Weak Vector Saddle Point Theorem under
 Vector ρ, η - Convexity

G. Sreelatha
Assistant Professor
DBS Engineering College, Kavali-524202,
Andhra Pradesh

Abstract

: In this paper we derive sufficient optimality condition and weak vector saddle point theorem and also duality results for non smooth multiobjective fractional programming problem have been proved.

Key words:
weak vector saddle point, non smooth multiobjective fractional programming, vector ρ η convexity-invexity for locally Lipschitz theorem.

Introduction:

Xu described saddle point optimality criteria and established duality theorems in terms of generalized Lagrangian functions. Jeya Kumar defined ρ - invexity for nonsmooth scalar-valued functions, studied duality theorem for non-smooth optimization problems and gave relationships between Saddle Points \& optimality. But no serious attempt is made in utilizing the recent developed concept like Saddle Point Theorem under v- $\rho-\eta$-convexity. Hence in this paper an attempt is made to fill the gap by developing vector valued functions under $v-\rho-\eta$-convexity which is generalization of the concept of $V-$ convexity and (β, η) convexity and establish sufficient optimality condition and weak vector saddle point theorems and also duality results for nonsmooth multiobjective fractional programming problems are obtained.

Definition:
The following are the definitions of Vector, $v-\rho-\eta$-convexity -invexity for locally Lipschitz functions:

Definition:- Let $\frac{f_{i}}{g_{i}}: R^{n} \rightarrow R$ and $\mathrm{h}_{\mathrm{j}}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$ be locally Lipschitz functions for $\mathrm{i}=1,2, \ldots \mathrm{p}$, and $\mathrm{j}=1,2, \ldots . \mathrm{m}$, respectively
(i) $\frac{f_{i}}{g_{i}}, i=1,2, \ldots \ldots p$ is V - $\rho-\eta$-convex with respect to functions η and $\theta: R^{n} \times R^{n} \rightarrow R^{n}$ if there exists $\alpha_{i}: R^{n} \times R^{n} \rightarrow R_{+} \backslash\{0\}$ and $\rho_{i} \in R, i=1,2, \ldots p$ such that for any $\mathrm{x}, \mathrm{u} \in \mathrm{R}^{\mathrm{n}}$ and any $\xi_{i} \in \partial \frac{f_{i}}{g_{i}}(u)$,

$$
\alpha_{\mathrm{i}}(\mathrm{x}, \mathrm{u})\left(\frac{f_{i}(x)}{g_{i}(x)}-\frac{f_{i}(u)}{g_{i}(u)}\right) \geq \xi_{i} \eta(x, u)+\rho_{i}\|\theta(x, u)\|^{2} .
$$

(ii) $h_{j}, j=1,2, \ldots m$ is $V-\rho-\eta$-convex with respect to functions η and
$\theta: \mathrm{R}^{\mathrm{n}} \times \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ if there exist $\beta_{j}: \mathrm{R}^{\mathrm{n}} \times \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}_{+} \backslash\{0\}$ and $\sigma_{j} \in R, \mathrm{j}=1,2, \ldots . \mathrm{m}$
Such that for any $\mathrm{x}, \mathrm{u} \in \mathrm{R}^{\mathrm{n}}$ and any $\phi_{j} \in \mathrm{dhj}(\mathrm{u})$.

$$
\beta_{j}(\mathrm{x}, \mathrm{u})\left[\mathrm{h}_{\mathrm{j}}(\mathrm{x})-\mathrm{h}_{\mathrm{j}}(\mathrm{u})\right] \geq \phi_{\mathrm{j}} \eta(\mathrm{x}, \mathrm{u})+\sigma_{j}\|\theta(x, u)\|^{2}
$$

Let $\mathrm{u} \in \mathrm{x}$ is said to be a weak minimum of (FP) if there exists no $\mathrm{x} \in \mathrm{X}$ such that $\frac{f_{i}(x)}{g_{i}(x)}<\frac{f_{i}(u)}{g_{i}(u)}, \mathrm{i}=1,2, \ldots . \mathrm{P}$

Formulation

Primal problem:
Consider the following non-smooth multi objective fractional programming problems.

$$
\text { (FP) : } \operatorname{Min}_{x \in X} \operatorname{Max}_{1 \leq i \leq p}\left[\frac{f_{i}(x)}{g_{i}(x)}\right],
$$

subject to $h_{j}(x) \leq 0, j=1,2, \ldots m$,

$$
\text { where } \frac{f_{i}}{g_{i}}: R^{n} \rightarrow R, i=1,2, \ldots p \text { and } \mathrm{h}_{\mathrm{j}}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}, \mathrm{i}=1,2 \ldots . \mathrm{p} \text { and } \quad \mathrm{h}_{\mathrm{j}}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}, \quad \mathrm{j}=1 \text {, }
$$

$2, \ldots \mathrm{~m}$ are locally lipschitz function.

Dual Problem: -

For the problem (FP), consider the dual problem (FD) :
(FD) $\max \left[\frac{f_{i}(u)}{g_{i}(u)}\right]$

$$
\begin{gathered}
\text { subject to } \mathrm{O} \in \sum_{i=1}^{p} \tau_{i} \partial\left[\frac{f_{i}(u)}{g_{i}(u)}\right]+\sum_{j=1}^{m} \lambda_{j} \partial[h j(u)] \\
\lambda_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\mathrm{u}) \geq 0, \mathrm{j}=1,2, \ldots, \mathrm{~m} \\
\tau_{\mathrm{i}} \geq 0, \mathrm{i}=1,2, \ldots \mathrm{p} \\
\lambda_{\mathrm{j}} \geq 0, \mathrm{j}=1,2, \ldots \mathrm{~m}
\end{gathered}
$$

where $\mathrm{e}=(1,1, \ldots 1)^{\mathrm{t}} \in \mathrm{R}^{p}$

Sufficiency and Duality Theorems:

In this section we show that the generalized karush-kuhn-tucker conditions are sufficient for a weak minimum of (FP)

Theorem: - Let $(u, \tau, \lambda) \in R^{n} \times R^{p} \times R^{m}$ satisfy the generalized karush-kuhn-Tucker conditions as follows.

$$
\begin{gathered}
\mathrm{O} \in \sum_{i=1}^{p} \tau_{i} \partial\left[\frac{f_{i}(u)}{g_{i}(u)}\right]+\sum_{j=1}^{m} \lambda_{j} \partial[h j(u)] \\
\mathrm{h}_{\mathrm{j}}(\mathrm{u}) \leq 0, \lambda_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\mathrm{u})=0, \mathrm{j}=1,2, \ldots \mathrm{~m}, \\
\tau_{\mathrm{i}} \geq 0, \mathrm{i}=1,2, \ldots, \mathrm{p} \\
\tau^{\mathrm{t}} \mathrm{e}>0 \\
\lambda_{\mathrm{j}} \geq 0, \mathrm{j}=1,2, \ldots \mathrm{~m}
\end{gathered}
$$

If $\frac{f_{i}}{g_{i}}$ is V - ρ - η-convex and hj is v - σ-convex with respect to the same functions η and θ and

$$
\sum_{i=1}^{p} \tau_{i} p_{i}+\sum_{j=1}^{m} \lambda_{j} \sigma_{j} \geq 0, \text { then } \mathrm{u} \text { is weak minimum of (FP). }
$$

Proof :- Since $0 \in \sum_{i=1}^{p} \tau_{i} \partial\left[\frac{f_{i}(u)}{g_{i}(u)}\right]+\sum_{j=1}^{m} \lambda_{j} \partial[h j(u)]$, there exist

$$
\begin{align*}
& \xi_{i} \in \partial\left[\frac{f_{i}(u)}{g_{i}(u)}\right] \text { and } \phi j \in \partial h j(u) \text { such that } \\
& \sum_{i=1}^{p} \tau_{i} \xi_{i}+\sum_{j=1}^{m} \lambda_{j} \phi_{j}=0 \tag{4.1}
\end{align*}
$$

Suppose that u is not a weak minimum of (FP). Then there exists $x \in X$ such that

$$
\frac{f_{i}(x)}{g_{i}(x)}<\frac{f_{i}(u)}{g_{i}(u)}, \mathrm{i}=1,2, \ldots . \mathrm{p}
$$

since

$$
\begin{gathered}
\alpha_{\mathrm{i}}(\mathrm{x}, \mathrm{u})>0 \text { we have } \\
\alpha_{i}(x, u) \frac{f_{i}(x)}{g_{i}(x)}<\alpha_{i}(x, u) \frac{f_{i}(u)}{g_{i}(u)}, i=1,2, \ldots p
\end{gathered}
$$

by the V - ρ - η-convex of $\frac{f_{i}}{g_{i}}$, for all i ,

$$
\xi_{i} \eta(x, u)+\rho_{i}\|\theta(x, u)\|^{2}<0 \text { for each } \xi_{i} \in \partial\left[\frac{f_{i}(u)}{g_{i}(u)}\right]
$$

Hence, we have

$$
\sum_{i=1}^{p} \tau_{i} \xi_{i} \eta(x, u)+\sum_{i=1}^{p} \tau_{i} \rho_{i}\|\partial(x, u)\|^{2}<0
$$

Since $\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} \lambda_{j} \sigma_{j} \geq 0$ it follows from (1)

$$
\sum_{j=1}^{m} \lambda_{j} \phi_{j} \eta(x, u)+\sum_{j=1}^{m} \lambda_{j} \sigma_{j}\|\theta(x, u)\|^{2}>0
$$

Then, by the v- σ - con vexity of h_{j}, we have

$$
\sum_{j=1}^{m} \beta_{j}(x, u)\left[\lambda_{j} h_{j}(x)-\lambda_{j} h_{j}(u)>0\right]
$$

since $\lambda_{\mathrm{j}} \mathrm{h}_{\mathrm{j}}(\mathrm{u})=0, \mathrm{j}=1,2, \ldots, \mathrm{~m}$, we have $\sum_{j=1}^{m} \beta_{j}(x, u) \lambda_{j} h_{j}(x)>0$ which contradicts the conditions $\beta_{j}(\mathrm{x}, \mathrm{u})>0, \lambda_{\mathrm{j}} \geq 0$ and $\mathrm{h}_{\mathrm{j}}(\mathrm{x}) \leq 0$.

Thus u is week minimum of (FP).
Hence the proof.

Weak Duality Theorem:

Let x be a feasible for (FP) and (u, τ, λ) a feasible for (FD), assume that

$$
\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} \lambda_{j} \rho_{j} \geq 0 \text {. If } \frac{f_{i}}{g_{i}} \text { is } \mathrm{V}-\rho-\eta \text {-convex and } \mathrm{h}_{\mathrm{j}} \text { is } \quad \mathrm{V}-\sigma \text {-convex with }
$$

respect to same functions η and θ, then

$$
\frac{\mathrm{f}_{\mathrm{i}}(\mathrm{x})}{\mathrm{g}_{\mathrm{i}}(\mathrm{x})}<\frac{\mathrm{f}_{\mathrm{i}}(\mathrm{u})}{\mathrm{g}_{\mathrm{i}}(\mathrm{u})}
$$

From feasibility conditions and $\beta_{j}(\mathrm{x}, \mathrm{u})>0$, we have
$\beta_{j}(\mathrm{x}, \mathrm{u}) \lambda_{\mathrm{j}} \mathrm{h}_{\mathrm{j}}(\mathrm{x}) \leq \beta_{j}(\mathrm{x}, \mathrm{u}) \lambda_{\mathrm{j}} \mathrm{h}_{\mathrm{j}}(\mathrm{u})$. Then, by th $\mathrm{v}-\sigma$ - convexity of h_{j}, we have

$$
\lambda_{j} \phi_{j} \eta(x, u)+\lambda_{\mathrm{j}} \sigma_{j}\|\theta(x, u)\|^{2} \leq 0
$$

for each $\phi_{\mathrm{j}} \in \partial h_{j}(u)$. Hence we have

$$
\begin{gathered}
\sum_{j=1}^{m} \lambda_{j} \phi_{j} \eta(x, u)+\sum_{j=1}^{m} \lambda_{j} \sigma_{j}\|\theta(x, u)\|^{2} \leq \text { for each } \phi_{j} \in \partial h_{j}(u) . \\
\text { Since } O \in \sum_{j=1}^{p} \tau_{j} \partial\left[\frac{f_{i}(u)}{g_{i}(u)}\right]+\sum_{j=1}^{m} \lambda_{j} \partial h j(u),
\end{gathered}
$$

There exists $\xi_{i} \in \partial\left[\frac{f_{i}(u)}{g_{i}(u)}\right]$ and $\phi_{j} \in \partial h_{j}(u)$ such that

$$
\sum_{j=1}^{p} \tau_{i} \xi_{i}+\sum_{j=1}^{m} \lambda_{j} \phi_{j} \eta(x, u)=0
$$

Hence, from the assumption $\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} \lambda_{j} \rho_{j} \geq 0$
We have,

$$
\sum_{j=1}^{p} \lambda_{i} \xi_{i} \eta(x, u)+\sum_{i=1}^{p} \tau_{i} \rho_{i}\|\theta(x, u)\|^{2} \geq 0
$$

from the $\mathrm{V}-\rho-\eta$-convex of $\frac{f i}{g i}$, we have

$$
\sum_{i=1}^{p} \alpha_{i}(x, u)\left[\tau_{i} \frac{f_{i}(x)}{g_{i}(x)}-\tau_{i} \frac{f_{i}(u)}{g_{i}(u)}\right] \geq 0
$$

Since $\alpha_{i}(x, u)>0, \tau_{i} \geq 0, \tau^{+} e=1$ we have

$$
\frac{f_{i}(x)}{g_{i}(x)} \triangleleft \frac{f_{i}(u)}{g_{i}(u)}
$$

Strong Duality Theorem:

Let $\overline{\mathrm{x}}$ be a weak minimum of (FP) at which constraint qualification is satisfied then there exists $\bar{\tau} \in \mathrm{R}^{\mathrm{p}}$ and $\bar{\lambda} \in \mathrm{R}^{\mathrm{m}} \Rightarrow(\overline{\mathrm{x}}, \bar{\tau}, \bar{\lambda})$ is feasible for (FD).

If $\frac{f_{i}}{g_{i}}$ is $\mathrm{V}-\rho$ - η-convex and hj is $\mathrm{y}-\sigma$-convex with respect to same function η and θ, then $(\bar{x}, \bar{\tau}, \bar{\lambda})$ is a weak maximum of (FD)

Proof :-

Since \bar{x} is weak minimum of (FP) and a constraint qualification is satisfied $\overline{\mathrm{x}}$, from the generalized Karush-Kuhn-Tucker theorem there exist

$$
\begin{aligned}
& \tau_{\mathrm{i}} \in \mathrm{R}^{\mathrm{p}} \text { and } \lambda_{\mathrm{j}} \in \mathrm{R}^{\mathrm{m}} \text { such that } \\
& \qquad \begin{array}{r}
\mathrm{O} \in \sum_{i=1}^{p} \tau_{i} \partial\left[\frac{f_{i}(x)}{g_{i}(\bar{x})}\right]+\sum_{j=1}^{m} \lambda_{j} \partial h_{j}(\bar{x}) \\
\lambda_{j} h_{j}(\bar{x})=0, \mathrm{j}=1,2, \ldots \mathrm{~m} \\
\tau_{\mathrm{i}} \geq 0, \mathrm{i}=1,2, \ldots \mathrm{p} \\
\tau^{+} \mathrm{e}>0 \\
\lambda_{\mathrm{j}} \geq 0, \mathrm{j}=1,2, \ldots \mathrm{~m}
\end{array}
\end{aligned}
$$

$$
\text { Since } \tau_{i} \geq 0, i=1,2, \ldots . p \text { and } \tau^{+} e>0
$$

we can consider that $\bar{\tau} \mathrm{i}$ and $\bar{\tau} \mathrm{j}$ as

$$
\bar{\tau}_{i}=\frac{\tau_{i}}{\sum_{i=1}^{p} \tau_{i}}, \bar{\lambda}_{j}=\frac{\lambda_{j}}{\sum_{i=1}^{p} \tau_{j}}
$$

Then ($\overline{\mathrm{x}}, \bar{\tau}, \bar{\lambda}$) is feasible for (FD).
Since $\overline{\mathrm{x}}$ is feasible for (FP), it follows from weak duality that $\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}<$

$$
\frac{f_{i}(\bar{u})}{g_{i}(\bar{u})}
$$

for any feasible u for (FD). Hence $(\bar{x}, \bar{\tau}, \bar{\lambda})$ is a weak maximum of (FD).

Weak Vector Saddle - Point Theorem :

In this section, we prove Weak Vector Saddle Point theorem for the non smooth multiobjective fractional program (FP) in which functions are locally lipschitz. For the problem (FP), a point (x, τ, λ) is said to be a critical point if, x is a feasible point for (FP), and

$$
\begin{gathered}
\mathrm{O} \in \partial\left[\sum_{i=1}^{p} \tau_{i} \partial\left[\frac{f_{i}(x)}{g_{i}(x)}\right]+\sum_{j=1}^{m} \lambda_{j} h_{j}(x)\right] \\
\lambda_{j} h_{j}(x)=0, \lambda_{\mathrm{j}} \geq 0, \mathrm{j}=1,2, \ldots \mathrm{~m} \\
\tau_{\mathrm{i}} \geq 0, \mathrm{i}=1,2, \ldots \mathrm{p} \\
\tau^{\mathrm{t}} \mathrm{e}=1
\end{gathered}
$$

Note, that

$$
\begin{aligned}
& \qquad \partial\left[\sum_{i=1}^{p} \tau_{i} \frac{f_{i}(x)}{g_{i}(x)}+\sum_{j=1}^{m} \lambda_{j} h_{j}(x)\right]=\sum_{i=1}^{p} \tau_{i} \partial\left\{\left[\frac{f_{i}(x)}{g_{i}(x)}\right]+\sum_{j=1}^{m} \lambda_{j} h_{j}(x)\right\} \\
& \text { Let } \mathrm{L}(\mathrm{x}, \lambda)=\frac{f_{i}(x)}{g_{i}(x)}+\lambda_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\mathrm{x}) \mathrm{e}
\end{aligned}
$$

Where $x \in R^{m}$ and $\lambda \in R^{m}{ }_{+}$. Then, a point $(\bar{x}, \bar{\lambda}) \in R^{n} \times R^{m}$. is said to be a weak vector Saddle Point if when ever we introduce $L(x, \lambda, \mu)$ it means that $L(x, \lambda, \mu)$ has $p-$ components like $\left(\frac{f_{i}(x)}{g_{i}(x)}-\lambda_{j} h_{j}(x)\right)+\mu^{t} h_{j}(x) e, \quad \mathrm{i}=1,2, \ldots \mathrm{p}, \quad \mathrm{j}=1,2, \ldots \mathrm{~m}$

$$
\mathrm{L}(\bar{x}, \lambda) \nRightarrow L(\bar{x}, \bar{\lambda})>\mid L(x, \bar{\lambda})
$$

for all $x \in R^{n}$ and $\lambda \in R^{m}+$
Theorem Saddle Point Condition:- Let $(\bar{x}, \bar{\tau}, \bar{\lambda})$ be a critical point of (FP) assume that $\frac{\mathrm{f}_{\mathrm{i}}(\overline{\mathrm{x}})}{\mathrm{g}_{\mathrm{i}}(\overline{\mathrm{x}})}+\bar{\lambda}^{\tau} \mathrm{h}_{\mathrm{j}}(\overline{\mathrm{x}})$ e is V - ρ - η-convex with respect to function η and θ and $\sum_{i=1}^{p} \overline{\tau_{i}} \rho_{i} \geq 0$. Then $(\bar{x}, \bar{\lambda})$ is a weak vector Saddle Pont of (FP).

Proof :- Since $(\bar{x}, \bar{\tau}, \bar{\lambda})$ is a critical point for (FP), there exists

$$
\xi_{i} \in \partial\left[\sum_{i=1}^{p} \frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}+\sum_{j=1}^{m \widehat{\lambda}} \bar{\lambda}_{j} g_{j}(\bar{x})\right]
$$

such that

$$
\begin{gathered}
\sum_{\mathrm{i}=1}^{\mathrm{p}} \bar{\tau}_{\mathrm{i}} \xi_{\mathrm{i}}=0 \quad \text { since } \sum_{\mathrm{i}=1}^{\mathrm{p}} \bar{\tau}_{\mathrm{i}} \rho_{\mathrm{i}} \geq 0 \\
\sum_{i=1}^{p} \tau_{i} \xi_{i} \eta(x, \bar{x})+\sum_{i=1}^{p} \bar{\tau}_{i} \rho_{i}\|\theta(x, \bar{x})\|^{2} \geq 0
\end{gathered}
$$

Then, by the V- ρ - invexity of $\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}+\bar{\lambda}^{t} h_{j}(\bar{x}) e$,
we have $\sum_{i=1}^{p} \alpha_{i}(x, \bar{x}) \bar{\tau}_{i}\left[\frac{f_{i}(x)}{g_{i}(x)}-\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}\right]+\left[\bar{\lambda}_{j} h_{j}(x)-\bar{\lambda}_{j} h_{j}(\bar{x})\right] \geq 0 \quad$ for any $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$. Since α_{i} $(\mathrm{x}, \overline{\mathrm{x}})>0, \bar{\tau}_{i} \geq 0$ and $\bar{\tau}^{\mathrm{t}} \mathrm{e}=1$

$$
\begin{equation*}
\frac{\mathrm{f}_{\mathrm{i}}(\overline{\mathrm{x}})}{\mathrm{g}_{\mathrm{i}}(\overline{\mathrm{x}})}+\bar{\lambda}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\overline{\mathrm{x}}) \mathrm{e}>\frac{\mathrm{f}_{\mathrm{i}}(\mathrm{x})}{\mathrm{g}_{\mathrm{i}}(\mathrm{x})}+\bar{\lambda}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\mathrm{x}) \mathrm{e} \tag{2}
\end{equation*}
$$

for any $x \in R^{n}$, that is $L(\bar{x}, \bar{\lambda})>L(x, \bar{\lambda})$, for any $x \in R^{n}$.
Now, since $\lambda_{j} h_{j}(\bar{x}) \leq 0$ for any $\lambda \in \mathrm{R}^{\mathrm{m}}{ }_{+}$.

$$
\bar{\lambda}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\mathrm{x})-\bar{\lambda}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\overline{\mathrm{x}}) \geq 0, \text { for any } \lambda \in \mathrm{R}_{+}^{\mathrm{m}}
$$

Thus, $\frac{f_{i}(x)}{g_{i}(x)}+\bar{\lambda}_{j} h_{j}(\bar{x}) e-\left(\frac{f_{i}(x)}{g_{i}(x)}+\bar{\lambda}_{j} h_{j}(\bar{x}) e\right) \in R_{+}^{p}$
and hence, $L(\bar{x}, \lambda)>L(\bar{x}, \bar{\lambda})$, for any $\lambda \in R^{m}{ }_{+}$.
Therefore, $(\bar{x}, \bar{\lambda})$ is a weak vector Saddle Point of (FP).
Theorem :- If there exists $\bar{\lambda} \in \mathrm{R}_{+}^{\mathrm{m}}$ such that $(\overline{\mathrm{x}}, \bar{\lambda})$ is a weak Vector Saddle Point, then \bar{x} is a weak minimum of (FP).

Proof :- Assume that $(\bar{x}, \bar{\lambda})$ is a weak Vector Saddle Point from left of $2^{\text {nd }}$ Equation.

$$
\frac{\mathrm{f}_{\mathrm{i}}(\overline{\mathrm{x}})}{\mathrm{g}_{\mathrm{i}}(\overline{\mathrm{x}})}+\lambda_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\overline{\mathrm{x}}) \mathrm{e} \ngtr \frac{\mathrm{f}_{\mathrm{i}}(\overline{\mathrm{x}})}{\mathrm{g}_{\mathrm{i}}(\overline{\mathrm{x}})}+\overline{\lambda_{\mathrm{j}}} \mathrm{~h}_{\mathrm{j}}(\overline{\mathrm{x}}) e \text {, for any } \lambda \in \mathrm{R}_{+}^{\mathrm{m}} .
$$

Thus $\lambda_{\mathrm{j}} \mathrm{h}_{\mathrm{j}}(\overline{\mathrm{x}}) \mathrm{e} \ngtr \bar{\lambda}_{\mathrm{j}} \mathrm{h}_{\mathrm{j}}(\overline{\mathrm{x}}) \mathrm{e}$ for any $\lambda \in \mathrm{R}_{+}^{m}$, and hence we have
$\lambda_{j} h_{j}(\bar{x}) \leq \bar{\lambda}_{j} h_{j}(\bar{x})$, for any $\lambda \in R^{m}{ }_{+}$
Since λ_{j} can be taken arbitrary large, $\mathrm{hj}_{\mathrm{j}}(\overline{\mathrm{x}}) \leq 0$. Hence $\lambda_{j} h_{j}(\bar{x}) \leq 0$.
Let $\lambda_{\mathrm{j}}=0$ in (3), $\bar{\lambda}_{j} h_{j}(\bar{x}) \geq 0$. Therefore, $\lambda_{j} h_{j}(\bar{x})=0$. Now, from the right inequality of (2) equation and $\bar{\lambda}_{j} h_{j}(\bar{x})=0$, we have for any feasible x for (FP),

$$
\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}>\frac{f_{i}(x)}{g_{i}(x)}
$$

Hence \bar{x} is a weak minimum for (FP).
Hence the proof.

REFERENCES:

1. $\mathrm{Xu}, \mathrm{Z.K}$. (1988). Saddle point type optimality criteria for generalized fractional programming. J. Opt. Theory and Appl. 57, 189-196.
2. Jeya kumar, V. (1998). Equivalence saddle points and optima and duality for a class of non-convex problem. Journal of mathematical analysis and Application, 130: 334-343.
3. Varalakshmi, G and Reddy, P.R.S (2007). Multi-objective fractional minimax problem involving locally lipschitz functions v-invexty. International conference on statistical science, OR \& IT, Tirupati; OR: 47.
