

XML Twig Pattern Matching Algorithms and Query Processing

D.BUJJI BABU
 1
 Dr. R.SIVA RAMA PRASAD

 2
 M.SANTHOSH

 3

Associate Professor,Dept. o f CSE, Research Director, Dept. o f CSE, Dept. of CSE,

 Prakasam Engg. College, Acharya Nagarjuna University, Prakasam Engg. College,

Kandukur-523105, Guntur-522510, Kandukur-523105,

A.P., India A.P., India A.P., India

ABSTRACT

XML has emerged as the wire-language of the

internet.XML can be used to structure the data and also

provide meaning fo r data. An effective document

structure helps convert data into useful in formation that

can be processed quickly and efficiently. The XML

data is exchanged and generated in B2B
1
 applications.

According to this point there is need for efficient

processing of queries on XML data. The research

stream in XML database is processing of XML tree

pattern query (XTPQ) with efficient answer (called

pattern matching).The XML document can be

converted into tree model by using DOM (Parser).The

XML query languages like XPath (Extensible path

language), XQuery (Extensible Query language)

represent queries on XML data as tree patterns

(twigs).The major operation of XML query processing

is to find all the occurrences of twig
1

 patterns

efficiently on XML database. In the past few years,

many algorithms have been proposed to match such

tree patterns. This paper presents an overview of the

state of the art in XTPQ processing. This overview

shall start by providing some background in holistic

approaches to process XTPQ and then introduce

different algorithms for twig pattern matching.

Keywords: - XML, Pattern Matching Algorithms,

XML Tree Pattern, Query processing, XML Parsers.

1. INTRODUCTION

There is an increasing need of XML data for data

transporting application in businesses. The evaluation

of XML tree pattern queries (XTPQ) produces output

as all matched patterns is called twig patterns (this can

be called as pattern matching). The emergence of this

1
 B2B means business to business

point is need for efficient pattern matching algorithms

on large volume of XML data for evaluating tree

patterns (twigs). The DOM parser represents the XML

document as XML tree. The XML trees again two

types ordered (ancestor and left-to-right ordering

among siblings relationships significant) and unordered

(only ancestor relationship significant) XML trees.

Some algorithms produces output as unordered XML

trees and some produces output as ordered labeled

XML trees(twigs).The previous approaches considered

XML t ree as ordered labeled XML tree(twig). For

example, when searching for a twig of the element

student with the sub elements first name and last name

(possibly with specific values), ordered matching

would not consider the case where the order of the first

name and the last name is reversed. However, this

could exactly be the student we are searching for. The

way to solve this problem is to consider the query twig

as an unordered tree where only the ancestor-

descendant relationships are important – the preceding-

following, preceding-sibling and following-sibling

relationships (axes) are unimportant.

With the rapidly increasing popularity of XML for

data representation, there is a lot of interest in query

processing over data that conforms to a tree-structured

data model. Since the data objects in a variety of

languages (e.g. XPath [1], XQuery [2]) are typically

trees, tree pattern matching (twig) is the central issue.

For example, the following query:

Query=/book [title='XML']//author [name='Jane']

can be represented as a twig (small tree) pattern. It

matches author elements that has sub element name as

content the string value “Jane”, and are descendants of

book elements that have a child title element whose

content is the string value “XML”. In the above query

"/" represents the relat ionship between parent and child

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

1www.ijert.org

"//" represents the relationship between ancestor and

descendant.

In practice, XML data may be very large, complex

and have nested elements. Thus, efficiently finding all

twig patterns in an XML database is a major operation

of XML query processing. In the past few years, many

algorithms ([3], [4]) have been proposed to match such

twig patterns. These approaches

 First develop a labeling scheme to capture the

structural information of XML documents,

and then

 Perform tree pattern matching based on

labels alone without traversing the original

XML documents.

 For solving the first sub- problem of designing a

proper labeling scheme, the previous methods use a

tree-traversal order or textual positions of start and end

tags (e.g. reg ion encoding [5]) or path expressions(e.g.

Dewey ID [6])or prime numbers (e.g. [7]). By applying

these labeling schemes, one can determine the

relationship (e.g. ancestor-descendant, parent-child)

between two elements in XML documents from their

labels alone.

2. XML Twig Pattern Matching

The XML databases like Lore [8] and Timber [9]

represents the XML query as small tree called twig.

XML data and its related issues of their storage as well

as query processing using relational database systems

have recently been considered in [6, 7]. The recent

papers (e.g. [10, 11]) are proposed to efficiently

process an XML twig pattern (XTPQ). In paper [10], a

new holistic algorithm, called ordered, is proposed to

process order-based XML tree query. In paper [11], an

algorithm called TwigStackListNot is proposed to

handle queries with negation function. Chen et al [12]

proposed different data streaming schemes to boost the

holism of XML tree pattern processing. They showed

that larger optimal class can be achieved by refined

data streaming schemes. In addition, Twig2Stack [13]

is proposed for answering generalized XML tree

pattern queries. Note the difference between

generalized XML tree pattern and extended XML tree

pattern here. Generalized XML tree pattern is defined

to include optional axis which models the expression in

LET and RETURN clauses of XQuery statements. But

extended XML tree pattern is defined to include some

complicated conditions like negative function, wildcard

and order restriction.

We have other approaches to match an XML tree

pattern are ViST[14] and PRIX[15] ,which converts an

XML tree pattern match into sequence match. These

two algorithms mainly focus on ordered queries and it

is non-trivial to extend those methods to handle

unordered queries. The paper [16] gives different XML

tree query processing algorithms (including holistic

match and sequence match) and concluded that the

holistic tree pattern method is robust in nature also

guarantees performance. From the theoretical research

about the optimality of XML tree pattern matching,

Choi et al. [20] developed theorems to prove that it is

impossible to devise a holistic algorithm to guarantee

the optimality fo r queries with any combination of

Parent-Child and Ancestor-Descendant relationships.

Shalem et al. [21] researched the space complexity of

processing XML twig queries. Their paper showed that

the upper bound of full-edge queries with Parent-Child

and Ancestor- Descendant edges are O(D), where D is

the document size. In other words, their results also

theoretically prove that there exists no algorithm to

optimally p rocess an arbitrary query Q
/, //, *

.

 The structural relat ionships are verified with the

help of labeling scheme of XML elements. The most

commonly used labeling schemes are containment and

prefix. The containment labeling scheme was

introduced by Zhang et al. [17] for containment

queries. The axes like Parent-Child and Ancestor-

Descendant relationships have the same complexity

according to regional labeling. The example to

represent prefix labeling scheme on XML data is

Dewey ID. It can be used to preserve the path

informat ion during query processing. Recent work of

Lu at el. [14] utilizes the extended Dewey encoding

[18] which encodes path informat ion including not

only the element IDs but also the element names.

3. Holistic Algorithms for XML Query

Processing

Here we propose two types of algorithms to process

an XML twig query. They are

 Two-Phase holistic twig evaluation algorithms

 One-Phase holistic twig evaluation algorithms

a) TwigStack Algorithm:

Based on the containment labeling scheme [17],

Bruno et al. [5] proposed a novel holistic XML twig

pattern matching method TwigStack which avoids

storing intermediate results unless they contribute to

the final results. The method, unlike the decomposition

based method, avoids computing large redundant

intermediate results. But the main limitation of

TwigStack is that it may produce a large set of

“useless” intermediate results when queries contain any

parent-child relationships. TwigStack has been proved

to be I/O optimal in terms of output sizes for queries

with only A-D edges, their algorithms still cannot

control the size of intermediate results for queries with

parent-child (P-C) edges. TwigStack operates in two

steps:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

2www.ijert.org

 A list of intermediate path solutions is output

as intermediate results; and

 The intermediate path solutions in the first

step are merge-joined to produce the final

solutions.

Algorithm for TwigStack (q):

// Phase 1

1: while notEnd (q)

2: qact = getNext(q)

3: if (isNotRoot(qact)) then

4: cleanStack(parent(qact), nextL(qact))

5: end if

6: if (isRoot(qact) or isNotEmpty(Sparent(qact))) then

7: cleanStack(qact, next(qact))

8:moveStreamToStack(Tqact,Sqact

,pointertotop(Sparent (qact)))

9: if (isLeaf(qact)) then

10: showSolutionsWithBlocking(Sqact , 1)

11: pop (Sqact)

12: end if

13: else

14: advance (Tqact)

15: end if

16: end while

// Phase 2

17: mergeAllPathSolutions()

Algorithm TwigStack operates in two phases. In

the first phase (lines 1-16), some (but not all)

solutions to individual query root-to-leaf paths are

computed. In the second phase (line 17), these

solutions are merge-joined to compute the answers

to the query twig pattern.

b) TwigStackList Algorithm:

Unlike the previous Algorithm TwigStack [5], our

approach takes into account the level informat ion of

elements and consequently output much less

intermediate paths for query twig patterns with parent-

child edges. We have analytically shown that when all

edges below branching nodes (nodes that has more than

one child) in the query pattern are ancestor-descendant

relationships, the I/O cost of TwigStackList is only

equal to the sum of sizes of the input and the final

output. In other words, TwigStackList [19] identifies a

larger query class to guarantee the I/O optimality than

TwigStack, which only guarantee the optimality for

queries with entirely A-D relat ionships. Experimental

results showed that our method achieves the similar

performance with TwigStack for queries with only

ancestor-descendant relationships, but is much more

efficient than TwigStack for queries with parent-child

relationships, especially for deep data sets with

complicated recursive structure.

Algorithm for TwigStack List:

1: while notEnd() do

2: qact= getNext(root)

3: if (isNotRoot(qact)) then

4: cleanParentStack(qact,getStart(qact))

5: end if

6: if (isRoot(qact) or isNotEmpty(Sparent(qact))) then

7: clearSelfStack(qact,getEnd(qact))

8:moveToStack

(qact,Sqact,pointertotop(S parent(qact)))

9: if (isLeaf(qact)) then

10: showSolutionsWithBlocking(Sqact,1)

11: pop (S qact)

12: end if

13: else

14: proceed (qact)

15: end if

16: end while

17: mergeAllPathSolutions()

First of all, line 2 calls getNext algorithm to identify

the node qact to be processed. Line 4 and 7 remove

partial answers from the stacks of parent(qact) and qact

that cannot be extended to total answer. If qact is not a

leaf node, we push element Cq into Sq (line 8);

otherwise (line 10), all path solution involving Cq can

be output. Note that path solutions should be output in

root-leaf order so that they can be easily merged

together to form final twig matches (line 17).

c) OrderedTJ Algorithm:

It’s an extension of TwigStack List. Here

(a)We introduce a new algorithm, called

OrderedTJ[10], for holistic ordered twig pattern

processing. In OrderedTJ, an element contributes to

final results only if the order of its children accords

with the order of corresponding query nodes.

(b) If we call edges between branching nodes and their

children as branching edges and denote the branching

edge connecting to the n’th child as the n’th branching

edge, we analytically demonstrate that when the

ordered query contains only A-D relat ionship from the

second branching edge, OrderedTJ [10] is I/O optimal

among all sequential algorithms that read the entire

input. In other words, the optimality of OrderedTJ

allows the existence of P-C edges in non-branching

edges(a node that has only one child) and the first

branching edge(a node that has more than one child).

Algorithm for OrderedTJ:

1: while notEnd() do

2: qact= getNext(root)

3:if (isRoot(qact) or isNotEmpty(Sparent(qact))) then

4: cleanStack(qact,getEnd(qact))

5: end if

6: moveStreamToStack(qact,S qact);

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

3www.ijert.org

7: if (isLeaf(qact)) then

8: showPathSolutions(S q,getElement(qact))

9: else

10: proceed (qact)

11: end if

12: end while

13: mergeAllPathSolutions();

Algorithm OrderedTJ, which computes answers to

an ordered query twig, operates in two phases. In the

first phase (line 1-12), the individual query root-leaf

paths are output. In the second phase (line 13), these

solutions are merged-jo ined to compute the answers to

the whole query.

d) TJFast Algorithm (a Fast Twig Join

algorithm):

The above three algorithms are based on

containment labeling scheme[17]. A new algorithm,

namely TJFast, which explo its the nice property of the

extended Dewey labeling scheme [18] and efficiently

evaluates XML twig queries. The containment labeling

scheme is difficult to answer queries with wildcards in

branching nodes(a node that has more than one child).

For example, consider an XPath: “//a/*/ [b]/c”. Where

“*” denotes a wildcard symbol which can match any

single element. The containment labels of a, b and c do

not provide enough information to determine whether

they match the query or not.

Algorithm for TJFast:

1: for each f∈ leafNodes(root)

2: locateMatchedLabel(f)

3: end for

4: while (notEnd(root)) do

5: fact= getNext(topBranchingNode)

6: outputSolutions(fact)

7: advance(Tfact)

8: locateMatchedLabel(fact)

9: end while

10: mergeAllPathSolutions()

Algorithm TJFast, which computes answers to a

query twig pattern Q, is presented in Algorithm 7.

TJFast operates in two phases. In the first phase (line

1-9), some solutions to individual root-leaf path

patterns are computed. In the second phase (line10),

these solutions are merge-joined to compute the

answers to the whole query.

e) TreeMatch Algorithm:

This algorithm is proposed to achieve larger optimal

query classes. It uses a concise encoding technique to

match the results and also reduces the useless

intermediate results.

Algorithm TreeMatch for class Q/, //, *.

1: locateMatchLabel(Q);

2: while (notEnd(root)) do

3:fact= getNext(topBranchingNode);

4: if (fact is a return node)

5: addToOutputList(NAB(fact), cur(Tfact));

6: advance (Tfact); // read the next element in Tfact

7: updateSet(fact); // update set encoding

8: locateMatchLabel (Q); // locate next element with

matching path

9: emptyAllSets (root);

Now we go through Algorithm. Line 1 locates the

first elements whose paths match the individual

root-leaf path pattern. In each iterat ion, a leaf node

fact is selected by getNext function (line 3). The

purpose of lines 4 and 5 is to insert the potential

matching elements to outputlist. Line 6 advances

the list T fact and line 7 updates the set encoding.

Line 8 locates the next matching element to the

individual path. Finally, when all data have been

processed, we need to empty all sets in Procedure

emptyAllSets (line 9) to guarantee the completeness of

output solutions.

The below Fig. (a) shows the query and document

illustrate the TreeMatch algorithm for class Q
/,//,*

Fig (a) Illustration to Algorithm TreeMatch

for class Q
/,//,*

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

4www.ijert.org

TABLE 1
Set encoding for the example in above Fig (a)

The above TABLE1 demonstrates the current access

elements, the sets encoding and the corresponding

output elements. There are two branching nodes in the

query. First, B1, D1, and E1 are scanned. C1 and C2

are added into the set SC, but their bitVectors is “10”

and “01”, which indicate that C1 and C2 have only one

child, respectively. In this scenario, recall that TJFast

may output path solutions A1/A2/C1/D1 and

A1/A2/C1/C2/E1, which might be useless to produce

final results. Thus, our algorithm TreeMatch

dimin ishes the unnecessary I/O cost. Next, E2 is

scanned and the bitVector (C1) becomes “11” as C1

has two children now. Similarly, the bitVector (A1) is

“11” too. In this moment, we guarantee that A1

matches the whole pattern tree, as all b its in bitVector

(A1) is 1. Finally, when B2 is scanned, A2 is added to

set SA. Therefore, Treematch outputs two final results

B1 and B2.

Through this example, we illustrate two differences

between TJFast and TreeMatch.

 1) TJFast outputs one useless intermediate path

A1/A2/C1/C2/E1, but TreeMatch uses the bitVector

encoding to solve this problem.

 2) TJFast outputs the path solution for all nodes in

query, but TreeMatch only outputs nodes for return

nodes (i.e., node B in the query) to reduce I/O cost.

4. EXPERIMENTAL STUDY

The experimental study verifies the effectiveness, in

terms of accuracy and optimality, of various holistic

twig pattern matching algorithms are shown in Fig (b)

and Fig (c).

Fig (b) Execution time of Q
/,//,*

 on random data

Fig(c) Execution time of Q
/,//,*,<

 on random data

5. CONCLUSION

In this paper, we proposed the problem of XML twig

pattern matching and surveyed some recent works and

algorithms. Five algorithms TwigStack [5],

TwigStackList [19], OrderedTJ [10], TJFast [18] and

TreeMatch are introduced. TreeMatch has an overall

good performance in terms of running time and the

ability to process generalized tree patterns. From the

above algorithms we can observe one point that is first

four twig pattern matching algorithms (TwigStack,

TwigStackList, OrderedTJ, and TJFast) works on two-

phase query evaluation and TreeMatch works on one-

phase query evaluation. From this point we can say that

TreeMatch twig pattern matching algorithm can answer

complicated queries and has good performance.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

5www.ijert.org

References

 [1] A. Berglund, S. Boag, and D. Chamberlin. XML path

language (XPath) 2.0. W3C Recommendation 23 January
2007 http://www.w3.org/TR/xpath20/.

[2] S. Boag, D. Chamberlin, and M. F. Fernandez. Xquery

1.0: An XML query language. W3C Working Draft 22

August 2003.
[3] H. Jiang, H. Lu, and W. Wang. Efficient processing of
XML twig queries with OR-predicates. In Proc. of SIGMOD

Conference, pages 274-285, 2004.
[4] H. Jiang et al. Holistic twig joins on indexed XML

documents. In Proc. of VLDB, pages 273-284, 2003.

 [5] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig
joins: optimal XML pattern matching. In Proc. of SIGMOD

Conference, pages 310-321, 2002.
[6] I. Tatarinov, S. Viglas, K. S. Beyer, Shanmugasundaram,

E. J. Shekita, and C. Zhang. Storing and querying ordered

XML using a relational database system. In Proc. of
SIGMOD, pages 204-215, 2002.

 [7] X. Wu, M. Lee, and W. Hsu. A prime number labeling

scheme for dynamic ordered XML trees. In Proc. of

ICDE,pages 66-78, 2004.
[8] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases. In

Proc. of VLDB, pages 436-445, 1997.

[9] H. V. Jagadish and S. AL-Khalifa. Timber: A native XML

database. Technical report, University of Michigan, 2002.
[10] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni. Effcient
processing of ordered XML twig pattern matching. In

DEXA,pages 300-309, 2005.

[11] T. Yu, T. W. Ling, and J. Lu. Twigstacklistnot: A

holistic twig join algorithm for twig query with not-predicates

on xml data. In DASFAA, pages 249-263, 2006.
[12] T. Chen, J. Lu, and T. W. Ling. On boosting holism in

xml twig pattern matching using structural indexing

Techniques. In SIGMOD, pages 455-466, 2005.

[13] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung,

D.Agrawal, and K. S. Candan.Twig2stack: Bottom-up
processing of generalized-tree-pattern queries over xml

document. In Proc. of VLDB Conference, pages 19-30, 2006.

[14] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A

dynamic index method for querying XML data by tree

structures. In SIGMOD, pages 110-121, 2003.
[15] P. Rao and B. Moon. PRIX: Indexing and querying

XML using prufer sequences. In ICDE, pages 288-300, 2004.
[16] M. Moro, Z. Vagena, and V. J. Tsotras. Tree-pattern

queries on a lightweight XML processor. In VLDB, pages

205-216, 2005.
[17] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G.

M. Lohman. On supporting containment queries in relational

database management systems. In Proc. of SIGMOD

Conference, pages 425-436, 2001.
[18] J. Lu, T. W. Ling, C. Chan, and T. Chen. From region
encoding to extended dewey: On efficient processing of xml

twig pattern matching.In VLDB, pages 193–204, 2005.

[19] J. Lu, T. Chen, and T. W. Ling. Efficient processing of

xml twig patterns with parent child edges: a look-ahead

approach. In CIKM, pages 533–542, 2004.
[20]B. Choi, M. Mahoui, and D. Wood. On the optimality of

the holistic twig join algorithms. In Proceeding of DEXA,

pages 28–37, 2003.

[21]M. Shalem and Z. Bar-Yossef. The space complexity of

processing xml twig queries over indexed documents. In

ICDE, 2008.

AUTHORS PROFILE

1. D. Bujji Babu currently working as an Associate professor
in the department of Computer Science and Engineering, at

Prakasam Engineering College, Kandukur, A.P. India. He is

having 4 years of research and 10 years of teaching

experience. He is a research scholar in the department of CSE

at Acharya Nagarjuna University , India.
E-mail: bujji_bict@yahoo.com

 2. Dr. Siva Rama Prasad currently working as a head of the

International Business Administration department at Acharya

Nagarjuna University , India. He has published several
research papers in various peer reviewed international

journals. Authored seven books and also he is working as a

research director in the department of CSE.

E-mail: raminenisivaram@yahoo.co.in

3. Kum.M.Santhosh M.Tech (CSE) from Prakasam

Engineering College, Kandukur, Prakasam (Dt.), Affiliated

by JNTUK, Kakinada, A.P., India.

E-mail: santhosh.maddisetty@gmail.com

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

6www.ijert.org

