
Vulnerability in Android Development

Aarushi Arya Rahul Malhotra Dayanand
B.Tech Student B.Tech student Assistant Professor

Dept. of CSE, Dept. of CSE Dept. of CSE

HMRITM, INDIA HMRITM, INDIA HMRITM, INDIA

Abstract— IT industry is focusing on malware and antivirus, we

eliminated that risk using the security we had already. Most of

the malware is removed. Main risk today, is leaky applications

and vulnerable devices. Almost half of Android applications

have at least one high security risk or privacy flaw. This

happened as android made development easy for everyone, not

just for developers, with the help of libraries and tools. Naive

developers are using built in methods like loadUrl and

WebView, without knowing their proper usage, making

applications vulnerable to security risks. Resulting in millions of

free applications being released on the Android market with

serious flaws.

Also, android support the development of third-party

applications. These applications can use the phone’s built in

applications and provide a more personalised experience.

Developers have the freedom to combine applications with web

and use data on the android devices. These flexibilities have

provided open platform for hackers to take advantage of the

threats created. Security has become a major concern. In this

paper, vulnerabilities in web applications are discovered using

analysis tools and ways to mitigate these vulnerabilities are

discussed.

Keywords: Vulnerability, Attacks, Security, Android application

I. INTRODUCTION

Everyone is using android devices, from mobile phones to

television sets. Their applications are available in the Android

market for free. Applications can also be downloaded from

web directly. These applications introduce security threats in

the device, putting user data on risk. Users are not aware of

this risk and install applications from Android market or

websites without the knowledge that an application can

expose the device to multiple risks.

To be able to understand this, we must know how

applications get installed and updated on the device. First,

.apk file is checked by the Android to identify the developer

using the valid digital signature before installing the

application. If the .apk file is valid, permissions asked by the

application are displayed to the user. User can agree and

install the application or user can choose not to install the

application. Then, each application is assigned a unique

Linux user ID and group ID. A specific directory on the

device is created to an application, where its data is stored

and access is provided to permissions generated from the

given ID.

While installing an application, permissions requested by the

application are displayed. User can either accept and install or

go back. This step is done, so that user is aware of the access

application has on his device. It is crucial that the user takes a

calculated risk of using free services provided by the

application in exchange of the access allowed to the

application on user’s device and data.

If an application is installed directly from the web, the digital

signature checking step is skipped. That means if a hacker

publish an update to the application, data can be stolen. In

this case, valuable information will be leaked and misused.

For applications which are downloaded, android provides the

capabilities of removing application from Android Market

and also from devices. This is done to prevent active

circulation of vulnerable application, known as Remote

Application Removal Feature (introduced in June 2010).

In this paper we made the following contributions-

1. Analyse applications using Baksmali tool that can

detect different classes of vulnerabilities in

applications and Wireshark to analyze the network

traffic.

2. Identify vulnerable WebViews and methods.

3. Suggest solutions to mitigate these vulnerabilities.

II. BACKGROUND HISTORY

It is easier to develop Android application, using tools to

develop the GUI. Functionality can be added using built in

libraries or downloading plug-ins. To support these

functionalities, applications use built in functions to collect

and store user data. Hackers exploit these functions and find

vulnerabilities, which later can be used to extract user data

from multiple applications without the permission of the user

or the developer. This issue is even more critical today, as

smart phones contain personal and corporate data. From text

messages to pictures and GPS location. Users feel that smart

phones are secure, however free applications available on the

Android market for free provide gateways to hackers to

misuse the data of the users. To be able to prove this

statement, we found security flaws in application available in

the android market for free.

To do the analysis of applications, we use the open- source

tools available and obtain flow graph of these applications.

Further analyze the URL that can be reached starting from the

initial URL in the application.

III. ANALYSIS

Tools used to analyze android applications are-

1. Dedexer

2. Baksmali

3. Soot

4. Wireshark

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICCCS - 2017 Conference Proceedings

Volume 5, Issue 10

Special Issue - 2017

1

Dedexer

It is used to dissemble DEX files. It is able to read the DEX

format and transform it into assembly-like format. This

format contains Dalvik opcodes, we must understand these

Dalvik opcodes in order to work with the tool. It has some

limitations like the tool does not process the debug and

annotation information in the DEX files[1].

Baksmali

Open source DEX dissembler. It comes with a Dalvik

bytecode assembler(smali). The syntax of Baksmali[8] is

loosely based on Jasmin’s/dedexer’s syntax, supporting full

functionality of DEX format.

Soot

It is a java instrumentation and analysis framework that

support Dalvik bytecode.

Dexpler is a modification of Soot, directly read Dalvik

bytecode and perform analysis and maps Dalvik bytecode

instructions to Jimple(Java sIMPLE) statements[2]. Soot

generates call graph and control flow graph.

Wireshark

It is a free and open source packet analyzer. It is used for

network troubleshooting and analysis. Wireshark is cross-

platform, runs on Linux and Microsoft Windows.

Let us start by describing the security model for mobile web

applications and several classes of vulnerabilities in mobile

web applications.

Three relevant challenges considered in mobile web

applications –

1. APPLICATION – It captures the attack capabilities

of a malicious application running alongside a

trusted application. This application may send

intents to any application installed on the device.

2. NETWORK – It may receive , send or block

messages on the network. As observed in the

application providing free VPN service through

Wireshark that 50mb of data containing the location

information of the user is transferred without any

knowledge.

3. NAVIGATION-RESTRICTED WEB – It is a

variant of a typical web challenge. It may step up

any number of malicious websites and place content

on them.

Methods used to identify the vulnerabilities are following-

1. Finding initial reachable URL’s from application

code – String analysis is done to report values of

parameters to navigation methods like loadUrl. Web

applications access build URLs. String analysis is

built using Soot.

Android application is written in Java and

transformed into Dalvik bytecode. This Dalvik

bytecode can be converted to Java bytecode using

Ded and then static analysis is done using Soot.

We can dissemble Dex files and XML content is

extracted, using Dedexer and Baksmali tools.

Prefix such as http:// is also reported by string

analysis, stating that application is loading content

over insecure connection.

2. Looking into the navigation control implementations

from application code – Application’s

implementation of methods like

shouldOverrideUrlLoading and

shouldInterceptRequest are extracted to create Java

program. When URL is tested, reports are generated

about how these methods would behave if it was

executed in the application. It is more efficient to

extract backward slice of method with respect to any

return statements or calls to navigation methods

using algorithms than

using emulator to run the application and determine

if a WebView is allowed to load a page. Statements

that cannot be executed as standalone Java

executables are removed. Here, we emphasize on the

overall behaviour of the method. We check if the

behaviour is similar in all paths and intents being

called from the application. This pruning step enable

us to execute slices[5] that branch based on

application state for reasons other than controlling

navigation. Slices are built using Soot.

3. Web crawl from initial URL is performed – Now we

have the resources application under test can achieve

by web crawling starting from initial URL. This is

done, so that we can map out the URLs application

uses during its execution. Then we note that how

many of these are malicious URL or may lead to

malicious ones.

We analyzed applications available in the android market and

identified vulnerability classes which are as follows-

1. WEBVIEWS

Some of the major concerns are that the android supports

rendering of web content obtained from the Internet or files

on device in WebView. Methods such as loadUrl, loadData,

postUrl and passing strings containing HTML content are

used. These applications are designed to interact with specific

web content. Developers can prevent unsupported web

resources by implementing callback methods such as

shouldOverrideUrlLoading(before loading new page) and

shouldInterceptRequest(before making any web request).

Application can prevent resources from loading. By

overriding a URL load developer allow applications to

correctly constrain the web content loaded in their application

WebView[4]. This prevents WebView to act on its own when

user clicks a link, which might harm user experience.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICCCS - 2017 Conference Proceedings

Volume 5, Issue 10

Special Issue - 2017

2

2. LOADING UNTRUSTED CONTENT

WebView allow Android developers to support multiple

platforms, allowing HTML content be displayed within the

application. It provides customization specifying how and

what content is displayed. They pose threat to application

security, by allowing web page to access data stored by the

application. WebView may navigate to malicious page and

access sensitive data. Also, if the user is using public network

then man-in-the-middle could launch an attack by injecting

malicious content into the page.

In android version 4.4 or below, WebView contains an

unpatched Universal Cross-Site Scripting vulnerability. Also,

mobile web applications lack a url bar, so users cannot know

the sites they are visiting. Moreover, there is no guarantee

that web content loaded in the WebView is confined to it.

1. LEAKY URL’S

Application can leak information through URL loads that are

overridden in methods like loadUrl. When an application

overrides a URL load and uses an Implicit Intent to load the

resource, application can handle the URL load. If a leaked

URL contains private information then that information is

also leaked along with the URL. Developers might make the

mistake of thinking that it is safe to use Implicit Intent to give

URL to an application. In this case, URL might match a

custom URL scheme but Android does not provide any

protections on custom URL schemes. In relation to mobile

OAuth implementation, Chen et al.[15] discussed a

vulnerability. If an application registers a custom URL

pattern to receive the final callback URL in an OAuth

transaction and uses Implicit Intent to deliver URL then a

malicious application can register the same URL pattern and

steal the OAuth credentials.

IV. MITIGATION

The vulnerabilities discussed above, can be reduced by

following suggestions.

1. App’s Manifest should contain a whitelist of

trusted domains.

2. Developers can safely constrain navigation by

correctlyimplementingshouldOverrideUrlLoadi

ng and shouldInterceptRequest.

3. Application should not depend on correct

navigation control to ensure untrusted content

does not have access to the JavaScript Bridge.

4. Turn off JavaScript in WebView, if it is not

needed.

5. Restrict navigability in WebView, limiting

content loaded via links and not documents.

6. Register to only necessary interfaces, limiting

exposure to API.

V. RESULT

Android devices can be both a target and a tool to carry out

attacks by the hacker. Users must be aware of the risks and

take measures to protect against misuse of their personal data.

Developers also should pay attention to security concerns and

take responsibility of protecting user data. Applications like

appWatchdog use forensics techniques to determine whether

username, passwords, credit card numbers are being

insecurely stored. It provides a basic indication of whether a

mobile app implements security by answering questions like

does the application avoid Man-in-the-Middle attack, is

application protected from session hijacking or how does the

application handle web history and caching.

Users can secure their android devices by installing free

security android application from Sophos or Semantic. Even

if the device is using such software or data is encrypted, it

can still be stolen and misused. So be aware of the risks while

installing applications in the devices.

Developers can follow guidelines as they design, develop and

test their applications.

1. Do not store username and password in plain text in

the device.

2. Do not store credit or debit card details on the

device.

3. Encrypt the sensitive data to make it difficult for

hackers to retrieve information.

4. Do not store encryption key in the device.

5. Send encrypted data over the network.

6. Do not store authentication data after authorization.

7. Mask PAN when displayed.

8. Do not store the PIN(Personal Identification

Number).

RELATED WORK

A number of studies have examined individual vulnerabilities

related to mobile web applications such as Luo et al.[11],

Chin et al.[12] and Georgiev et al.[13]. However, only few

applications were tested focusing one of the vulnerability.

About 100,000 applications were tested and all the

vulnerabilities were conclusively given by Patrick

Mutchler,Adam Doup, John Mitchell,Chris Kruegel and

Giovanni Vigna[13] concluding the following -

UNSAFE NAVIGATION-15% of applications we tested

contain at least one fully computed URL for an Internet

resource. Of these applications, 34% were able to reach

untrusted web content by navigating from initial URL.

UNSAFE CONTENT RETRIEVAL-40% of the applications

we tested had computable scheme for at least one URL. More

than 50% of these applications contained a URL with an

HTTP scheme.

VI. CONCLUSIONS

Android allow interaction between web and application code

without taking necessary measures to ensure that these

applications are safe. Several vulnerabilities in mobile web

applications were identified using Soot and Wireshark.

Finally, changes that must be done to ensure application is

secure were listed.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICCCS - 2017 Conference Proceedings

Volume 5, Issue 10

Special Issue - 2017

3

REFERENCES

[1] BARTEL, A., KLEIN, J., LE TRAON, Y., AND MONPERRUS,

M. Dexpler: Converting Android Dalvik Bytecode to Jimple for

Static Analysis with Soot. In Proceedings of the ACM SIGPLAN

International Workshop on State of the Art in Java Program
Analysis (2012).

[2] VALL´EE-RAI, R., CO, P., GAGNON, E., HENDREN, L.,

LAM, P., AND SUNDARESAN, V. Soot: A Java Bytecode
Optimization Framework. In Proceedings of the Conference of

the Centre for Advanced Studies on Collaborative Research

(1999).
[3] Apktool. code.google.com/p/android-apktool. Accessed: 2014-2-

14.

[4] CHIN, E., AND WAGNER, D. Bifocals: Analyzing WebView
Vulnerabilities in Android Applications. In Proceedings of the

International Workshop on Information Security Applications

(2013).

[5] WEISER, M. Program Slicing. In Proceedings of the 5th

International Conference on Software engineering (1981).

[6] BALL, T., AND HORWITZ, S. Slicing Programs with Arbitrary
ControlFlow. In Proceedings of the International Workshop on

Automated and Algorithmic Debugging (1993).

[7] PALLER, G. Dedexer. http://dedexer.sourceforge.net/.
[8] Smali and baksmali. http://code.google.com/p/smali/.

[9] LUO, T., HAO, H., DU, W., WANG, Y., AND YIN, H. Attacks
onWebView in the Android system. In Proc. of the 27th Annual

Computer Security Applications Conference (2011).

[10] CHESS, B., AND MCGRAW, G. Static analysis for security.
Security & Privacy, IEEE 2, 6 (2004), 76–79.

[11] LUO, T., HAO, H., DU, W., WANG, Y., AND YIN, H. Atacks

on WebView in the Android System. In Proceedings of the 27th
Computer Security Applications Conference (2011).

[12] CHEN, E. Y., PEI, Y., CHEN, S., TIAN, Y., KOTCHER, R.,

AND TAGUE, P. Oauth demystified for mobile application
developers. In Proceedings of the 21st ACM Conference on

Computer and Communications Security (2014).

[13] GEORGIEV, M., JANA, S., AND SHMATIKOV, V. Breaking
and Fixing Origin-Based Acces Control in Hybrid Web/Mobile

Application Frameworks. In Proceedings of the 21st Symposium

on Network and Distributed System Security (2014).
[14] A Large-Scale Study of Mobile Web App Security Patrick

Mutchler,Adam Doup, John Mitchell,Chris Kruegel and Giovanni

Vigna

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICCCS - 2017 Conference Proceedings

Volume 5, Issue 10

Special Issue - 2017

4

