
Web Services Design From Business Requirements

Adel Qahmash Ayman Ibrahim

Department of Computer ScienceDepartment of Computer Science

Bridgeport University La Trobe University

CT, USA Melbourne, Australia

Abstract

Web services have received a lot of attention from both researchers and the business IT sector. Most of web service

research has been devoted to the issues of standards and supporting technologies. However, despite the considerable

volume of research output, the actual application of web services for real business purposes has taken place much

more slowly than expected: the number of business web-service-based applications in use is quite low. One of the

main reasons for this slow take-up is the lack of research on designing web service applications from a business

requirement perspective. Starting from the functional requirements (in terms of use cases), in this paper we propose a

systematic method to specify the web service application that is designed to satisfy the functional requirements. The

specification unambiguously shows how various parties, who are involved in the application, communicate with each

other. Thus, the specifications clearly identify new web services to be built and how the new and existing web

services can be composed to provide the required functional behavior. In addition, we also provide a systematic

method to validate the specification through prototyping. The specification (which is platform-independent) and the

prototype (which is in Java)

Keywords; Web service, business rquirments, design-by-contract

1. INTRODUCTION

Web service is a basic mechanism to describe,
locate, and interact with online applications.
Essentially, each application becomes an available
web service component described by XML.
According to the W3C [1], “A Web service is a
software system designed to support interoperable
machine-to-machine interaction over a network. It
has an interface described in a machine-processed
format (specifically WSDL). Other systems
interact with the Web service in a manner
prescribed by its description using SOAP
messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-
related standards.”

Web services have received much attention,
especially in business-to-business (B2B) points of
view, because of their high level of reuse and
interoperability. Businesses and organizations
connect to each other via the internet and the use
of emerging web services to provide B2B
interaction. These tools are built on top of existing
web protocol and standard XML language. Web

services composition facilitates the development
of applications by reusing existing services [2].

Although there is a relatively large amount of
research on web services, few effective
commercial web services currently exist and
engage in serious operations. Why?

On the one hand, a great deal of web service
research has been devoted to the issues of
standards and supporting technologies (including
supporting composition from existing services).
On the other hand, little attention has been devoted
to the problem of designing web services on the
basis of business-specified and business-perceived
requirements.

More specifically, a critical issue can be stated
as follows:Given the requirements of a business or
a number of related businesses,

 How should we identify and build web
services so that they can act as useful
building blocks? and

 How can we determine the compositions
needed for specific applications and be sure

171

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

that the behaviors of the compositions can
be verified against business requirements?

Clearly, in order to gain an advantage from
interoperable web services, we need to address this
issue. This will be the aim of this paper. Our
objective is to address this issue in a systematic
and rigorous manner. Our method will refine the
method introduced by [4] and will verify the
method specification by implementing a prototype
to insure that method design and specification is
superior enough to

capture business requirements.

For example, given a complicated “use case,”
such as the process of booking airline tickets and
hotel accommodations with multiple
communication exchanges between various parties
(and some existing web services), how are we to

Design web services and composed
applications,

Rigorously specify these services at the
conceptual platform-independent level, and

Develop ways (e.g. quick prototyping) to
verify if our design satisfies the
requirements of the “extended use case”?

The organization of the paper will be as
follows: in section 2 a brief focus on related work
will be examined.

Section 3

a travel agent case
study will be discussed. Section 4

presents a
proposed method and design and analysis the
method specification. Section 5

is

concerned with
the issue of the prototyping and implementation of
the designed method. Finally, we will present our
conclusions and possible directions for further
work.

2.

RELATED WORK

A.

Designing web services with Tropos

Tropos [2] was initially proposed as a method
to design agent-oriented applications. Later, it was
extended to become a service-oriented
development method. A number of concepts, such
as actor, goal, and social dependency, are
introduced by Tropos methodology. This
methodology has received a lot of attention
because these concepts are described in such
detail.

1)

Tropos Phases

1.

Early Requirements Analysis. In this
stage, the first step is to identify the
stakeholders. The next step is to specify the
goals, actors, and dependencies. Finally, the
goals and tasks should be deconstructed to
simplify the tasks. Additionally, during the
early requirements stage, the system is
disregarded.

2.

Late Requirements Analysis. During the
late requirements phase, the system, as well
as its operational environment, relevant
function, and qualities are introduced and
discussed. Ultimately, the phase aims to
associate each actor with its strategic goal.

3.

Architectural Design. In this stage, the
system’s global architecture is specified in
terms of actors. This specification defines
subsystems that are interconnected through
data and dependencies or control flow.
Figure

6 shows how each extended actor
diagram is produced to show how each
subsystem is located in the whole system.

4.

Detailed Design. During the detailed
design stage, agent capabilities and
interactions are defined. In addition, the
detailed design phase aims to produce
additional information for each architectural
component of the system. Furthermore,
using UML sequences, diagrams that model
the interaction between agents can be
recommended.

5.

Implementation. In this stage, the actual
implementation and code is carried out,
depending on previous details set in the
designphase.

Initially, we found this approach very helpful in
our research. The Tropos methodology for
designing web services starts from business
requirements, which is of interest to our project.
Moreover, the approach especially assists us in the
early stage of web services design because of the
significant attention it gives to business
requirements.

However, the approach has disadvantages in
that it contains many phases that do not precisely
apply

to our design. Tropos also does not describe
how services should be integrated. Furthermore,
Tropos approach does not include the support of

172

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

validation against requirements. Besides that, the
most negative shortcoming is that Tropos fails to
describe services in detail; it only introduces the
phases to suggest their functionality.

Figure 1. Extended actor diagram with respect to the Retailer System

3. TRAVEL AGENCY SYSTEM CASE STUDY

The Travel Agency System (TAS) is a
modified version of the original case study
conducted by [3], which is a process to sell
tourism and travel services to the customer. In
addition, the Travel Agency System is represented
by a Web application conducting the process
electronically.

For simplicity, this case study will consider just
one type of transportation system- the airline
system- and omit others types. Furthermore,
various tourism services such as packages,
accommodation and excursion that are afforded by
the travel agent are not considered in this case
study for the sake of simplicity.

As mentioned,TAS acts as an open distributed
system that considers other services in order to
satisfy the customer’s request.

The ultimate goal of TAS that can support
business aims is to sell a trip offer to the customer
and consider TAS goal as use case.

The actors involved actors, along with ultimate
goals of the Travel Agency System are as follows:

 Customers who can specify the trip
information such as the destination along
with other travel information.

 The personal travel assistant is the entity
that can help the customer meet his
requirements by booking flights and could
be a software interface that interacts with
customers. Hence, the customer request is

managed by personal travel assistant until
appropriate offer is found or the request is
canceled by customer. In addition, to
arrange the customer journey the personal
travel assistant interacts with broker agents
who may work with the travel agency.

 The Broker agent has 1-n relationship with
the travel agency as well as with
transportation companies. Moreover, the
broker may access many transportation
companies in order to obtain an appropriate
flight itinerary.

 The transportation companies are entities
that can provide actual transportation
services. As mentioned before, airlines will
be the only type of transportation systems
considered in this case study.

 The financial companies are entities that
can provide financial services like credit
card companies as well as banks.

The Travel Agency System’s operations are as
follows:

 The customer should provide information
about the desired trip trough the personal
travel assistant. The trip information must
consist of the departure and destination city
as well as departure and return dates. In the
case of a one way trip, the return date is not
required.

 The trip information is received by the
travel assistant system, which verifies

173

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

whether the information is well formatted.
Then, brokers are selected by

the

travel
assistant system to provide the customer’s

trip.

Each broker agent may deal with many
transportation companies requesting them
to provide offers that match the requested
trip. If the matched offer was provided, the
broker will inquire

with

transportation
companies to book the trip temporally, and
send the matched offer (a long with
corresponding overhead in the case of
external broker) to the personal assistant.

The personal travel assistant sorts matched
offers, which were provided by

all brokers.
Then, the sorted list is

send back to the
customer to select the desired offer.

The customer may select one offer or reject
all offers and quit. In addition, the customer
may refine trip information and start the
process again.

In case one offer is selected,

then the credit
card along with customer

details should be
provided to the personal travel assistant that
will process the payment through one
financial company. In addition, once the
payment is confirmed, the travel assistant
will notify the corresponding broker agent
to confirm the booking via

the
corresponding transportation company. In
case, the

payment did not go through
(insufficient funds, invalid credit card or
expired credit) the customer will be able to
either re-enter the credit card details or exit
the application.

For rejected offers,

the personal travel
assistant will notify the specific broker
agent to cancel the booking through the

appropriate transportation company.

4.

BUILD THE SPECIFICATION OF ATOMIC USE

CASE.

A.

identfy the Atomic Use Case.

The atomic use case can be identified if there is
an operation that could be invoked from an
external entity and possibly response

messages
could be received whether

the

response is

asynchronous on not. Obviously, in a real Web
service there is an operation that could be invoked
from external services and those

operations have

a
description files called WSDL that be accessible
by the

public. Thus, if we examine the behaviour
of an atomic use case and Web service, we realize
that there is a huge similarity between the two.

Figure 2

is a sequence diagram illustrating the

use case scenario that just helps

to identify the
atomic use case. In this diagram, only

the

main
flow is considered; the other sub flows are
ignored.

There are three main atomic use cases,
whichcan be derived

from sequence diagram:

The first operation is called “request offers”
and starts when the customer enters the
desired trip details into the

system and ends
when the system displays a set of matched
offers

to the customer.

Another operation is called “reject all
offers” and starts when customer rejects

all
offers,

and the system sends a notification
to each corresponding broker agent. The
interoperable message in this operation is
asynchronous.

Finally, the place booking operation is
started when the customer provides

booking
details to purchase the trip offer. The
operation is

finished when the customer
receives a booking confirmation
notification.

Driven by the above operations, the behaviors
match those of atomic use cases. Thus, we will
introduce the specifications of the above atomic
use cases

and will apply the proposed method in
[4]. In addition, a secondary input

and a three
party interaction building block

will be introduced
to solve problems that arise.

1)

Atomic Use Case Specification

Initially, [4] proposed a method to specify

atomic use case

based on its input, output, pre-
condition and poscondition

specification, which
will be applied

to simply fulfill

the requirements
of usual application

system.

However, in case of Web

services there are
number of factors that should be considered.
Moreover, Web

services obstacles may direct us to

174

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

Figure 2.

Order Trip Offer

use case sequence diagram

introduce

possible solutions

such as secondary
input

and a three party interaction building block.

2)

Standard specification

Assume that we have set of brokers

called
broker1 and broker2 and each of these brokers
implements operations called getOffers using
parameters inputs such as departureCity: String,
destinationCity: String, departureDate: String,
returnDate: String, isOneWay: boolean, and
returns setOfOffers: set <Offer>. Consequently,
atomic use case specification could be identified
based on the proposed method in [4]. The
specifications are as follows:

Atomic use case: Request offers

In:

departureCity?: String

destinationCity?: String

departureDate?: String

returnDate?: String

isOneWay?: boolean

out:

setOfOffers

pre:

// specified in details in the next

specification

post:

letsetOffers = new Set<Offer>

offer = broker1.getOffers(departureCity?,

destinationCity?, departureDate?,

returnDate?,isOneWay?)

setOffers.add(offer)

offer2 = broker2.getOffers(departureCity?,

destinationCity?, departureDate?,

returnDate?,isOneWay?)

setOffers.add(offer)

3)

Secondary Input Concept

A number of problems that arise during above
specification lead

us to introduce the concept of
secondary input to overcome those problems.

The first issue is how many brokers we will

deal with. Thus, the above specification is not
adequate enough to cope with this issue.

Another possible problem is that sometime we
need to mange the number of brokers by adding or
removing broker agents. In this case our
specification needs

to handle this matter
independently with no need to with no need to
modify the atomic use case specification when
certain brokers are added or removed.

The third issue is

that

each broker provides an
operation called getOffers that may accept
different inputs or return different output. Hence, a
sort of adaptation should be applied to avoid

a

broker having different specifications.

As designers,

our concern is to specify atomic
use case specification to a Web

services developer
who will be concernedwithWeb

services

implementation,

dealing

with brokers and sending

them customer requests

in order to obtain offers.
Finally,

the

received information from external

175

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

brokers must be validated before using that
information.

Consequently, introducing secondary input can
assist the designer to overcome these problems
effectively. In addition, secondary input can be
distinguished from the ordinary input provided by
user. Thus, the secondary input can be received by
a system (i.e. set of offers for tip request) from an
external entity (i.e. broker agents). To validate the
secondary input,

we specify secondary
preconditions.

Furthermore, in terms of identifying the way
we can interact with broker agents in order to
receive secondary input, secondary input
acquisition is specified to provide an effective
guideline for Web

services developers

to invoke
an internal operation of broker agent (i.e.
getOffers). In addition, by using secondary input
acquisition,

we can specify certain information
that provides inputs, outputs, collaborates, services
that can be invoked along with a

description of
that secondary input. For example, as shown in the
secondary input acquisition below, clearly we will
deal with numbers of broker agents to invoke
services called getOffers and send an inputs such
as departureCity, destinationCity, departureDate,
returnDate and isOneWay then received a set o
offers as result of that invocation. Basically, the
result of the above invocation can be known as
secondary input in an atomic use

case
specification.

However, each broker may apply a different
specification such as services name as well as
inputs and outputs. In the implementation stage,

we cope with this issue by specifying interfaces to
be implemented by the brokers;

thus, there is no
different broker specification.

After introducing the secondary input,
secondary input precondition and secondary input
acquisition, specifying request off atomic use case
will be more effective as follows:

Atomic use case:

Request offers

In:

departureCity?: String

destinationCity?: String

departureDate?: String

returnDate?: String

isOneWay?: boolean

out:

setOfOffers

pre:

//departure and destination city is not the

same

departureCity?<>destinationCity?

//departure date is after system date

departureDate? >= sysDate

return date is after departure date for

//two ways trip

 ! isOneWay&&returnDate? >= departureDate?

Secondary in:

providedOffers? = requestOfferFrombroker

(departureCity?, destinationCity?,

departureDate?, returnDate?, isOneWay?)

secondary pre:

//provided

Offers from broker must be not

empty

providedOffers?.size> 0

//at lest one offer must match customer

request

//one way trip

exist offer in providedOffers? |

isOneWay&&

offer.departureCity! =departureCity? &&

offer. destinationCity!=destinationCity?

&&offer. departureDate! = departureDate?

//at lest one offer must match customer

request

//two ways trip

exist offer in providedOffers? |

isOneWay&&

offer.departureCity! = departureCity? &&

offer.destinationCity! =destinationCity? &&

offer.departureDate! = departureDate?

offer.returnDate! = returnDate?

Post:

letsetoffOffers = new Set <Offers>

// return offer for customer requested one

way

if(isOnWay)

then

for each offer in providedOffers |

offer. departureCity! = departureCity? &&

offer.destinationCity! = destinationCity? &&

offer.departureDate! = departureDate?

providedOffers.add (offer)

else

// return offer for customer requested two

ways

offer.departureCity! = departureCity? &&

offer.destinationCity! = destinationCity? &&

offer.departureDate! = departureDate?

offer.returnDate! = returnDate?

providedOffers.add (offer)

Secondary Input

Acquisition:requestOfferFrombroker

in:

departureCity?: String

destinationCity?: String

departureDate?: String

returnDate?: String

isOneWay?: Boolean

out:

176

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

SetOfOffersFromBroker

Collaborate(s):setOfbroker

service:

getOffers()

description:

Obtain offers from broker for a customer

requested trip.

To describe the process, the trip information
inputs are received and checked by system. Then,
an internal operation will be invoked to specify the
secondary input. The result will be validated and
finally add

the

matched offer to the set of offers.
The customer will then

receive that offer.

By above specification, reject all offers atomic
use case can

be specified in much detail in [11]

4)

Concept of Three-Party Interaction Blocks

Introducing a three-party interaction building
block technique (which may involves three
different actors such as user, system and external
party)

will assist in building a third atomic use
case specification. Place Booking atomic use case
involves different complicated interactions with an
external entity such as bank and a broker agent.

The Place Booking Atomic Use Case

process
will be as follows:

1.

System requires further validation of the
customer’s

credit card through the bank.

2.

Based on the bank confirmation, if positive
response was sent to the system, then the
system will interact with the corresponding
broker agent to book the trip.

3.

Finally,

the

system will interact with the
specified corresponding broker agent in
order to reject offers

that were not selected.

Obviously, a Place Booking Atomic Use Case

can be split into three different internal operations,
which are:

1.

Confirm credit card, which interacts with
external bank services.

2.

Confirm booking, which interacts with
broker agent.

3.

Reject unselected offers,

which interact
with corresponding broker agents.

As we consider the above operations as part of
the system, certain interactions between confirm
credit card, confirm booking and reject unselected
offers operations could be an important aspect of

thePlace Booking Atomic Use Case. Thus,
sometime we have to validate the result sent

from
operations to other or carry out certain tasks to
ensure that the results are verified. Namely, offers
should be filtered before sending them to broker
agents

or corresponding brokers. Each

offer must
be identified in order to reject unselected offers.

Obviously, the problem of specifying the
interactions of sub-processes

(confirm credit card,
confirm booking, etc.) will be solved

by applying
the concept of three party interaction building
blocks

(interaction block for short) because using
only secondary input will not overcome this
dilemma. For clarification, the interaction block
concept means that the Place Booking Atomic Use
Case

will be broken down into three interactions
block that involve:

1.

First block, confirming

credit that starts
when system receives the customer credit
details,

inputs those details and ends after
receiving credit confirmation from bank.

2.

Second block, confirms

the

booking that
starts after receiving positive confirmation
from the bank,

then the system sends

booking confirmation through the related
broker agent.

3.

Third block rejects

unselected offers that
start after confirming the booking,

and then
the system sends

rejected offers to be
processed by the related broker agent.

By examined above interaction blocks, certain
general attributes can be used to recognize
interaction blocks.

Interaction blocks should receive

inputs
from users and inputs will be validated
(preconditions).

Interaction

blocks will receive and validate
the secondary inputs.

Finally, further checking (postcondition)
and sending respond to user will be
performed by interaction blocks.

After introducing the

interaction block, we can
specify the atomic use case a long with its
interaction blocks and the order of interaction that
it uses.

For example, assume there are two
interactions blocks. We need to specify the order

177

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

of using them, supposing that

the

output of

the

earlier interaction block will be an input for the
other interaction block.

Applying the original concept of the atomic use
case companied with introducing the

secondary
input concept will assist in building

the
specification of interaction

blocks.

Interaction block:

Confirm Credit

in :

cardHolder? : String

creditCardNumber? : String

creditCardExDate? : String

paymentAmount? : Real

out:

creditConfirmation! : Boolean

pre:

// creditCardNumber? must be 16 digits

size(creditCardNumber?) == 16

// creditCardExDate? must be after today

(system) date

creditCardExDate? >= System.Date

secondary in:

confirmCredit?: checkCrditCard (

cardHolder?,creditCardNumber?,

creditCardExDate?,paymentAmount?)

secondary pre:

 // confirmCredit? returns true

confirmCredit == true

post:

confirmCredit! = confirmCredit?

Secondary input acquisition:

check credit

card

In:

creditHolder: String

creditcardNumber: String

creditCaedExDate: String

out:confirmCredit: Boolean

collaborate(s):

Banks

Description:

 To verify the customer credit card

through corresponding broker agent that

interacts with related bank.

Interaction block:

Confirm booking

in:

offer?: Offers

custName?: String

custPassportNo?: String

out:

confirmedBooking!: boolean

pre:

none

secondary in:

confirmedBooking? :

confirmBookingToBroker(offer?, custName?,

custPassportNo?);

secondary pre:

none

post:

confirmedBooking! = confirmedBooking?

Secondary input acquisition:

confirm Booking

To Broker

in:

offer?: Offers

custName?: String

custPassportNo?: String

out:

confirmedBooking!: boolean

collaborate(s):

one corresponding broker

services:confirmBookingToBroker

description:

To call confirmBookingToBroker operation via

one corresponding broker to confirm the

booking

Finally, the last atomic use case,

which is place
booking,

can be specified by its input and output
and the order of the interaction block that
occurred.

The Place Booking Atomic Use Case

specification is as follows:

Atomic use case:

Place Booking

in:

confirmedOffer?: Offers

custName?: String

custPassportNo?: String

creditHolder?: String

creditCardNumbe?: String

pymrntAmount?: Real

out:

bookingConfirmation ! : Booking

Flow Description:

1.

System calls checkCrditCard(

cardHolder?, creditCardNumber?,

creditCardExDate?, paymentAmount?

)

and returns confirmCredit!

2.

* System invokes

confirmBookingToBroker(offer?,

custName?, custPassportNo?)

And returns confirmedBooking!

3.

* System will invoke

rejectUnselectedOffers

178

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

(<list>AllOffers?: offer,

bookedOfferId?: String)

The indication of an asterisks (*)

in the above
specifications indicates that two

processes can be
carried out in parallel.

5.

IMPLEMENTATION AND VERIFICATION OF

THE DESIGN

METHOD

In this implementation stage, we will
implement the specification

to ensure that our
specification is validated, using Java SE 6. In

this
section we will presenta UML diagram for classes

that will be implemented and then provide certain
implementation code to explain how our method
works.

Architecture for Travel Agency System
includes airlines companies and banks that both
are not our concerns

just we will focus on the main
system as well as broker agents. However, during
implementation stage, external services such as
airlines and banks should be considered just for
implementation matters. The main class is
TravelagencyBoker that interacts with set of
brokers. In addition, we assigned particular
brokers to deal with specific services for example
broker1 can deals with airline1. Moreover, brokers
who interact with airlines services must implement
the airline broker interface as well as brokers who
deal with banks must implement bank broker
interface thus, each broker implements certain
methods that exists in certain interface to
standardize broker methods with our
specifications.

Second important part of implementation stage
will be simulation of SOAP messages to designed
method parameters that will be sent to external
services to unsure that sent information must be
compatible with allowable SOAP data type. In
general, SOAP allows certain data type to be
included

inside either request or respond envelope
and supports primitive types (i.e. int, double),
String and struct type and SOAP does not allow to
pass whole object a long with its behaviors unless
objects must be converted to one of acceptable
data type or to serialize the object into XML.

6.

CONCLUSION

In this paper, we presented a method to design,
analyze and specify web service applications. Our
starting point is the use case descriptions, which
we employ as the main means of capturing the
functional requirements. The specifications are
formally specified. Besides

widely-known
elements such as inputs, outputs, preconditions,
and postconditions, the specifications also make
use of newly introduced elements such as
secondary inputs, three-party interaction blocks;
which are used to capture the communications that
are

specific to the web service nature of the
applications.

We considered the case study of the Travel
Agency System and applied our method to a
comprehensive use case, which consists of several
stages of interaction among the user, the Travel
Agency System,

and external service providers
such as the airline and the banks.

By applying our proposed method, the resulting
specifications are precise and complete with
details to capture the full functionality given in the
use case descriptions. A very important point
about the specifications is that they describe, in
logical platform-independent terms, the precise
communication between various components of
the systems, including the external web services.
Consequently, the specifications allow us to
identify the new web services that need to be
created and how the web services collaborate with
each other. In other words, the specifications are
also a logical design for the composition of the
web services.

We also provide a systematic method to create
a prototype of the specifications. The method is
simple and can be carried out with little cost.
Nevertheless, the prototyping method can serve
two useful purposes: (a) To validate the
specifications; and (b) To demonstrate clearly how
the specifications can be implemented in a chosen
web service. The second purpose is achieved, in
part, by ensuring that the messages to the objects
representing web services are conformant to the
data types and structures allowed by SOAP
messages.

179

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

7.

EVALUATION

As mentioned, Tropos approach is a method
that has been most useful to our aims

because this
approach also starts to design web services from
business requirements. However, as shown in
Chapter 2, the Tropos approach has a number of
disadvantages:

Tropos produces specifications only at a
very high level. A typical outcome of
Tropos is the diagram shown in Figure 21.
Such high-level specifications contain
almost no details that are necessary to give
the specifications precise meanings.

Tropos suggests phases to support
functionality of services without detailed
descriptions of the web services and how
the web services interaction with each
other.

Tropos produces models that are
complicated (see Figure 1), which are hard
to make sense of or to verify (How can we
be confident that the design in Figure 21
would bring about the functionality that is
required).

Compared with Tropos method, our proposed
method has a number of desirable properties:

Our approach is able to describe the
specification much precise and provide
detailed information about how we can
implement the specifications.

Our proposed method provides a clear
guide for Web service developer to identify
the web services, what they have to do
individually, and how they should be
composed to provide the intended behavior.

Our proposed method produces
specifications that are precise and can be
validated against in order to ensure that
they meet the functional requirements.

8.

FUTURE WORKS

The proposed method is work in progress. In
fact, it is very much in its initial development
stage. There is much more investigation that needs

to be done. Further investigations include the
following:

Firstly, during stage of analysis and modeling,
further analysis for system requirements and
specifications should be performed by increasing
the number of services provided by travel agency
and external services to expand the method
capacity.

Secondly, For Travel Agency System Case
study (and others for that matter), additional
requirements should be considered such as time
factor and resource locking constraints (resource
reservation). It is important to observe how these
factors can affect the method and how the method
should be expanded to deal with introduced
factors.

In addition, further investigation can be made
for the verification approach. We could, for
example, provide a number of generic classes that
can be used to prototype specifications more
quickly and in a more standardized manner.

REFERENCES

[1]

W. S. A. working group “Web services architecture, w3c working
group note 11 February 2004." access date 29/7/2008.

[2]

D. Lau and J. Mylopoulos, “Design web services with tropos,” in the
IEEE international conference on Web Services (ICWS’04),

July
2004.

[3]

“A travel agency system, case study for workshop on model-driven
web engineering (mdwe 2005),

http://www.ice.uma.es/av/mdwe2005/thetasexample/.” access date
15/8/2008.

[4]

K. Nguyen and T. Dillon, "Atomic use case-

a concept for precise
modeling of object-oriented information system," in The Ninth
International Conference on Object-Oriented Information System,
(Geneva, Switzerland), 2003.

[5]

A. Dennis, B. H. Wixom, and D. Tegarden, System Analysis and
Design: An Object-

Oriented Approach with UML. John Wiley and
Sons, 2002.

[6]

S. Bennett, J. Skelton, and K. Lunn, Schaum’s outline of UML.
McGraw-Hill, 2001.

[7]

J. Hoffer, J. George, and J. Valacich, Modern Systems Analysis and
Design. Prentice Hall,2005.

[8]

T. N. Nguyen, A Method for Analysis and Modeling of Web Service
Applications and

Their Compositions, Honours Thesis. Department of
Computer Science and Computer Engineering, La Trobe University,
Bundoora, Victoria, 3086, Austraila, 2008. 14

[9]

http://www.soapuser.com/basics3.html

, SOAP user, Access Date 1-
5-2009.

[10]

J. Castro, M. Kolp, and J. Mylopoulos, “Towards requirements-driven
information system engineering: the tropos project,” information
system journal, 2002.

[11]

A. Qahmash, Web Service Design from Business Requirements,
Minor Thesis. Department of Computer Science and Computer
Engineering, La Trobe University, Bundoora, Victoria, 3086,
Austraila, 2009

180

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80205

