
 Word Alignment Using Giza++ And Cygwin On Windows

Ms. Ankita Sati

M.Tech Student, Banasthali Vidyapith, Banasthali, Jaipur

Abstract

Word alignment is the natural language processing

task of identifying translational relationships among

the words and multi-word units in parallel corpora.

Automatic word alignment in bilingual or multilingual

parallel corpora has been a challenging issue for

natural language processing. Giza++ is the automatic

word alignment tool. In Linux system environment, it is

very common and convenient to use the word alignment

generated from GIZA++ for most statistical machine

translation systems. Many researchers conducting their

research under the Windows platform .In this paper we

discuss how we used Giza++ in windows and output of

their results.

1. Introduction

Word alignment is the task of identifying translational

relations between words in parallel corpora with the

aim of re-using them in natural language processing.

Typical applications that make use of word alignment

techniques are machine translation and multi-lingual

lexicography.

Several tools had been developed for automatic word

alignment. Some of the tools are listed below:

1. Giza++

2. The Berkeley Word Aligner

3. Natura Alignment Tools (NATools)

4. UNL aligner

5. Geometric Mapping and Alignment (GMA)

 There are many applications for word alignment in

natural language processing, and most of them depend

on the quality of word alignment (Och and Ney, 2000;

Yarowsky and Wicentowski, 2000). A frequently used

application system for word alignment is the automatic

extraction of bilingual lexicon and terminology from

parallel corpus (Smadja et al.,1996; Melamed, 2000).

Och and Ney (2003) compare various methods for

computing word alignment using statistical and

heuristic models and then develop a statistical word

alignment toolkit, GIZA++, which is the mostly used

package in statistical machine translation (SMT)

nowadays.

2. Giza++

GIZA++ is part of the statistical machine translation

toolkit used to train IBM Model 1 to Model 5 (Brown

et al., 1993) and the Hidden Markov Model (HMM)

(Och et al., 2003). It is part of the SMT toolkit EGYPT

which was developed by the SMT team during the

summer workshop in 1999 at the Center for Language

and Speech Processing at Johns-Hopkins University

(CLSP/JHU) [1].

GIZA++ is extension of GIZA. Giza++ includes a lot of

additional features. The extension of GIZA++ were

designed and written by Franz Josef Och.

GIZA++ has following features:

 Implement full IBM-4 alignment model

 Implement IBM-5,dependency on word

classes, smoothing

 Implement HMM alignment model

 Smoothing for fertility, distortion/alignment

parameters

 Improved perplexity calculation for models

IBM-1,IBM-2 and HMM

3. Installation on Windows

The basic aim of this paper is to show the working of

Giza++ in windows. For this we have first installed the

Giza++ in windows. Cygwin is used for running

Giza++ in windows. Cygwin is free software that

provides a Linux-like environment and software tool

set to users of any modern version of MS-Windows for

x86 CPUs (NT/2000/XP/Vista/7). Cygwin consists of a

UNIX system call emulation library, cygwin1.dll,

together with a vast set of GNU and other free software

applications organized into a large number of optional

packages.

3.1 Installation of Cygwin

Download the cygwin software from

www.cygwin.com/setup.exe, and then double-click to

1762

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

install Cygwin on your computer. Install the binaries

(.bin) of the following additional packages:

 make

 g++ (currently 4.3.4)

 autoconf

 automake

 libtool

 boost

 libboost (newer than 1.31.0)

 flip (optional, but useful)

Some of these packages will also prompt you to install

related or dependent packages. These additional

packages are generally necessary, so just accept the

defaults. Run Cygwin now for the first time, so that

your home directory (/home/your username/) is created.

3.2. Installation of Giza++

For installation of Giza++ the following packages are

needed:

GIZA++ package

 developed by Franz Och

 www-i6.informatik.rwth-

aachen.de/Colleagues/och

 mkcls package

 developed by Franz Och

 www.-i6.informatik.rwth-

aachen.de/Colleagues/och

The both package is available in one tar file which can

be downloaded from http://code.google.com/p/giza-

pp/downloads/list.

In order to compile GIZA++, g++ compiler version 3.3

or higher is needed. Giza++ Install by issuing

command $(MAKE) -C GIZA++-v2 mkcls-v2

After following binaries files are created

 Giza++.exe

 mkcls.exe

 snt2cooc.out

 plain2snt.out

Copy the binaries into a top-level ~/bin/ directory for

easy access

Some other package is also need for lowercasing and

tokenizing the sentences. For this download the

scripts.tgz from

http://www.statmt.org/wmt07/baseline.html

and extract it in a folder name scripts. These scripts

include:

 Tokenizer scripts/tokenizer.perl

 Lowercaser scripts/lowercase.per

4. Implementation Details

In this step we describe how we align the parallel

corpora using Giza++.For this first we need the parallel

corpora and convert into one sentence per line.Check

that the corpora have the same number of lines and that

they are correctly aligned. A word alignment is done

between two languages. We call the two languages the

source language and the target language. This is

important in order to correctly do the word alignment,

so decide which language will be the source and which

the target. We are using source language as English and

target language as Hindi. We name the source language

raw.src and target language raw.trg

 After this Following steps are followed:

4.1 Pre-processing

We have to clean up the corpora, set every word in

lower case and separate every word from each other (or

we can say “tokenizing”) We are using source language

as English and target language as Hindi, so tokenizing,

lowercasing is done only for English

Now enter the subdirectory scripts, and take the script

tokenizer.perl and the directory nonbreaking_prefix

(they should be in the same directory!).

The nonbreaking prefix let the tokenizer keep together

words like “Mr.”. Normally the tokenizer would have

broken it into two words: “Mr” and “.”, but we know

that the final dot is useful, not a real punctuation.

For tokenizing the source language run the following

command:

tokenizer.perl -l src < raw.src > raw.tok.src

 After the tokenizing run the lowercase command for

source language:

lowercase.perl -l src < raw.tok.src > raw.lw.src

4.2 Create files needed for GIZA++

The files that are used in word alignment first should

convert into Giza++ format. Use plain2snt.out to

convert corpus into GIZA++ format. Steps are

 Run plain2snt.out located within the GIZA++

package

 ./plain2snt.out raw.lw.src raw.trg

Files created by plain2snt
 raw.lw.src.vcb

 raw.trg.vcb

1763

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 raw.trg_raw.lw.src.snt

 raw.lw.src_raw.trg.snt

raw.lw.src.vcb consists of:

 each word from the English corpus

 corresponding frequency count for each word

 an unique id for each word

raw.trg.vcb

 each word from the Hindi corpus

 corresponding frequency count for each word

 an unique id for each word

raw.tr_raw.lw.src.snt consists of:

 each sentence from the parallel English and

Hindi corpus translated into the unique

number for each word

4.3 Create mkcls files needed for GIZA++

After this we have to generate word classes using

mkcls. This can be done by running following

commands:

 Run mkcls which is not located within the

GIZA++ package

 ./mkcls –praw.lw.src –Vraw.lw.src.vcb.classes

 ./mkcls –praw.trg –Vraw.trg.vcb.classes

Files created by mkcls

 raw.lw.src.vcb.classes

 raw.lw.src.vcb.classes.cats

 raw.trg.vcb.classes

 raw.trg.vcb.classes.cats

.vcb.classes files contain:

 an alphabetical list of all words (including

punctuation)

 each words corresponding frequency count

 .vcb.classes.cats files contain:

 a list of frequencies

 a set of words for that corresponding

frequency

4.4 Run GIZA++

After the creating word classes we run GIZA++ located

within the GIZA++ package by issuing following

command :

./GIZA++ -S raw.lw.src.vcb –T raw.trg.vcb –C

raw.lw.src_raw.trg.snt

After running this command various file created, main

word alignment is in actual.ti.final

 Decoder.config  a3.final

 ti.final  A3.final

 actual.ti.final  t3.final

 perp  d3.final

 trn.src.vcb  d4.final

 trn.trg.vcb  n3.final

 tst.src.vcb  p0_3.final

 tst.trg.vcb  gizacfg

 D4.final

Decoder.config

 file used with the ISI Rewrite Decoder

 developed by Daniel Marcu and Ulrich

Germann

trn.src.vcb

 list of English words with their unique id and

frequency counts

 similar to raw.lw.src.vcb

trn.trg.vcb

 list of Hindi words with their unique id and

frequency counts

 similar to raw.trg.vcb

tst.src.vcb

 blank

tst.trg.vcb

 blank

ti.final

 file contains word alignments from the

English and Hindi corpi

 word alignments are in the specific words

unique id

 the probability of that alignment is given after

each set of numbers

 Ex:

 3 0 0.237882

 1171 1227 0.963072

actual.ti.final

 file contains word alignments from the English

and Hindi corpora

 words alignments are the actual words not their

unique id’s

 the probability of that is alignment is given

after each set of words

Ex: of NULL 0.237882

याचिकाओंaffidavits 0.25

perp

 list of perplexity for each iteration and model

#trnsz tstsz -iter model trn-pp test-pp trn-

vit-pp tst-vit-pp 19 0 0 Model1

204.141 N/A 5098.14 N/A

 trns – training size

1764

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 tstsz – test size

 iter – iteration

 trn-pp – training perplexity

 tst-pp – test perplexity

 trn-vit-pp – training viterbi perplexity

 tst-vit-pp – test viterbi perplexity

a3.final

 contains a table with the following format:

 i j l m p (i / j, l, m)

 j = position of target sentence

 i = position of source sentence

 l = length of the source sentence

 m = length of the target sentence

 p(i / j, l, m) = is the probability that a

source word in position i is moved to

position j in a pair of sentences of length l

and m

 Ex:

 0 1 1 60 5.262135e-06

 0 – indicates position of target sentence

 1 – indicates position of source sentence

 1 – indicates length of source sentence

 60 indicates length of target sentence

 5.262135e-06 – is the probability that a

source word in position 1 is moved position 0

of sentences of length 1 and 60

d3.final

 similar to a3.final with positions i and j

switched

n3.final

 contains the probability of the each source

token having zero fertility, one fertility, … N

fertility

 t3.final

 table after all iterations of Model 4 training

d4.final

 translation table for Model 4

 D4.final

 distortion table for IBM-4

 gizacfg

 contains parameter settings that were used in

this training.

 training can be duplicated exactly

p_03.final

 probability of inserting null after a source

word

 file contains 0.883714

5. Experimental Results

For a word alignment we use English–Hindi parallel

corpora which contain 500 sentences. After running

these sentences in Giza++, Accuracy of output is 50%

to 60 %. Comparing the results in Linux environment

the output is nearly same.

GIZA++ allows aligning one token from the source

language to multiple tokens in the target language, i.e.

one-to-many alignments, but does not allow multiple

tokens from the source language to align to the same

target token. Due to this asymmetry, running GIZA++

with source and target languages swapped produces

different alignments. Because we desire a high level of

precision for prealignments, we run GIZA++ twice,

alternating the order of source and target languages,

then take the fine intersection of the resulting

alignments. The intersection necessarily contains only

one-to-one alignments due to the restrictions of the

GIZA++ structures.

A variant of GIZA++ is MGIZA++, a derivative of

GIZA++ which allows users to save trained model

states.

6. Conclusion

The use of word alignment in natural language

processing has increased dramatically in recent years,

especially in the development of statistical machine

translation. Manual word alignment can be an

expensive, time consuming process, especially given

the data volumes produced at organizations such as the

Linguistic Data Consortium In this paper, we adapted

the word alignment model GIZA++ to the work on

Windows environment. The contribution of this work is

to find a way in making GIZA++ run under the

Windows environment.

10. References

[1] F.J.Och, “GIZA++: Training of statistical

translation models”, [Online]. Available at:

http://fjoch.com/GIZA++.html

[2] http://wiki.apertium.org/wiki/Using_GIZA%2B

[3] Giza++software [Online]. Available:

http://code.google.com/p/giza-pp/downloads/list

[4] “Statistical Machine Translation” System User

manual and Code Guide {online].Available:

http://www.statmt.org/moses/manual/manual.pdf/

1765

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

