware complexity. Unfortunately, the autocorrelation scheme is not suitable for packet synchronization in MBOFDM systems . Adjacent OFDM symbols including preamble are transmitted in different frequency bands due to frequency hopping, while their bands can be identified after packet synchronization . In addition, correlation with clean reference sequence instead of the noisy received samples can exhibit better performance especially at low signaltonoise ratio (SNR) . Consequently, the crosscorrelation scheme has been preferred in MBOFDM systems . To alleviate the high implementation cost of the crosscorrelation scheme, 1bit (sign) reference sequence has been used. It was reported that using that reference incurs just 0.778 dB loss in the cross correlation results compared to a full precision. We adopted this method and further optimized it in order to implement a more resource efficient packet synchronizer. Our synchronizer detects a preamble whenever a cross correlation result with a known preamble sequence (a reference which consists of 128 real numbers) is greater than a certain level of received signal power.

Wideinput multiplexer based design
Fig: Wideinput multiplexer based design



PACKET SYNCHRONIZER
There are two classifications of packet synchronization methods by correlation schemes: auto correlation and cross correlation. The autocorrelation scheme carries out correlation between received signals which have certain time distance to each other, while the cross correlation
P.Arjunan
423

Shared preadderbased design.
Fig: Shared preadderbased design.
Fig: Correlator designs for a packet synchronizer. (a) Wideinput multiplexer based design.(b) Shared preadderbased design.
Fig: Operation sequence of the CFO compensation algorithm
The numbers in rectangular boxes are indices of synchronization symbols and the circled numbers are sequence of the operation steps. The dotted arrow lines indicate that the compensations are incrementally refined by the previous phase tracking results.
To support more preambles, the wideinput multiplexer based design needs to extend the number of input ports. In contrast, due to the regular structure, the correlator with shared preadders is able to support any sequence of preambles by just changing selection signals of the multiplexers. Therefore, it is easily reconfigurable and extensible: e.g., it is possible to share the correlator with other protocol processing. However, introduces an optimization method which is dedicated to preamble sequences defined in the MBOFDM standard. Because MBOFDM preamble sequences are generated in a certain hierarchical rule, a correlator can be also implemented in a hierarchical structure which is less complex compared to a flat structure.

CARRIER FREQUENCY OFFSET COMPENSATOR
RF signal is transmitted on a carrier frequency of 3432, 3960, and 4488 MHz. In the high carrier frequencies, carrier frequency offset (CFO) compensation is crucial for the receiver performance. We compensated for CFO by iteratively tracking phase errors of four synchronization symbols at time domain. The synchronization symbols 2, 8, and 20 are selected for the phase tracking while synchronization symbol 0 is used as their reference to estimate phase differences from it. Since intervals between these symbols are different in an increasing order, the compensation is done by multilevel tracking: from coarse to fine tracking. In this way, we compensated for CFO in 1 ppm resolution against 40 ppm offset.
Both the phase tracking and the compensation require complex multiplications; the phase tracking multiplies input symbols with conjugates of the reference symbol and the compensation multiplies input symbols with offset compensation coefficients. Due to the nature of our iterative incremental method, the compensation has to be processed prior to the phase tracking except for the first tracking: this compensation will be referred to as intertracking compensation. This is because our algorithm attempts to improve compensation accuracy by estimating errors caused by the previous inaccurate tracking. There are several approaches which eliminate the intertracking compensation for low complex implementations. Those approaches use a coarse tracking result for estimating the integer part of CFO while the fractional part is estimated by a fine tracking result. This allows simple combination of the coarse/fine tracking results. But, the fractional part of the coarse tracking result is lost. Instead, in order to preserve all coarse/fine tracking results, we present an algorithm reconstruction approach which alleviates the intertracking compensation cost.
The fast Fourier transform (FFT) module is shared
for both TX and RX and it is a pipelined 128point complex FFT which provides throughput of 8 samples/cycle. The FFT module consists of four stages: first three stages employ two radix4 butterfly units in each stage and the last stage employs four radix2 units. In front of each stage, a data reordering unit provides 8 samples to the butterfly units in every cycle; it was implemented by extending a reordering unit proposed for a FFT with throughput of four samples/ cycle.
The subcarrier (de)mappers are in charge of mapping a complex number to a corresponding subcarrier and mapping in a reverse direction. Prior to the demapper, the sampling frequency offset (SFO) compensator compensates for a sampling frequency offset with respect to the packet TX side and a channel equalizer mitigates signal distortions caused by each subcarrier channel.
The constellation mapper converts coded bits into complex numbers according to rules of quadrature phaseshift keying (QPSK) and dualcarrier modulation (DCM) which is a variant of 16quadrature amplitude modulation (QAM).
P.Arjunan
424
The constellation demapper recovers coded bits
from complex numbers as a soft decision bit. We used a 3bit soft decision bit form that has eight decision levels.
Our system used a convolutional encoder with code rate 1/3 and constraint length 7. To decode the convolutional codes at 8bits per cycle, we implemented a fourstage radix4 Viterbi decoder by extending the twostage radix4 decoder proposed in [10], where the traceback length is 48.

SIGNAL WINDOW

SIMULATION RESULTS: (TRANSMITTER)

SIMULATION RESULTS: (RECEIVER)
P.Arjunan
425

ADVANTAGES OF OFDM

OFDM reduces the amount of cross talk in signal transmissions.

Used for High Speed applications, because OFDM works by splitting the radio signal into multiple smaller sub signals that they are transmitted simultaneously at different frequencies to the receiver.

Robust against narrowband cochannel interference.

Efficient implementation using FFT.


APPLICATIONS OF OFDM

Wireless Communication system

Cellular Mobile Communications.

Navigation Systems

Satellite uplink and downlink signal transmission

Wireless cellular mobile Phones

IP TV (Internet Protocol Television) it is the modulation technique used for digital TV.

Asynchronous Digital Subscriber Line (ADSL) systems.


CONCLUSION
The Paper focused on the OFDM system with 4 parallel sub channels in transmitter section. The designed transmitter section receives 4 bits as inputs and produces multi bits modulated format based on biorthogonal encoder. The proposing system will also be integrate with Multi input Multi Output System in order to increase the transmission and reception rate and to reduce the error rate to the optimum level. The paper also aims to detect and correct the random as well as burst errors from the received sequences. The MBOFDM system designed using Verilog HDL and synthesized using Xilinx Software.

REFERENCES

Seok Joong Hwang, Youngsun Han, Seon Wook Kim, Jongsun Park, and Byung Gueon Min, IEEE TRANS. Resource Efficient Implementation of Low Power MBOFDM PHY Baseband Modem With Highly Parallel Architecture , VOL. 20, NO. 7, JULY 2012

Youngsun Han, Peter Harliman, Seon Wook Kim, JongKook Kim, and Chulwoo Kim,IEEE TRANS. A Novel Architecture for Block Interleaving Algorithm in MBOFDM Using Mixed Radix System, VOL. 18, NO. 6, JUNE 2010

Taewon Hwang, Chenyang Yang, Gang Wu, , Shaoqian Li, and Geoffrey Ye Li, IEEE TRANS. LowPower VLSI Implementation of the Inner Receiver for OFDMBased WLAN Systems , VOL. 58,
NO. 4, MAY 2009

Alfonso Troya,, Koushik Maharatna, Milos Krstic, Eckhard Grass, Ulrich Jagdhold, and Rolf Kraemer,IEEE TRAS. OFDM and Its Wireless Applications: A Survey, VOL. 55, NO. 2, MARCH 2008

CheolHo SHIN, Sangsung CHOI, Hanho LEE, and JeongKi PACK, IEICE TRANS. COMMUN., A Design and Performance of 4Parallel MBOFDM UWB Receiver, VOL.E90B, NO.3 MARCH 2007
for FFT Computation , VOL. 54, NO. 10, OCTOBER 2007
[7]. JyhTing Lai, AnYeu Wu, and WenChiang Chen, IEEE TRANS. A Systematic Design Approach to the BandTracking Packet Detector in OFDMBased Ultra wideband Systems, VOL. 56, NO. 6, NOVEMBER 2007
A. M. Tonello, Spacetime bitinterleaved coded modulation with an iterative decoding strategy, in Proc. IEEE VTC 2000Fall, Boston, pp. 2428, Sept. 2000.

X. Li and J. A. Ritcey, Bitinterleaved coded modulation with iterative decoding, in Proc. International Conference on Communications (ICC), pp. 858863, June 1999.

S. ten Brink, J. Speidel, and R. H. Yan, Iterative demapping for QPSK modulation, Electron. Lett., vol. 34, no. 15, pp. 14591460, July 1998.

X. Li and J. A. Ritcey, Bitinterleaved coded modulation with iterative decoding, IEEE Commun. Lett., vol. 1, no. 6, pp. 169171, Nov. 1997.
P.Arjunan
426