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Abstract:- Interpreting the learning dynamics of neural networks can provide useful insights into how networks learn and the
development of better training and design ap- proaches. We present an approach to interpret learning in neural networks by
measuring relative weight change on a per layer basis and dynamically aggregating emerging trends through combination of
dimensionality reduction and clustering which allows us to scale to very deep networks. We use this approach to investigate learning
in the context of vision tasks across a variety of state-of-the-art networks and provide insights into the learning behavior of these
networks, including how task complexity affects layer-wise learning in deeper layers of networks.

1 INTRODUCTION

Deep learning based approaches have achieved excellent performance in a variety of problem areas,and generally consist of
neural network based models that learn mappings between task specific data and corresponding solutions. The success of these
methods relies on their ability to learn multiple representations at different levels of abstraction, achieved through the
composition of non-linear modules that transform incoming representations into new ones [1]. These transformation modules
are referred to as layers of the neural network, and neural networks with several such layers are referred to as deep neural
networks. Significant research has demonstrated the capacity for deep networks to learn increasingly complex functions, often
through the use of the specific neural network primitives that introduce information processing biases in the problem domain.
For example, in the vision domain, Convolutional Neural Networks (CNNSs) utilize convolution operations that use filtering to
detect local conjunctions of features in images, which often have local values that are highly correlated and invariant to location
in the image. Alongside this, a general observation in many computer vision tasks is that early layers converge to simple feature
configurations [1]. This phenomena is observed in many vision architectures, including Inception and Residual Networks [2].
These findings, among others, point to a natural question: Do different layers in neural networks converge to their learned
features at different times in the training process?

Understanding the layer-wise learning dynamics that allow for a deep neural network to learn the solution of a particular task is
of significant interest, as it may provide insight into understanding potential areas of improvement for these algorithms and
reduce their overall training costs. Our contributions is two-fold:
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. We empirically investigate the learning dynamics of different layers in ResNet50 and EfficientNet-B4 across
CIFAR-10, CIFAR-100 and SVHN dataset using the Relative Weight Change (RWC) metric [3].
. We develop an approach to empirically analyze RWC trends within networks using clustering and dimensionality

reduction. This framework allows us to scale RWC analysis to very deep networks and find similarities amongst numerous
relative weight change trends something which was infeasible earlier with the original RWC approach [3] given the scale and
complexity of such networks.

The rest of this text is organized as follows: Section 2 presents related work. Section 3 introduces relative weight change,
clustering and our experimental methodology. Section 4 discusses empirical results across several datasets and architectures.
Finally, Section 5 discusses conclusions and future directions for this line of research.

2 RELATED WORK
While Deep Learning explainability is an active area of research, there has been limited research towards understanding the
layer level trends in neural networks. Most of the work done so far in this context has been focused towards feature
visualization of neural networks [4-11]. While our work is similar in context, our work is concentrated on approaching these
features from an empirical standpoint. Instead of focusing on feature visualization we focus on understanding the weights in
each layer of the neural network and compute the relative change in these weights across epochs. Our work builds upon the
earlier proposed work by [3] who conceptualized Relative Weight Change (RWC) as a metric to track the change in weight
across a given neural network layer for every epoch. They propose RWC as a proxy for layer-wise learning, with the
assumption that when the weights of a network have minimal change over a set of epochs, they are converging to their
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optimum. Our work goes above and beyond by analyzing RWC for much more complex networks than what the paper
proposed including ResNet50 and EfficientNet-B4. Realizing the issues which come along with deeper networks due to scale
and complexity we also propose a novel solution using K-Means clustering to improve the interpretability aspects of RWC.

3 METHOD
31 RwWC
To better understand the layer-wise learning dynamics, we utilize a metric known as Relative Weight Change (RWC) [3].
RW(C represents the average of the absolute value of the percent change in the magnitude of a given layer’s weight.

RWC, = llwe = weall @
|[we-1l1

where L represents a single layer in a deep neural network, and w; represents the vector of weights associated with L at a given
training step t. The L1 norm characterizes the difference in magnitude of the weights. This difference is normalized by dividing
by the magnitude of the layer’s weights during the previous training step. Another averaging step is applied to get a single value
for RWC across the entire layer. The resulting value corresponds to the magnitude of change in the layer’s weights over
training steps. Smaller changes over a prolonged period indicate that the layer’s weights are nearing an optimum.

3.2 Analyzing RWC through Clustering and Dimensionality Reduction

Most Deep Neural Networks include millions or even billions of parameters. Modern architectures stack hundreds of layers,
making interpretability difficult for layerwise approaches like RWC. We use clustering to find similarities between the RWC
trends between the layers of a network. For this paper, we are using K-Means Clustering [12] with K++ algorithm [13] to find
layers with similar RWC learning trends. The input to the clustering algorithm is a matrix where layers are examples and their
features are the RWC values per epoch (over training). These neighbors (layers) are then grouped into clusters based on their
features/RWC values. Having reduced the 100+ layers into a mere 2-5 clusters makes investigating learning-dynamics in deep
architectures feasible, and also partially automates the identification of similar behaving layer groups. We can then compare
these architectures with each other to understand how architectural differences and primitive choices can impact the learning-
dynamics of a network.

Through our experiments we noticed that the certain RWC values, due to randome-initialization and effects of backpropagation,
had noisy outputs which created outliers. We remove these outliers by utilizing the mean and standard deviation of the sample.
We then create a cut-off at 2 standard deviations surrounding the mean. This allows the clustering algorithm to perform better.
This pre-processing stuff reduces the chances of clustering biases due to the presence of outlier without creating a big impact on
the overall outcome of the number of clusters.

mean,
o sample = ! ()

f deviation > std

sample, otherwise
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Where deviation = |sample — mean| and mean & std refer to the mean and standard deviation of the sample.

In order to find the ideal number of clusters for K-Means, we used scree plots. Since our data is n dimensional (where n is the
number of epochs), we use Principal Component Analysis to reduce the data to 2-dimensions. Using this, we find the ideal
number of clusters for K-Means using the RWC values and were able to effectively cluster the layers. These steps were
repeated for each architecture-dataset pair presented in the paper.

3.3 Experimental Settings
Network Structure and Training We use ResNet50 [14] and the B4 version of the EfficientNet architecture [15]. We chose
these architectures for several reasons. ResNets are ubiquitously used in the research community for computer vision problems
and EfficientNets (and its variants) hold the state-of-the-art performance on the ImageNet dataset [16]. They also provide some
variety in the information processing techniques and biases utilized to learn from images. For example, ResNets make use of
residual connections, skip connections, and blockwise design while EfficientNets propose a novel model scaling method that
utilizes a highly effective compound coefficient for scaling up CNNs in a more structured manner. Conventional approaches
arbitrarily scale network dimensions, such as width, depth and resolution. EfficientNets uniformly scale each dimension with a
fixed set of scaling coefficients. We incorporate these architectures for establishing some of the general trends we oberve in this
work, and inconsistencies may be attributable to the concrete differences between them. We attempt to keep the computational
complexity similar in terms of number of parameters. EfficientNet-B4 is significantly deeper as compared to ResNet-50 (in
terms of number of layers). We utilize the opensource PyTorch [17] implementation of EfficientNet for our experiments [18]
The general training strategies used for these architectures was kept consistent. We wished to keep the training settings similar
for better comparison. We ran all the experiments on Google Colaboratory Pro. We utilize the Adam Optimizer with a learning
rate of 1e-3 for all our experiments. All models are trained for 25 epochs. We utilize image sizes of 224x224 for EfficientNets
as they are designed to work better with larger image sizes. ResNet-50 was trained with the original dataset sizes (32x32). We
utilized a batch size of 32 (to accommodate for larger input sizes) for the EfficientNet experiments and 128 for the ResNet
experiments.To interpret the layer-wise learning, we find the RWC as formulated in 1 for each layer per epoch. We store the
RWC array from each experiment, plot the the associated curves, and report the results in the following section.
Datasets We use 3 benchmark datasets: CIFAR-10 [19] which contains 60,000 images of 10 classes, CIFAR-100 [19] which
contains 60,000 images of 100 classes, and Street View House Numbers (SVHN) dataset [20] which is similar to the MNIST
datasets [21]. As compared to MNIST, SVHN is significantly larger and poses a more difficult task for learning systems. These
benchmark datasets see significant use in deep learning research. The datasets also provide good variety in the complexity of
their associated learning tasks. CIFAR-10 and SVHN provide a decent level of complexity in terms of image content and task
difficulty.CIFAR-100 has significantly more classes (compared to CIFAR-10) and fewer samples per class which makes it
considerably more difficult. Our goal isn’t to

Table 1: Detailed hyperparameters used for training

Architecture Datasets LR Image Size Batch Size

ResNet50 CIFAR-10 0.001 32%32 128
CIFAR-100 (0]  32x32 128
SVHN 0.001  32x32 128

EfficientNet-B4 CIFAR-10 0.00]  224x224 128
CIFAR-100 (001  224x224 128
SVHN 0.001  224x224 128

provide a state-of-the-art result on these datasets but rather to train a good model and understand the underlying learning
trends.
4 RESULTS AND DISCUSSION

Table 2: Results

Avrchitecture Datasets Train (Top-1) Train (Top-5) Test (Top-1) Test (Top-5)

ResNet50 CIFAR-10 96.1 99.9 90.0 99.75
CIFAR-100 94 99.8 62.4 87.1
SVHN 98.9 99.9 94.5 99.3

EfficientNet-B4 CIFAR-10 97.9 99.9 20.1 99.6
CIFAR-100 95 99.9 62.3 86.7
SVHN 98.7 99.9 95.3 99.4
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4.1 ResNet-50
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Figure 1: Optimal Clustering for the ResNet-5

4.1.1 CIFAR-10

We notice that the model exhibits an decreased relative weight change in later layers of the network as compared to earlier
layers Figure 2. We notice that as we progress through the architecture layers over the training epochs the RWC decreases.
There is a dip in the last few layers on average. This experiment achieved an accuracy of 90% on the test set provided by the
PyTorch distribution of CIFAR-10 [22]. We notice that the clustering approach is able to effectively separate layers based on
their layer-wise learning dynamics. We think that the reason for low recruitment of later layers is due to the fact that the
architecture is more than capable of handling a task like CIFAR-10. Task complexity might be the reason for this trend of high
RWC in early and mid layers follower by lower RWC in the later layers. We also notice a cluster of layers (yellow) spike up
more than others), this is an interesting trend due to the fact that the surround layers (belonging to other clusters) act differently.

4.1.2 CIFAR-100
This dataset is more complex as compared to the CIFAR-10 variant and hence poses a bigger challenge for the network Figure
3. This definitely makes a difference as we see a flip in the trends compared

Figure 2: Clustered RWC Curves for the ResNet-50 model on CIFAR-10

Figure 3: Clustered RWC Curves for the ResNet-50 model on CIFR-lOO
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to CIFAR-10. We notice a sharp increase in RWC as we move up. This experiment achieved a test accuracy of 62.4% on the
test set provided by the PyTorch CIFAR-100 dataset [22]. The poor performance on this dataset suggests that the network is not
able to learn a good representation for the task. This might be the reason that the later layers are recruited more as compared to
CIFAR-10. Just like CIFAR-10 we notice an interesting cluster of layers (red). There is are massive RWC spikes during
training which seem odd considering the curves for the surrounding layers. This might hint to two things, either this is random
noise or that these layers might be doing something different compared to the others.

4.1.3 SVHN

SVHN is a simpler task and has a lot more data compared to the other two tasks. This makes it easier for the model to learn a
good representation. This experiment manages to achieve a 94.5% test accuracy. We can see in figure 4 trends from the
clustering plots for this task are similar to CIFAR- 10 in the sense that we notice a gradual increase as we move through the
layers. One noticeable characteristic here is that the later layers are similar in terms of their change. Blocks 3 and 4 are a part of
the same cluster due to their similar learning dynamic. There is an outlier cluster (yellow) that has massive spikes. This could
just be random noise since it is only one layer.

Figure 4: Clustered RWC Curves for the ResNet-50 model on SVHN

4.2 EfficientNet-B4

EfficientNets utilize a special block based architectural primitive called MBConv Block [23]. This is essentially an inverted
residual block (ResNets). Along with this inverted residual block the authors utilize depthwise convolutions for parameter
efficiency. These perform the convolutional operation with a significantly smaller computational cost. EfficientNets also
include Squeeze and Excitation to these blocks [24]. Since the architecture is built using multiple different convolutional
primitives we separate our analysis by splitting the layers by these primitives.

. Depthwise Convolutional Layers

. Pointwise Convolutional Layers

. Squeeze and Excitation (expand and reduce convolutions)

. Pointwise Linear Expansion Layers (used with Squeeze and Excite)

By separating the layers in our analysis we can better compare the learning dynamics for the architecture.

Depth Wise

4 6 12 14 16 2 4 [ 0 2 B 2 6 8
e Nu 1ster Numb

Figure 5: Optimal Clustering for for different Efficient-Net-B4 convolutional primitives on CIFAR-10, CIFAR-100 and SVHN
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421 CIFAR-10

Figure 6: Clustered RWC Curves for the Efficient-Net-B4 Depth-wise Convolutions on CIFAR-10

As discussed earlier we split the EfficientNet model by its convolutional primitives. We observed trends for all of them across
training. We choose to include the most interesting ones in our analysis. We can see in Figure 6 that our clustering technique
manages to group sets of layers that have similar relative weight change. We notices that the later layers have minimal changes
for the CIFAR-10 task. We also notice that the earlier and middle layers have the most amount of changes. We believe that the
task complexity might be the reason for this trend. Lower recruitment in later layers on easier classification tasks was observed
in previous work as well [3]. CIFAR-10 is a simple task and hence the architecture does not recruit the later layers as much.
The performance is great and these trends corroborate this finding. There are a few layers that stand out as a separate cluster
(dark blue lines). We call these layers outliers as they are surrounded by layers that learn similarly but these layers themselves
have a different learning pattern. We believe that our framework allows us to detect these kind of special cases.

422 CIFAR-100

For the CIFAR-100 task we chose to discuss the point-wise convolutional primitive. We observe in Figure 7 that the later
layers are activated much more than the earlier layers. The clustering approach neatly bunches these layers together. This again
points to the effect of task-complexity. CIFAR-100 is a complex task and this experiment does not achieve very high accuracy.
Our curves support this point as we see a lot of recruitment in the later layers. Like CIFAR-10 we also notice some outlier
layers which have massive spikes in the middle of training.

423 SVHN

In terms of task complexity SVHN and CIFAR-10 are similar, infact one can consider SVHN to be an easier task due to its size
and the type of classes. In this experiment we present the Depth- wise convolutional trend as it provides some interesting
insights when coupled with the CIFAR-10
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Figure 7: Clustered RWC Curves for the Efficient-Net-B4 Point-wise Convolutions on CIFAR-100

observation. Figure 8 shows a similar trend to CIFAR-10 in the sense that the early to middle layers are activated the most.
There is a slight difference in the case of SVHN where we notice that a lot more of the later layers are being utilized while the
final couple of layers have a relatively small amount of change. We believe that this might hint towards a learning pattern
observed in networks that get close to optimal accuracy.

5 LIMITATIONS

While our clustering approach using K-Means provided a boost to RWC interpretability metric, and also allowed us to better
interpret much deeper and larger architectures, there are a couple limitations to our current work that open up room for further
research and improvement. K-Means struggles when the data is very noisy and has outliers present. In an ideal scenario, the
outliers should be completely ignored from clustering but K-Means fails to do so. To remedy this situation, we manually
removed outliers from our RWC values which improved the performance of K-Means significantly.

Clustering is an efficient and quick way to group the layers in a network based on their learning trends but we presume that
other methods might exist that can allow for a much better visualization into the learning of a neural network. RWC as a metric,
can be further improved to better distinguish the learning trends between layers as the current difference in RWC values
between layers is quite small.
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Figure 8: Clustered RWC Curves for the Efficient-Net-B4 Depth-wise Convolutions on SVHN

6 CONCLUSION AND FUTURE WORK

In this paper we improve prior work done using the RWC metric as an interpretability tool by wrapping it with a clustering and
dimensionality reduction approach that helps dynamic analysis of improve layer-wise learning. We apply our approach to deep
and complex state-of-the-art architectures over various datasets. We report trends that are observed during these experiments
and provide insights into their underlying mechanisms.

This work forms a first step towards improving interpretability of neural networks on a layer level. Future directions for this
work include analyzing learning trends in ImageNet scale datasets, new modalities like NLPs, and a variety of architectures.
We hope that our work can provide another tool for researchers to investigate the inner workings of neural networks.
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