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Abstract: 

 In this paper we derive sufficient optimality condition and weak vector saddle point 
theorem and also duality results for non smooth multiobjective fractional programming 
problem have been proved. 
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Introduction:  

Xu described saddle point optimality criteria and established duality theorems in 
terms of generalized Lagrangian functions.  Jeya Kumar defined  - invexity for non-

smooth scalar-valued functions, studied duality theorem for non-smooth optimization 
problems and gave relationships between Saddle Points & optimality.  But no serious 
attempt is made in utilizing the recent developed concept like Saddle Point Theorem 

under v-  --convexity. Hence in this paper an attempt is made to fill the gap by 

developing vector valued functions under v-  --convexity which is generalization of 

the concept of V – convexity and (, )  convexity and establish sufficient optimality 
condition and weak vector saddle point theorems and also duality results for non-
smooth multiobjective fractional programming problems are obtained.  

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T



Definition:  

The following are the definitions of Vector, v-  --convexity -invexity for locally 

Lipschitz functions: 

Definition:-  Let RR
g

f n

i

i :  and hj : R
n  R be locally Lipschitz functions for i = 1, 2, …p, 

and j = 1, 2, ….m, respectively  

(i) pi
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i ......,2,1,   is V-  - -convex with respect to functions  and  

 : Rn x Rn 
 Rn if there exists   i : R

n x Rn  R+ \{ 0 } and i  R, i = 1, 2, …p such that for  

any  x, u  Rn and any i   )(u
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i ,                                       

  i (x, u) 
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(ii) hj, j = 1, 2,…m is V-  - -convex with respect to functions  and   

 : Rn x Rn  Rn if there exist   j  : Rn x Rn  R+ \ { 0 } and Rj  , j = 1, 2, ….m  

Such that for any x, u  Rn and any j  dhj(u).
 
 

j  (x, u) [hj(x) – hj(u)] > j  (x, u) +  j
2

),( ux  

 Let u  x is said to be a weak minimum of (FP) if there exists no xX such that 
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i  , i = 1, 2, …. P  

Formulation 
Primal problem: 
Consider the following non-smooth multi objective fractional programming problems.  

 (FP) :   








 )(

)(

1 xg

xf
MaxMin

i

i

piXx
, 

 subject to  hj(x) < 0,  j = 1, 2, …m, 

 where piRR
g

f n

i

i ...,2,1,:   and hj : R
n  R, i= 1, 2….p and    hj : R

n R,     j = 1, 

2, …m are locally lipschitz function. 
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Dual Problem: - 

 For the problem (FP), consider the dual problem (FD) :  

 (FD)   max 
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j hj (u) > 0, j = 1, 2, …, m 

i > 0, i = 1, 2, …p 

j > 0, j = 1, 2, …m, 

where e = (1, 1, …1)t  Rp 

Sufficiency and Duality Theorems: 

  In this section we show that the generalized karush-kuhn-tucker conditions are 
sufficient for a weak minimum of (FP) 

Theorem: - Let (u, , )  Rn x Rp x Rm  satisfy the generalized karush-kuhn-Tucker 
conditions as follows.  
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hj (u) < 0, j hj (u) = 0 , j = 1, 2, …m, 

i > 0, i = 1, 2, …, p 


t e > 0 

j > 0 , j = 1, 2, ….m 

 If 
i

i

g

f
 is  V-  - -convex and hj is v--convex with respect to the same functions  

and  and  
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0 , then u is weak minimum of (FP).  

Proof :- Since 0   
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 Suppose that u is not a weak minimum of (FP). Then there exists x  X such that  
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 Then, by the v -  - con vexity of hj, we have  
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 since j hj (u) = 0,  j = 1, 2, …, m, we have 



m

j

jjj xhux
1

0)(),(   which 

contradicts the conditions j  (x, u) > 0, j > 0 and hj (x) < 0.  

 Thus u is week minimum of (FP). 

Hence the proof. 

Weak Duality Theorem: 

 Let x be a feasible for (FP) and (u, , ) a feasible for (FD), assume that  
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 From feasibility conditions and j  (x, u) > 0, we have  
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Strong Duality Theorem: 

 Let x   be a weak minimum of (FP) at which constraint qualification is satisfied 

then there exists ),,x(RandR mp   is feasible for (FD).   

 If 
i

i

g

f
 is V-  - -convex and hj is v -  - convex with respect to same function  

and , then ),,x(   is a weak maximum of (FD) 

Proof :- 

 Since x  is weak minimum of (FP) and a constraint qualification is satisfied x , 
from the generalized Karush-Kuhn-Tucker theorem there exist  

 m
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Since i > 0 , i = 1, 2, ….p and + e > 0, 

 we can consider that i  and j  as  
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 Then ),,x(   is feasible for (FD). 

 Since x  is feasible for (FP), it follows from weak duality that   
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 for any feasible u for (FD).  Hence ),,x(   is a weak maximum of (FD). 

Weak Vector Saddle – Point Theorem : 

  In this section, we prove Weak Vector Saddle Point theorem for the non smooth 
multiobjective fractional program (FP) in which functions are locally lipschitz.  For the 

problem (FP), a point (x, , ) is said to be a critical point if, x is a feasible point for (FP), 
and    
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      Where x  Rm and   Rm +. Then, a point ,x( )  Rn x Rm
+   is said to be a weak 

vector Saddle Point if when ever we introduce   L (x, , ) it means that L (x, , ) has p – 

components like  ,)()(
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exhxh
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     i = 1, 2, …p,      j = 1, 2,…m  

L ),( x   > ),( xL    > ),( xL  

for all x  Rn and   Rm
+ 

Theorem Saddle Point Condition:- Let ),,x(   be a critical point of (FP) assume that 

e)x(hλ
)x(g

)x(f
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i   is V-  - -convex with respect to function  and  and  0
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Then ),x(   is a weak vector Saddle Pont  of (FP). 

Proof :- Since ),,x(   is a critical point for (FP), there exists  
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 for any x  Rn ,that is L ),x(L),x(  , for any x  Rn.  

Now,    since )(xh jj  < 0 for any   Rm
+ . 

 m

jjjj Rλanyfor0,)x(hλ(x)hλ


  

Thus, p

jj

i

i

jj

i

i Re)x(hλ
(x)g

(x)f
e)x(hλ

(x)g
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 and hence,  L ),x(L),x(  , for any   Rm
+. 

Therefore, ),x(   is a weak vector Saddle Point of (FP).  

Theorem :-  If there exists mR   such that ),x(   is a weak Vector Saddle Point, then 

x  is a weak minimum of (FP). 

Proof :- Assume that ),x(   is a weak Vector Saddle Point from left of 2nd Equation.  

e)x(hλ
)x(g

)x(f
jj

i

i  > e)x(hλ
)x(g

)x(f
jj

i

i   ,  for any   Rm
+ .   

 Thus e)x(hλ
jj

> )ex(hλ
jj  for any   Rm

+  ,and hence we have  

)x(hλ)x(hλ
jjjj

 , for any   Rm
+            (3) 

Since j can be taken arbitrary large, )x(hj < 0.  Hence 0)( xh jj .   

Let j = 0 in (3), )(xh jj > 0.  Therefore, 0)( xh jj .  Now, from the right 

inequality of (2) equation and )(xh jj  = 0, we have for any feasible x for (FP), 

)x(g

)x(f

i

i >  
(x)g

(x)f

i

i  

Hence x  is a weak minimum for (FP). 

Hence the proof.  
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