

Vulnerability Assessment of Web Applications

using Hybrid Algorithm

Prof. Smita Krishna Patil, Adarsh Patil, Akhil Penta, Mayur Pardeshi, Rishikesh Salunkhe

Department of Information Technology,

 Atharva college of engineering,

Mumbai, Maharashtra, India

 Abstract—Web vulnerability scanners (WVS) are tools for

discovering vulnerabilities in a web application.However, they

are not 100% accurate. We intend to develop a hybrid

algorithm for detecting web based applications vulnerabilities.

The hybrid algorithm is based on the concept of carefully,

combining desirable features of various components so that

the new algorithm has the ability to discover more

vulnerabilities. However the combination is not done blindly,

it is based on various factors such as optimization and

sophistication among others with an aim of increasing

efficiency.

Keywords—AppScan, BurpSuite, nikto, OWASP,

penetration testing security, security assessment tools, threat

modelling, vulnerability assessment, w3af, web server

I. INTRODUCTION
The number and importance of web applications have

increased rapidly over the years, many organizations have
embraced these technologies to explore new business
opportunities and some companies have been forced to
adopt the electronic commerce by their customers or
competitors.

Web applications have gained popularity and have
become part of our daily lives interaction. Web
applications are present and always accessible on internet.
But, attacker can abuse these web applications through
vulnerabilities present in Application. Attacker can use
several well known techniques using which they can
penetrate the web applications. Security is not a one-time
event [2]. It is insufficient to secure your code just once. A
secure coding initiative must deal with all stages of a
program’s lifecycle. Therefore, manual code inspection or
security audits must be done by highly trained experts, who
are labour-intensive, expensive, and prone to errors. For
this reason, there is need to automate vulnerability
discovery. OWASP conducts security survey every year to
identify the vulnerabilities that have caused attacks and the
top ten vulnerabilities of 2010 are Injection, Cross-Site
Scripting(XSS), Broken Authentication and Session
Management, Insecure Direct Object References, Cross-
Site Request forgery(CSRF), Security Misconfiguration,
Insecure cryptographic Storage, Failure to Restrict URL
Access, Insufficient Transport Layer Protection and
Invalidated Redirects and Forwards[1,2].

II. LITERATURE REVIEW

A. Overview on Vulnerabilities

Detecting vulnerabilities is generally not an easy task, and

not all of the common vulnerabilities can be successfully

detected by automated scanners. As our digital

infrastructure gets increasingly complex and interconnected

the difficulty of achieving application security increases

exponentially [1,2]. We can no longer afford to tolerate

relatively simple security problems like those presented

below.

a. Remote code execution

b. SQL injection

c. Cross Site Scripting (XSS)

d. Insecure Direct data Object

e. Security Misconfiguration

f. Sensitive Data Exposure

g. Missing Function Level Access Control

a. Remote code execution

Improper coding leads to this type of vulnerability. It

allows attacker to run arbitrary system level code on server

and can retrieve any desire information present at server. It

is difficult to discover this vulnerability during penetration

testing process but such problems are often revealed while

doing a source code review [1,2].

b. SQL Injection

SQL injection is a very old approach but it's still popular

among attackers. This technique allows an attacker to

retrieve information from a Web server's database.

Depending on the application's security measures, the

impact of these type of attacks may vary from basic

information disclosure to remote code execution and total

system compromise [1].

c. Cross site scripting

The success of these type of attacks require the victim to

execute a malicious URL or URLs which are crafted in

such a manner to appear to be legitimate at first look. When

visiting such a crafted URL, an attacker can effectively

execute something malicious in the victim's browser. Some

malicious scripts, for example, will be run in the context of

the web site which possesses the XSS bug [2].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

1

d. Insecure data object

Insecure data object comes into picture when web

application shows or exposes some of the internal data to

user. Open Redirects and Directory Traversal are two

classic examples of insecure direct object reference

vulnerability [3].One essential defense is to check access

control. On each use of a direct object reference from an

untreated source, the application should perform an access

control check to ensure the user is authorized for the

requested object or service.One essential defense is to

check access control. On each use of a direct object

reference from an untreated source, the application should

perform an access control check to ensure the user is

authorized for the requested object or service [4].

e. Security misconfiguration

It is equally important to have the software up to date.

Anonymous external attacker as well as user with their own

accounts may attempt to compromise the system. It can

cause all of important data could be stolen or change with

the time. If Directory listing is not disabled on the server

and if attacker discovers the same then the attacker can

simply list directories to find any file and execute it. It is

also possible to get the actual code base which contains all

your custom code and then to find a serious flaws in the

application [5].

f. Sensitive data

Sensitive Data Exposure occurs when an application does

not adequately protect sensitive information. The data can

vary and anything from passwords, session tokens, credit

card data to private health data and more can be

exposed[7]. A few examples would be exposed data that

someone mistakenly uploaded somewhere, weak crypto

that means an attacker would be able to read the data if

they successfully compromised the target and the lack of

headers that prevent browser caching. In short, every

possible way where it would have been possible to better

protect the sensitive data [7].

g. Missing Function Level Access Control

This name suggests, user can spoof the URL to invoke the

hidden or important information display function if they

know how to do that, or they could view the HTML and

JavaScript code of a page to see how to call the function. If

users do this and they can get access to parts of the

application that they shouldn’t then this is a case of

Missing Function Level Access Controls [9].

Table I. Vulnerabilities and Required Scanning Tool

Vulnerability Scanning Tool

Remote Code Execution AppScan, Highly Critical

SQL Injection Vega, AppScan, W3af,
Nikto

Moderate to Highly
Critical

XSS Vega, W3af Less to Moderate
Critical

Insecure Direct Data
Object

AppScan, Nikto Moderately Critical

Security
Misconfiguration

W3af, AppScan Less to Moderate
Critical

Sensitive Data Exposure Nikto Highly Critical

Missing Function

Level Access Control
AppScan,Vega Moderately Critical

B. Vulnerability Scanning Tools

i. APP SCAN

IBM Security Appscan (AppScan) is an automated

dynamic commercial security testing tool AppScan tests

almost 2000 tests but not all tests are necessary. This report

also gives a proper step to take on the vulnerabilities

detected. AppScan comes in several editions to address the

web application security testing needs throughout the

Software Development Life Cycle [16]..

ii. Wikto (Nikto for Windows OS)

There are 3 main sections of the tool: Back-End miner,

Nikto-like functionality and google [15]. Wikto is coded in

C# and requires the .NET platform [14]. Nikto can crawl a

website in the least amount of time. It uses a technique

called mutation [11], whereby it creates combinations of

various HTTP tests together to form an attack, based on the

Web server configuration and the hosted code. Thus, it

finds critical loopholes such as file upload

misconfiguration, improper cookie handling, cross-

scripting errors.

iii. W3af

This open source tool is widely used to scan websites,

mainly because it supports HTTP and HTTPS, and also

provides findings in an interactive fashion. w3af is divided

into two main parts, the core and the plug-ins. The core

coordinates the process and provides features that are

consumed by the plug-ins, which find the vulnerabilities

and exploit them. The plug-ins are connected and share

information with each other using a knowledge base [15].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

2

IV. WORKING

A hybrid algorithm is explained in below diagram. The

main aim of the algorithm is to detection accuracy. The

hybrid algorithm is derived from available algorithms with

a aim is to scanning a vulnerability of web application in

less time period. Although the accuracy may not be

achieved 100%, an effort has been put to raise it above the

available tools. The results of the tests will be standard

with OWASP results which are updated on a regular basis.

The hybrid algorithm is based on the concept of combining

sensible features of various components so that the new

algorithm can determine more vulnerability.

The scanning process involves crawling and parsing and

the identification of the vulnerabilities and repeated until

all the vulnerabilities have been discovered. Once this

process is completed, the analysis is done and finally a

report is displayed showing the discovered vulnerabilities

discovered and their location.

The scanning process includes, crawling and fuzzing. After

the scanning process is completed, the results are submitted

for analysis and a report is displayed.

1. Inspection: This phase focuses on information about

the web application. It acquiring various parameters

available on the source code.

2. Scanning: Once the first phase is completed, the

Scanning process begins, which involves, recognizing

the weaknesses that exist in the web application. The

more the details found on this phase, the more

successful the entire scanning process will be.

3. Vulnerabilities: Vulnerabilities are found based on

various tests included within the algorithm.

4. Analysis: Once the vulnerabilities are discovered they

are analyzed in the next phase. The vulnerabilities will

pass through various test cases.

5. Report: After the analysis report is displayed at the

end of the process. The report generated will be in a

proper format intended to better understanding and

with complete details.

Fig 1. Scanning Web Application

V. EXPECTED OUTPUT

The output will be provided in a proficient manner so that

the process of assessment of vulnerabilities and their

removal can be streamlined for a penetration tester. The

output will be based on various phases of identification,

analysis and tests.

VI. CONCLUSION

This paper provides an approach for developing a web

Application assessment tool using an hybrid algorithm

which can address a wide range of vulnerabilities thereby

trying to incorporate the benefits of various tools & their

beneficiary available in the market.

REFERENCES

[1] Ashwani Garg, Shekhar Singh “A Review on Web Application
Security Vulnerabilities” International Journal of Advanced

Research in Computer Science and Software Engineering Research

Paper, Issue 1, January 2013
[2] Dhanya Pramod, “A Study of Various Approaches to Assess and

Provide Web based Application Security”, International Journal of

Innovation, Management and Technology, Vol. 2, No. 1, February,
2011

[3] Brett Hardin. July 22, 2009. Insecure Direct Object Reference.

Retrieved from http://bretthard.in/post/insecure-direct-object-
reference

[4] Hui Wang. (n.d.). Preventing Insecure Direct Object References In
App Development Retrieved From http://www.cs.tufts.edu/ comp/
116/ archive/fall2014/hwang.pdf

[5] Security Testing - Security Misconfiguration. (n.d.). Retrieved from
https://www.tutorialspoint.com/security_testing/testing_security_mis

configuration.htm
[6] Security Misconfiguration (n.d.) Retrieved From https:// codedx.

com/ security-misconfiguration/

[7] Linus Särud. 2016.07.01. OWASP TOP 10: Sensitive Data Exposure

. Retrieved From https://blog.detectify.com/2016/07/01/owasp-top-
10-sensitive-data-exposure-6/

[8] Josh Hamit. March 27, 2014. Top Ten Web Security Risks:

Sensitive
Data Exposure [web blog post] Retrieved from https://www.

credera. com/blog/technology-insights/open-source- technology-

insights/top-ten-web-security-risks-sensitive-data-exposure-6/
[9] Maurice McMullin. Dec 9 2015. OWASP Top Ten Series: Missing

Function Level Access Control [web blog post]. Retrieved from

https://kemptechnologies.com/blog/owasp-top-ten-series-missing
function-level-access-control

[10] Josh Hamit. March 27, 2014. Top Ten Web Security Risks:

Sensitive Data Exposure [weblog post]. Retrieved from

https://wwwcredera com/ blog/technology-insights/open-

sourcetechnology-in sights/top-ten-web-security-risks-sensitive-

data-exposure- 6/
[11] http://opensourceforu.com/2010/05/website-vulnerabilities-and -

nikto/
[12] http://resources.infosecinstitute.com/14-popular-web-application -

vulnerability-scanners/
[13] http://www-03.ibm.com/software/products/en/appscan-standard
[14] https://github.com/sensepost/wikto
[15] https://www.security-database.com/toolswatch/+-wikto-+.html
[16] http://www.ibm.com/developerworks/library/se-appscan/

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

3

