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Abstract— A new scheme for improving baitery life with
the vse of super capacitor is presented in this paper. In
addition, wind energy is vsed to charge the battery and
super capacitor . The objective of the paper is to deliver a
backup power output to the grid during a given time
interval. Battery and Super capacitor models have been
modelled in Matlab/Simulink  and  evalvated. Super
capacitor s are used to meet the transient load demands
during outages. A representative dynamic model

of the overall system, incorporating realistic wind-speed
and Ipad power variations has been developed. An analysis
is presented of the potential improvement in battery
lifetime that is achievable by diverting short-term
charge/discharge eveles to a super capacitor energy-
storage system. This study introduces a method by which
super capacitor  energy storage systems and control
algorithms can be evalvated and implemented in the
application area considered. The composition of a
prototype test system is described and experimental resulis
are presented to demonstrate system feasibility.

Keywords-Battery, Super capacitor , Wind, DC-DC
converter

Introduction

Secondary lead-acid batieries may have a typical service life
of less than 1000 full-cycles [1], [2]. and ofien constituie a
large proportion of the total ecost of a rencwable energy
project. The aim of this smdy is to develop a system o
prolong expected battery lifetime, thus reducing  hattery-
replacement costs. This can bhe a significant advantage,
particularly in remote areas, where access can be difficult and
costly. Tn contrast to secondary batteries, super capacitor s also
known as “electrochemical double-laver capacitors™ (EDLC),
or “ultra capacitors,” offer higher power density and increased
cycle life (of the order of 106 cveles) but have a considerably
lower energy density [3]. Super capacitor s currently find use
as short-term power buffers or secondary energy storage
devices in renewable energy [4], [5]. power systems [6], and
transport applications [7]-[9].

Combining two of morc cnergy storage systcms
permits the beneficial atributes from ecach device 1o be
utilized. The aim of this study is to utilize the inherently high
cycle life of super capacitor s In a battery/super capacitor
hybrid energy storage system to improve battery lifetime.

Lijun et al. [10] have shown that the active
hybridization of batteries and super capacitor s can vield an
improvement in the overall energy storage system power
handling. Wei er al. |11] have demonstated that a battery-
super capacitor  hybrid has lower battery costs, a general
ingrease in battery life and higher overall system efficiency,
Haihua er al. [12] have proposed a composile energy storage
system with both high power density and energy density for
microgrid applications, One similarity between these studies
[10]-[12] and others [I3]-[16] is that the battery is used to
pravide the low-frequency component of total power demand
whereas the super capacitor  provides the short-term or high-
frequency component. This has the effect of reducing transient
Muctuations m the batiery power profile. The work presented
here also adopts this approach, and extends previous stdies
by providing new results which guantify the potential increase
in battery cyele lifetime due to the addition of super capacitor
energy storage, and describes a means of  system
implementation and analysis.

I.  SYSTEM DESCRIPTION

To demonstraie the proposed system, an example low power
(=10 kW) and low battery voltage (<458 Vdo) wind energy
conversion system configured, as shown in Fig. 1, was
considered. In it, the generated ac voltage [rom the wind-
turbine is rectified and fed (o the battery and load via a de/de
converter operating under maximum power point racking
(MPPT) control such as described by De Broe ef al [17].
Relevant application areas include small-scale distributed
generation systems [18]-[21] and remote telecom applications
[22]-[24]. A dc/ac power converter is used to the convert the
battery de voltage to single-phase ac in this case to supply an
ac load.

The proposed system and analysis can also be applied to
systems in which the low-voltage battery is interfaced with a
regulated de bus at a higher veltage for power transfer [23].
However, o demonstrate the underlying principle of the
system, in this example the battery voliage is used as the
effective de-bus voltage as has been done previously [18]-
[21].

I, CURRENT-CONTROLLED DC/DC CONVERTER
Due to twrbulent wind power variations and shori-term load
variations, batteries can be expected to undergo frequent
charge/discharge cycling in remote-arca wind-power sysiems.
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The de/de converter under the proposed control strategy filters
transient variations from the battery charge-profile in real ime
by diverting them to/from the super capacitor maodule, The
comverter control strategy must therefore be capable of fast,
dymanie.

Hysteretic ewrrent-mode control can be used to maintain tight
regulation of the inductor current in de/de converters [26] and
gives robust performance despite variation and uncertamiy in
operating conditions [27], In addition, this control strategy
overcomes the sub harmonic oscillation instability that occurs
at duty ratios above 30% with conventional PWM current-
maode contral [27], [28], which requires the added complexity
of slope compensation to resolve [29].

In buck-derived converters, the inductor cwrrent is directly
proportional to the output current. Tn contrast, with boost and
buck/boost topologies, the inductor current to output current
relationship contams an effective duty ratio term making the
implementation of boost and buck/boost topologics in this
application signilicantly more complicated. The use of a
synchronous buck-converter conligured as shown i Fig, 2 is
suiled Lo low voltage battery grids (<=48Vde) as the super
capacitor voltage can readily be maintained at a higher level
than thal of the batery. Examples ol such sysiems can be
found m small-scale distributed generation [18]-[20] and
telecom base-station applications [22], [24].

A. Current-Controfled DC/ADC Converler

Assuming ideal components, the governing egualion for
the inductor current in the converter of Fig. 2 is:

Loalvei = Vee i = Vo ﬂl}

The objective ol the current controller in this case is o
maintain the converter output current by regulating the
inductor current (o track the command reference current J7,
This is done by modulatng the power-clectronic swiich
control signal, &, using the following strategy,
A switching function o = ¢ can be defined as discussed in
[30]:
g=IL-{"=10 {2)
where f= command reference current {A),

A switch control strategy for the signal ¥ (sec Fig. 2) can be
chosen to satisfy (3) such that & and its time derivative have
opposite signs. This ensures that the system will converge to

Fig. 2. DO converter and controller.

the stale o = 0 [31] and consequently the average inductor
current converges o the set-point current reference [ [30]:

Vo_=/ 0 : o dedt < 0. (3)

A switching control law, which salisfics condition {3), is
defined in (4), where 2f is a small constant hysteresis band
(100 mA in this case), Iving symmetrically about the reference

set-point [
{ u=1, ifer < —h
w=0 ifad=h '.‘_n For later power

conversion efficiency estimation, the approximate switching
frequency for can be determined from the inductor rise and fall
times (71 and 7= ) in each switch position from (1) as ollows
[31]:

fe=l/Ti + )

SLAZAL TVee = Voaed b+ (=2ALS = Phar)  (5)

8. Control Algorithm

The control algorithm was implemented using an active
current-filtering  approach to  divert the high-frequency
camponent ol the system charge/discharge current fnet to the
super capacitor , in real tme. The controller continuously
monitors  the incident battery cuwrrent fnel and sets  the
converter currenl reference cwrrent [ o cancel the high
frequency component of foet as shown in Figo 3.0 Self-
discharge causes cnergy stored in the super capacitor (and
conscquently the super capacitor voltage) to decay. A super
capacitor  voltage control loop, with a low, empirically
derived static gain, & was also added as shown in Fig. 3 o
maintain the average super capacitor wvoltage close to a
neimninal level, 7se such that Fae = Frac |

f ;\n' 1

Low-Pass - /-t‘"
Filter £

Fig. 3. Control elporithm block diagram

428

www.ijert.org



C. Expervimenial Results

A prototype tost system was constructed consisting of
four 12 ¥de/7T5 Ah scaled lead-acid batterics configured with a
24 Vde nominal voltage, The super capacitor module was
made up of twenty two 2,7 Vde, 1800 F Boostcap super
capacitor  cells (from manufacturer Maxwell Technologies
[32]) connected in series, giving a 60 Vde nominal voltage, A
wind-turbine emulator and programmable-load were nsed to
provide the load and wind-power test profiles (shown in
Fig 9. It 15 beyond the scope of this report to describe the
wind turbine and load emulator in detail; however, they were
implemented in hardware using power electronic converlers
with sulficient power control bandwidth to represent the
nature of the test profiles used. National Instrumenis” Labview
software was used for test-rig supervisory control and data
logging purposes.

The hybrid energy storage systern control algorithm
was implemented using an industry standard PTC18F4520
microcontroller to caleulate the required converter reference
current according to the proposed control algorithm (see Fig.
3)in real time, Experimental results showing the recorded net
current /net and the filtered batiery current fbat are shown in
Fig. 4 with two different low-pass filler time constants. The
modificd battery current fbal can be seen o follow the low-
frequency component of the current profile. The battery
current contams sigmificantly fewer current polanty reversals
than nel current fmet . This indicates that the batlery
comsequently undergoes fewer charge'discharge cycles with
the addition of the proposed super capacitor system.

ITI.  S¥STEMW SIMULATION

T enable battery-life analysis over lomger periods than would
be practical by experiment, the proposed system  was
simulated i the MATLAB Simulink  environment.
Conventional simulations employing mean data for renewable
resource  patterns have been shown o cause shori-lerm
Nuetuations and  asseciated charge/discharge cyeles Lo be
ignored, resulting in underestimation of batlery throughpul
and associated wear [33]. For this reason, a simulation
including power wvariations due o wind twbulence and
dynamic load changes was developed with a simulation time
step of <1 s,

A. Batierv Model

The dynamic battery model described in [34] was used o
represent batlery voliage and state of charge (SOC) variations.
A detailed  description  of  the  modelling-parameter
identilication process is given in [35]. For the purpose of this
simulation, the ballery parameters provided lor charge and
discharge simulations given in [34] have been used (sec the
Appendix, Table Al). The number of scrics battery cells was
scl to twelve, giving a battery vollage of 24 'V al the nominal
cell capacity. The governing equations of the lead-acid battery
model shown in Fig, 5 from [34] are given later as (6)-(13)
with batiery-cell model parameters defined in the Appendix,
see Table Al

K.Co(l + —)

1 + |f|||- — 1|':! -|I|‘.-|:| s (_[c‘}

il ) =
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Current (s)
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Fig. 4. Mezsured battery curvent {white trace) response to 2 wind and load
prsfile [evan trace). (a) Low-pass filter time constant - 80 s, () Low-pass
filler ime constant = 300 &,

where Ke, &, and & are the modeling parameters, /' nom is the
battery nominal discharge current, € is the elecrolyie
temmperature, and 67 is the electrolyte freezing temperature
(=C).

State of charge (S0C) and depth of charge (DOC) are
defined [34] as:

0} [
SOC =1 = —— where J, = f I (t)dt -
Cl0,8) Ju 1)
i T S 8
L}U{. 1 - m where .II|.| o ('}

where me s a battery modeling time constant [34]. The
equivalent voltage source E. is given by [34]:

Ex(80C) = Ew + Ke (273 +4) 1In(S0OC). (9

Fig. 5. Dwymamic lead-acid battery mocde] [34].
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RORLR2 . and lp can be determined as follows |34]:

Ro (50C) =Ru[l +.40(1 =50C)] (1)
Ri= R In(DOC} (11

where parameters R00 A0, R10, 820,421,422, Gpl) |, and Ap can
be found in [34] and in the Appendix; see Table AL

l"l‘l{]'i[,-‘-_n “ — SC‘C}]

Ry = Ryg——
1 + expl Asaly, [1*) (12)
I, = V,uGpoexp [:‘—' + A, (l - ﬂi)]
po / (13)
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Fig. 6. Banery only system results: (a) battery corrent, |b) battery state of
charge, and {cj histogram of ram-tlow cyeles (4560 cyeles m the range =
0.01).

[V, RESULTS AND DISCUSSION

As a base case, the simulation was run with baltery energy
storage only and with the battery sized such that the load is
met at all times. The rain-flow counting algorithm was used o
determine the number ol cyeles experienced by the battery
over the week-long simulation period. The batlery currenl,
S0C, and the results of the rain-flow cycle counting are shown
in Fig. 7 which shows that the battery undergoces 4560 cycles
with range =0.01. The simulation was then repeated with the
same battery and the super capacitor cnergy storage system
described previously with the low-pass filter time constant set
to 3600s. The simulation results are shown in Fig. 8.

Iin addition the peak current in the hybrid system to
be significantly less than in the case of the hattery-only
systemn. This decrease in current maxima has an unmodelled
benefit in terms of further reducing.

Batsery current (A)
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Fig, 7. Hybrid system results: (a) batery curent, (b battery state of charge,
and [c) histogram of rainflow cycles,

battery stress as high-cwrent cyeling has been shown o
increase battery failure rates [51].
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Fig. B Simulation resulis plosed against low-pass filier tme constant.
Battery-only results shown in red (2) Battery lifetime estimate. (b) Discharge
cirent mixima. (o} Required super capacitor vaning, (d) Energy storige loss
a5 @ pereentage of energy gencrated.

VIL ConerLusion
This study has investigated the use of super capacitor s to
improve expected battery life cyele over a representative
weeklong power-profile typical of a small, remole-arca wind-
energy conversion system. The results show that by diverting
transient power variations due to turbulence and short-term
load variations to a super capacitor module, battery life cycle
can be quantifiably increased. It has also been shown that the
battery current maxima can be significantly reduced using the
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proposed system. This has an unmodeled benefit in terms of
potentially further increasing battery life as high-cwrent
cycling has been shown to increase battery failure rates [51].

Ciarent (A)
=]

=30
o

Wind profile

Lanscd profile -

0.5 1

T (=)

Fig. 9. Synthesized test profiles.

TABLE Al
Barmry-Crin MoDeL ParameTers Fros [24)

r
(5]
el

Parameter Drescription Yalue
Ke Empincal constant 1.177
& Temperature coefficient 1,29
14 Electrolyte Treceing lemp. =4
] Empirical constant 1.4
Enws Full-change rest vollage 25.62
R R1 wvalise at | (W% SOC R4mi
R RO valwe ap 1005 SO0 Z2amil
K Empirical constant T0L58 mVeC
Trom Nominal reference current a49A
Ag Empineal constant -003
Th RO branch tme constant S(H)0s
i Nominal capacity il Ah

TABLE All

DODC CONVERTER PARAMETERS (77 “JUNCTION TEMPERATURE
AND To = CABE TEMPERATURE)

MFarameter Deseriplion Walue
R Power inducior ESH 15mis
R MOSFET on resistance 1EBmdd (T = 25°C)
i MOSFET rise time 220mes (T, = 23°C)
1 MOSFET all time 200ms (. = I57C)
[o Diinde recovery ¢hirge D.6ucC (T — 25%0C)
oy MOSFET ulpul capacilancs 20nF (. = 25°C)

TARLE AINl SUPER CAPACITOR
CELL PARAMETERS [33]

Parameter Description Value
Choet Cell nominal capacitance SO00F
R, Series resistance (total) 0.33mL)
Ri Leakage resistance 351.850
Fom Rated cell voltage 2.7Vd.e,

TABLE AIV
WD-TURBNE MODEL PARAMETERY

Parameter Description Value
R Blade radius l.Im
Jur Turbine rotor moment of inertia ~ 2.5kg/m”

. i 5

Jebac Generator moment of inertia 1kg/ms’
n Damping coefficient 0.00035 Nm/rad/s
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