Weak Vector Saddle Point Theorem under

Vector ρ,η - Convexity

G. Sreelatha

Assistant Professor

DBS Engineering College, Kavali-524202,

Andhra Pradesh

Abstract:

In this paper we derive sufficient optimality condition and weak vector saddle point theorem and also duality results for non smooth multiobjective fractional programming problem have been proved.

Key words:

weak vector saddle point, non smooth multiobjective fractional programming, vector ρ - η convexity-invexity for locally Lipschitz theorem.

Introduction:

Xu described saddle point optimality criteria and established duality theorems in terms of generalized Lagrangian functions. Jeya Kumar defined ρ - invexity for non-smooth scalar-valued functions, studied duality theorem for non-smooth optimization problems and gave relationships between Saddle Points & optimality. But no serious attempt is made in utilizing the recent developed concept like Saddle Point Theorem under v- ρ - η -convexity. Hence in this paper an attempt is made to fill the gap by developing vector valued functions under v- ρ - η -convexity which is generalization of the concept of V – convexity and (β , η) convexity and establish sufficient optimality condition and weak vector saddle point theorems and also duality results for non-smooth multiobjective fractional programming problems are obtained.

Definition:

The following are the definitions of Vector, v- ρ - η -convexity -invexity for locally Lipschitz functions:

Definition:- Let $\frac{f_i}{g_i}$: $R^n \to R$ and h_j : $R^n \to R$ be locally Lipschitz functions for i = 1, 2, ...p, and j = 1, 2, ...m, respectively

(i)
$$\frac{f_i}{g_i}$$
, $i = 1, 2, \dots, p$ is V- ρ - η -convex with respect to functions η and

 θ : $\mathbb{R}^n \ge \mathbb{R}^n \ge \mathbb{R}^n$ if there exists $\alpha_i : \mathbb{R}^n \ge \mathbb{R}_+ \setminus \{0\}$ and $\rho_i \in \mathbb{R}$, i = 1, 2, ...p such that for any $x, u \in \mathbb{R}^n$ and any $\xi_i \in \partial \frac{f_i}{g_i}(u)$,

$$\alpha_{i}(\mathbf{x},\mathbf{u})\left(\frac{f_{i}(x)}{g_{i}(x)}-\frac{f_{i}(u)}{g_{i}(u)}\right) \geq \xi_{i} \eta(x,u) + \rho_{i} \| \theta(x,u) \|^{2}.$$

(ii) h_j , j = 1, 2,...m is V- ρ - η -convex with respect to functions η and

 $\theta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ if there exist $\beta_j: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+ \setminus \{0\}$ and $\sigma_j \in \mathbb{R}$, j = 1, 2,m

Such that for any $x,\,u\in R^n$ and any $\varphi_j\in dhj(u).$

$$\beta_{j}$$
 (x, u) [h_j(x) - h_j(u)] $\geq \phi_{j} \eta$ (x, u) + $\sigma_{j} \parallel \theta(x, u) \parallel^{2}$

Let $u \in x$ is said to be a weak minimum of (FP) if there exists no $x \in X$ such that $\frac{f_i(x)}{g_i(x)} < \frac{f_i(u)}{g_i(u)}$, i = 1, 2, ..., P

Formulation

Primal problem:

Consider the following non-smooth multi objective fractional programming problems.

(FP) :
$$\underset{x \in X}{Min} \underset{1 \leq i \leq p}{Max} \left[\frac{f_i(x)}{g_i(x)} \right],$$

subject to $h_j(x) \leq 0$, j = 1, 2, ...m,

where
$$\frac{f_i}{g_i}$$
: $R^n \to R$, $i = 1, 2, ...p$ and h_j : $R^n \to R$, $i = 1, 2....p$ and h_j : $R^n \to R$, $j = 1$,

2, ...m are locally lipschitz function.

Dual Problem: -

For the problem (FP), consider the dual problem (FD) :

(FD)
$$\max \left[\frac{f_i(u)}{g_i(u)} \right]$$

subject to $O \in \sum_{i=1}^p \tau_i \partial \left[\frac{f_i(u)}{g_i(u)} \right] + \sum_{j=1}^m \lambda_j \partial \left[hj(u) \right]$
 $\lambda_j h_j(u) \ge 0, j = 1, 2, ..., m$
 $\tau_i \ge 0, i = 1, 2, ..., m$
 $\lambda_j \ge 0, j = 1, 2, ..., m$

where e = $(1, 1, ...1)^t \in R^p$

Sufficiency and Duality Theorems:

In this section we show that the generalized karush-kuhn-tucker conditions are sufficient for a weak minimum of (FP)

Theorem: - Let $(u, \tau, \lambda) \in R^n \times R^p \times R^m$ satisfy the generalized karush-kuhn-Tucker conditions as follows.

$$\begin{split} \mathbf{O} &\in \sum_{i=1}^{p} \tau_{i} \partial \left[\frac{f_{i}(u)}{g_{i}(u)} \right] + \sum_{j=1}^{m} \lambda_{j} \partial \left[hj(u) \right] \\ \mathbf{h}_{j}(\mathbf{u}) &\leq 0, \lambda_{j} \mathbf{h}_{j}(\mathbf{u}) = 0, j = 1, 2, ...m, \\ \tau_{i} &\geq 0, i = 1, 2, ..., p \\ \tau^{t} e &> 0 \\ \lambda_{j} &\geq 0, j = 1, 2,m \end{split}$$

If $\frac{f_i}{g_i}$ is V- ρ - η -convex and hj is v- σ -convex with respect to the same functions η

and $\boldsymbol{\theta}$ and

$$\sum_{i=1}^{p} \tau_{i} p_{i} + \sum_{j=1}^{m} \lambda_{j} \sigma_{j} \ge 0$$
, then u is weak minimum of (FP)

Proof :- Since $0 \in \sum_{i=1}^{p} \tau_i \partial \left[\frac{f_i(u)}{g_i(u)} \right] + \sum_{j=1}^{m} \lambda_j \partial [hj(u)]$, there exist

$$\xi_{i} \in \partial \left[\frac{f_{i}(u)}{g_{i}(u)} \right] and \ \phi_{j} \in \partial h_{j}(u) \text{ such that}$$

$$\sum_{i=1}^{p} \tau_{i}\xi_{i} + \sum_{j=1}^{m} \lambda_{j}\phi_{j} = 0 \qquad (4.1)$$

Suppose that u is not a weak minimum of (FP). Then there exists $x \in X$ such that

$$\frac{f_i(x)}{g_i(x)} < \frac{f_i(u)}{g_i(u)}$$
, i= 1, 2,p,

since

$$\alpha_i$$
 (x, u) > 0 we have

$$\alpha_{i}(x,u) \frac{f_{i}(x)}{g_{i}(x)} < \alpha_{i}(x,u) \frac{f_{i}(u)}{g_{i}(u)}, i = 1, 2, ..., p$$

by the V- ρ - η -convex of $\frac{f_i}{g_i}$, for all i,

$$\xi_{i}\eta(x,u) + \rho_{i} \parallel \theta(x,u) \parallel^{2} < 0 \text{ for each } \xi_{i} \in \partial \left[\frac{f_{i}(u)}{g_{i}(u)}\right]$$

Hence, we have

$$\sum_{i=1}^{p} \tau_{i} \xi_{i} \eta(x, u) + \sum_{i=1}^{p} \tau_{i} \rho_{i} \| \partial(x, u) \|^{2} < 0$$

Since $\sum_{i=1}^{p} \tau_i \rho_i + \sum_{j=1}^{m} \lambda_j \sigma_j \ge 0$ it follows from (1)

$$\sum_{j=1}^{m} \lambda_{j} \phi_{j} \eta(x, u) + \sum_{j=1}^{m} \lambda_{j} \sigma_{j} \| \theta(x, u) \|^{2} > 0$$

Then, by the v - σ - con vexity of $h_{j},$ we have

$$\sum_{j=1}^{m} \beta_{j}(x, u) \left[\lambda_{j} h_{j}(x) - \lambda_{j} h_{j}(u) > 0 \right]$$

since
$$\lambda_j$$
 h_j (u) = 0, j = 1, 2, ..., m, we have $\sum_{j=1}^m \beta_j(x,u) \lambda_j h_j(x) > 0$ which

contradicts the conditions β_j (x, u) > 0, $\lambda_j \ge 0$ and h_j (x) ≤ 0 .

Thus u is week minimum of (FP).

Hence the proof.

Weak Duality Theorem:

Let x be a feasible for (FP) and (u, τ , λ) a feasible for (FD), assume that

$$\sum_{i=1}^{p} \tau_{i} \rho_{i} + \sum_{j=1}^{m} \lambda_{j} \rho_{j} \ge 0. \text{ If } \frac{f_{i}}{g_{i}} \text{ is } \text{V-} \rho \text{ -} \eta \text{-convex and } h_{j} \text{ is } \text{ } \textbf{v} \text{ -} \sigma \text{ -convex with}$$

respect to same functions η and θ , then

$$\frac{f_i(x)}{g_i(x)} < \frac{f_i(u)}{g_i(u)}$$

From feasibility conditions and β_j (x, u) > 0, we have

$$\begin{split} \beta_{j}(\mathbf{x},\mathbf{u})\,\lambda_{j}\mathbf{h}_{j}(\mathbf{x}) &\leq \beta_{j}\left(\mathbf{x},\,\mathbf{u}\right)\lambda_{j}\,\mathbf{h}_{j}\left(\mathbf{u}\right). \ \text{Then, by th}\,\mathbf{v}\cdot\boldsymbol{\sigma}\cdot\text{ convexity of } \mathbf{h}_{j}, \text{ we have } \\ \lambda_{j}\,\phi_{j}\,\eta\left(\mathbf{x},\,\mathbf{u}\right) + \lambda_{j}\,\sigma_{j}\,\left\|\,\boldsymbol{\theta}(\mathbf{x},\,\mathbf{u})\,\right\|^{2} &\leq 0, \end{split}$$

for each $\phi_j \in \partial h_j(u)$. Hence we have

$$\sum_{j=1}^{m} \lambda_{j} \phi_{j} \eta(x, u) + \sum_{j=1}^{m} \lambda_{j} \sigma_{j} \| \theta(x, u) \|^{2} \leq \text{for each } \phi_{j} \in \partial h_{j}(u).$$

Since
$$\mathbf{O} \in \sum_{j=1}^{p} \tau_{j} \partial \left[\frac{f_{i}(u)}{g_{i}(u)} \right] + \sum_{j=1}^{m} \lambda_{j} \partial h j(u),$$

There exists $\xi_i \in \partial \left[\frac{f_i(u)}{g_i(u)} \right]$ and $\phi_j \in \partial h_j(u)$ such that

$$\sum_{j=1}^{p} \tau_i \xi_i + \sum_{j=1}^{m} \lambda_j \phi_j \eta (x, u) = 0$$

Hence, from the assumption $\sum_{i=1}^{p} \tau_i \ \rho_i + \sum_{j=1}^{m} \lambda_j \ \rho_j \ge 0$

We have,

$$\sum_{j=1}^{p} \lambda_{i} \xi_{i} \eta(x, u) + \sum_{i=1}^{p} \tau_{i} \rho_{i} \left\| \theta(x, u) \right\|^{2} \geq 0$$

from the V- ρ - η -convex of $\frac{fi}{gi}$, we have

$$\sum_{i=1}^{p} \alpha_i(x,u) \left[\tau_i \frac{f_i(x)}{g_i(x)} - \tau_i \frac{f_i(u)}{g_i(u)} \right] \ge 0$$

Since α_i (x, u) > 0, $\tau_i \ge 0$, $\tau^+ e = 1$ we have

$$\frac{f_i(x)}{g_i(x)} \quad \triangleleft \quad \frac{f_i(u)}{g_i(u)}$$

Strong Duality Theorem:

Let \overline{x} be a weak minimum of (FP) at which constraint qualification is satisfied then there exists $\overline{\tau} \in \mathbb{R}^p$ and $\overline{\lambda} \in \mathbb{R}^m \Longrightarrow (\overline{x}, \overline{\tau}, \overline{\lambda})$ is feasible for (FD).

If $\frac{f_i}{g_i}$ is V- ρ - η -convex and hj is v - σ - convex with respect to same function η and θ , then $(\bar{\mathbf{x}}, \bar{\boldsymbol{\tau}}, \bar{\boldsymbol{\lambda}})$ is a weak maximum of (FD)

Proof :-

Since \overline{x} is weak minimum of (FP) and a constraint qualification is satisfied x, from the generalized Karush-Kuhn-Tucker theorem there exist

 $\tau_{_{i}} \in R^{^{p}}$ and $\lambda_{_{i}} \in R^{^{m}}$ such that

$$\mathbf{O} \in \sum_{i=1}^{p} \tau_{i} \partial \left[\frac{f_{i}(x)}{g_{i}(\bar{x})} \right] + \sum_{j=1}^{m} \lambda_{j} \partial h_{j}(\bar{x})$$
$$\lambda_{j} h_{j}(\bar{x}) = 0, j = 1, 2, \dots m$$
$$\tau_{i} \ge 0, i = 1, 2, \dots p$$
$$\tau^{+} e > 0$$
$$\lambda_{j} \ge 0, j = 1, 2, \dots m$$

Since
$$\tau_i \ge 0$$
, i = 1, 2,p and $\tau^+ e > 0$,

we can consider that $\bar{\tau}\,i$ and $\bar{\tau}\,j$ as

$$\overline{\tau}_{i} = \frac{\tau_{i}}{\sum_{i=1}^{p} \tau_{i}}, \overline{\lambda}_{j} = \frac{\lambda_{j}}{\sum_{i=1}^{p} \tau_{j}}$$

Then $(\bar{x}, \bar{\tau}, \bar{\lambda})$ is feasible for (FD).

Since \bar{x} is feasible for (FP), it follows from weak duality that $\frac{f_i(\bar{x})}{g_i(\bar{x})} < \frac{f_i(\bar{x})}{g_i(\bar{x})}$

$$\frac{f_i(u)}{g_i(u)}$$

for any feasible u for (FD). Hence $(\bar{x}, \bar{\tau}, \bar{\lambda})$ is a weak maximum of (FD).

Weak Vector Saddle - Point Theorem :

In this section, we prove Weak Vector Saddle Point theorem for the non smooth multiobjective fractional program (FP) in which functions are locally lipschitz. For the problem (FP), a point (x, τ , λ) is said to be a critical point if, x is a feasible point for (FP), and

$$\mathbf{O} \in \partial \left[\sum_{i=1}^{p} \tau_{i} \ \partial \left[\frac{f_{i}(x)}{g_{i}(x)} \right] + \sum_{j=1}^{m} \lambda_{j} \ h_{j}(x) \right]$$
$$\lambda_{j} \ h_{j}(x) = 0, \ \lambda_{j} \ge 0, \ j = 1, 2, \dots m$$
$$\tau_{i} \ge 0, \ i = 1, 2, \dots p,$$
$$\tau^{t} e = 1$$

Note, that

$$\partial \left[\sum_{i=1}^{p} \tau_{i} \frac{f_{i}(x)}{g_{i}(x)} + \sum_{j=1}^{m} \lambda_{j} h_{j}(x) \right] = \sum_{i=1}^{p} \tau_{i} \partial \left\{ \left[\frac{f_{i}(x)}{g_{i}(x)} \right] + \sum_{j=1}^{m} \lambda_{j} h_{j}(x) \right\}$$

Let L (x, λ) = $\frac{f_{i}(x)}{g_{i}(x)} + \lambda_{j} h_{j}(x) e$,

Where $\mathbf{x} \in \mathbb{R}^{m}$ and $\lambda \in \mathbb{R}^{m}$. Then, a point $(\mathbf{x}, \overline{\lambda}) \in \mathbb{R}^{n} \mathbf{x} \mathbb{R}^{m}$ is said to be a weak vector Saddle Point if when ever we introduce $L(\mathbf{x}, \lambda, \mu)$ it means that $L(\mathbf{x}, \lambda, \mu)$ has $\mathbf{p} - components$ like $\left(\frac{f_{i}(\mathbf{x})}{g_{i}(\mathbf{x})} - \lambda_{j} h_{j}(\mathbf{x})\right) + \mu^{t} h_{j}(\mathbf{x})e$, $\mathbf{i} = 1, 2, ... \mathbf{p}$, $\mathbf{j} = 1, 2, ... \mathbf{m}$ $L(\mathbf{x}, \lambda) \Rightarrow L(\mathbf{x}, \overline{\lambda}) \Rightarrow |L(\mathbf{x}, \overline{\lambda})|$

for all $x \in R^n$ and $\lambda \in R^m_{+}$

Theorem Saddle Point Condition:- Let $(\bar{x}, \bar{\tau}, \bar{\lambda})$ be a critical point of (FP) assume that $\frac{f_i(\bar{x})}{g_i(\bar{x})} + \bar{\lambda}^{\tau} h_j(\bar{x})$ e is V- ρ - η -convex with respect to function η and θ and $\sum_{i=1}^{p} \overline{\tau_i} \rho_i \ge 0$. Then $(\bar{x}, \bar{\lambda})$ is a weak vector Saddle Pont of (FP).

Proof :- Since $(\bar{x}, \bar{\tau}, \bar{\lambda})$ is a critical point for (FP), there exists

$$\xi_{i} \in \partial \left[\sum_{i=1}^{p} \frac{f_{i}\left(\bar{x}\right)}{g_{i}\left(\bar{x}\right)} + \sum_{j=1}^{m} \overline{\lambda}_{j} g_{j}\left(\bar{x}\right) \right]$$

such that

$$\sum_{i=1}^{p} \bar{\tau}_{i} \xi_{i} = 0 \quad \text{since } \sum_{i=1}^{p} \bar{\tau}_{i} \rho_{i} \ge 0$$

$$\sum_{i=1}^{p} \tau \xi_{i} \eta (x, \overline{x}) + \sum_{i=1}^{p} \overline{\tau} \rho_{i} \parallel \theta (x, \overline{x}) \parallel^{2} \ge 0$$

Then, by the V- ρ - invexity of $\frac{f_i(\bar{x})}{g_i(\bar{x})} + \bar{\lambda}^t h_j(\bar{x})e$,

we have $\sum_{i=1}^{p} \alpha_{i}(x, \overline{x}) \overline{\tau}_{i} \left[\frac{f_{i}(x)}{g_{i}(x)} - \frac{f_{i}(\overline{x})}{g_{i}(\overline{x})} \right] + \left[\overline{\lambda}_{j} h_{j}(x) - \overline{\lambda}_{j} h_{j}(\overline{x}) \right] \ge 0$ for any $x \in \mathbb{R}^{n}$. Since $\alpha_{i}(x, \overline{x}) > 0$, $\overline{\tau}_{i} \ge 0$ and $\overline{\tau}^{*} e = 1$

$$\frac{f_{i}(x)}{g_{i}(\bar{x})} + \bar{\lambda}_{j} h_{j}(\bar{x}) e > \frac{f_{i}(x)}{g_{i}(x)} + \bar{\lambda}_{j} h_{j}(x) e$$
(2)

for any
$$x \in R^n$$
, that is L $(\overline{x}, \overline{\lambda}) > L(x, \overline{\lambda})$, for any $x \in R^n$.

Now, since $\lambda_j h_j (\bar{x}) \leq 0$ for any $\lambda \in \mathbb{R}^m_+$.

$$\overline{\lambda}_{j} h_{j}(x) - \overline{\lambda}_{j} h_{j}(\overline{x}) \ge 0$$
, for any $\lambda \in \mathbb{R}^{m}_{+}$

Thus, $\frac{\mathbf{f}_{i}(\mathbf{x})}{\mathbf{g}_{i}(\mathbf{x})} + \overline{\lambda}_{j} \mathbf{h}_{j}(\mathbf{x}) \mathbf{e} - \left(\frac{\mathbf{f}_{i}(\mathbf{x})}{\mathbf{g}_{i}(\mathbf{x})} + \overline{\lambda}_{j} \mathbf{h}_{j}(\mathbf{x}) \mathbf{e}\right) \in \mathbf{R}_{+}^{p}$

 $\text{ and hence, } \quad L(\overline{x},\lambda) > L(\overline{x},\overline{\lambda}) \text{ , for any } \lambda \in \text{R}^{\text{m}}_{\text{ +}}.$

Therefore, $(\bar{x}, \bar{\lambda})$ is a weak vector Saddle Point of (FP).

Theorem :- If there exists $\overline{\lambda} \in \mathbb{R}^{m}_{+}$ such that $(\overline{x}, \overline{\lambda})$ is a weak Vector Saddle Point, then \overline{x} is a weak minimum of (FP).

Proof :- Assume that $(\overline{x}, \overline{\lambda})$ is a weak Vector Saddle Point from left of 2nd Equation.

$$\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})} + \lambda_{j} h_{j}(\bar{x}) e \not\models \frac{f_{i}(\bar{x})}{g_{i}(\bar{x})} + \overline{\lambda_{j}} h_{j}(\bar{x}) e, \text{ for any } \lambda \in \mathbb{R}^{m_{+}}.$$
Thus $\lambda_{j} h_{j}(\bar{x}) e \not\models \overline{\lambda_{j}} h_{j}(\bar{x}) e \text{ for any } \lambda \in \mathbb{R}^{m_{+}}, \text{ and hence we have}$
 $\lambda_{j} h_{j}(\bar{x}) \leq \overline{\lambda_{j}} h_{j}(\bar{x}), \text{ for any } \lambda \in \mathbb{R}^{m_{+}}.$
(3)

Since λ_j can be taken arbitrary large, $hj(x) \leq 0$. Hence $\lambda_j h_j(x) \leq 0$.

Let $\lambda_j = 0$ in (3), $\overline{\lambda}_j h_j(\overline{x}) \ge 0$. Therefore, $\lambda_j h_j(\overline{x}) = 0$. Now, from the right inequality of (2) equation and $\overline{\lambda}_j h_j(\overline{x}) = 0$, we have for any feasible x for (FP),

$$\frac{f_i(x)}{g_i(x)} > \frac{f_i(x)}{g_i(x)}$$

Hence \overline{x} is a weak minimum for (FP).

Hence the proof.

REFERENCES:

- 1. Xu, Z.K. (1988). Saddle point type optimality criteria for generalized fractional programming. J. Opt. Theory and Appl. 57, 189 196.
- 2. Jeya kumar, V. (1998). Equivalence saddle points and optima and duality for a class of non-convex problem. Journal of mathematical analysis and Application, 130: 334-343.
- 3. Varalakshmi, G and Reddy, P.R.S (2007). Multi-objective fractional minimax problem involving locally lipschitz functions v–invexty. International conference on statistical science, OR & IT, Tirupati; OR: 47.

