Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 08, August-2021

Voice Assist and Control through Hidden Markov
Model [HMM] and Natural Language Processing
[NLP]

An Application to Recognize, Interpret and Execute Speech Commands

Mrs. Pooja B S
Assistant Professor: Dept. of Computer Science & Engineering
BNM Institute of Technology
Bengaluru, India

Abstract— The absence of a system where spoken commands
to a computer are standardized, or at least confined to a dialect,
leads to increased complexity in providing speech support. To
combat this problem, we propose to develop: VAAC - Voice
Assist and Control [pronounced /vék/]: an application to
recognize, interpret and execute speech commands across other
applications and programs. To implement such a system,
techniques of Speech Recognition through HMM models and
Natural Language Processing: Entity Extraction by Word
Matching & Co-reference and Anaphora Resolution is
proposed. To enable automated learning, Machine Learning
Techniques of Language Model training, Acoustic Model
training and Phonetic model generation, which improve speech
recognition accuracy are used.

Keywords— Hidden Markov Model, Natural Language
Processing, Entity Extraction, Anaphora Resolution, Acoustic
Model Training, Phonetic Model generation

. INTRODUCTION

Interacting with computers by voice is a complex task
involving speech recognition and natural language
processing. In many cases, it makes sense to provide support
only for a certain set of commands: this is known as
command and control. However, such a system to interpret
and interact through voice commands would provide great
ease of access through command and control.

Command and Control applications are concerned with
providing the user of these systems, the means to control
items within their environment with voice commands
appropriate to the domain. The appliance of command and
control technology may manifest itself in the control of user
interface menus in personal computing desktop applications
or the control of large scale mechanical or electronic and
computing devices. Command and Control to develop a
Voice User Interface for programming assistance is
implemented. A VUI is the interface to any speech
application which relies on technologies like text-to-speech,
speech-to-text, Natural Language Processing and Entity
Extraction to develop a ubiquitous programming assistant.

Many command & control programs do exist, for example
in Home automation, automobile command and military
applications. These are built for very specific applications in
platform specific environments, with large amounts of
development, and training time. These programs are not

scalable and maintainable by the general community. Also,
they do not provide sufficient accuracy when support for a
wider range of commands is necessary.

Most voice assistants do not provide interfaces into other
applications. There is no single program which can take vocal
input and execute commands in the format of an input device.
There is a lack of a dialect for spoken commands to a
computer. We address this problem, and propose VAAC,
which fundamentally is the equivalent of an input device
which takes speech as input and executes commands as
output.

I. SYSTEM DESIGN

A. Proposed Model

In the proposed approach of the implementation of VAAC,
it uses PocketSphinx as the speech recognition engine.
PocketSphinx is an open source toolkit for speech
recognition. The system requires SphinxBase and
SphinxTrain libraries for setting up and training the
PocketSphinx model. It consists of a framework that eases the
creation of a PocketSphinx model for an individual speaker to
perform command and control, and provides a simple
interface to make use of this model to perform basic tasks in
other applications.

The system on initial deployment can support applications
such as: Mozilla Firefox, Visual Studio Code, Gedit, Gnome-
Terminal, Nautilus and will work on Ubuntu 18.04 with the
Gnome3 shell. It works by matching the words in the
command to a list of standard commands supported by the
application. These standard commands will then be translated
into different types of keyboard events before being sent to
the target application via xdotool and other utilities.

IJERTV101S080148

www.ijert.org 288

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 08, August-2021

Config
i | csviies
' '
E { :G:nuer?afon‘ Text Corpus » Recorder
! '
' .
' VAAC_Config ' Speech Corpus
S '
Sphinxbase Sphinxtrain 1—“'"— Grammar
Text . Text o
Keyboard Terminal [«—— Pocketsphinx
Text
Extractor I:
Filters: Command
=> Classification Executor
=> Search
=> Buffer Signals/ Keystrokes

Target Application

Fig 1. Proposed Model for VAAC

The system aims at providing sufficient support to
complement actions performed using other input devices and
enhancing device accessibility by incorporating it in all
computing environments. Following are the vital components
utilized to implement the VAAC system.

i Pocketsphinx: Speech recognition can be useful in
many scenarios such as personal assistant bots, dictation,
voice command-based control systems, audio transcriptions,
quick notes with audio support, voice-based authentication,
etc. PocketSphinx is a library that depends on another library
called SphinxBase which provides common functionality
across all CMUSphinx projects. The CMUSphinx toolkit is a
speech recognition toolkit with various tools used to build
speech applications. CMUSphinx contains several packages
for different tasks and applications.

ii xdotool: It lets to programmatically (or manually)
simulate keyboard input and mouse activity, move, and resize
windows, etc. It does this using X11's XTEST extension and
other XLib functions. There is some support for Extended
Window Manager Hints. Aliases exist for ‘alt’, ‘ctrl’, ‘shift’,
‘super’, and ‘meta’ which all map to Foo L, such as Alt L
and Control_L, etc. In cases where the keyboard does not
actually have the key that want to type, xdotool will
automatically find an unused keycode and use that to type the
key. ‘Command Chaining’ allows the consumption of
pending arguments or until a new xdotool command is seen,
because no xdotool commands are valid keystrokes.

iii NCurses (New Curses): It is a programming library
that provides an application programming interface (API) that
allows the programmer to write text-based user interfaces in a
terminal-independent manner. It is a toolkit for developing
GUI application software that runs under a terminal emulator.
It also optimizes screen changes, in order to reduce the
latency experienced when using remote shells.

iv wmctrl: It is a tool or rather a command that can be
used to interact with an X Window manager that is
compatible with the EWMH/NetWM specification. wmctrl

can query the window manager for information, and request
for certain window management actions to be taken. wmctrl
is controlled entirely by its command line arguments. These
command line arguments are used to specify the action to be
performed (with options that modify behavior) and any
arguments that might be needed to perform these actions.
Only one action can be executed with the invocation of the
wmctrl command.

Initially, the user needs to set up a few resources before
making use of the text corpus facilitated by the application to
make recordings of the corpus. The recordings are made
using internal or external microphones. The grammar file of
the recordings is generated, and the model is set up to train
the VAAC corpus. Use of short phrases is recommended
although the phrases need not be exact commands. The
recordings try to balance the frequency of words so that each
word accounts to equal weights for their accurate
identification.

Notably, the corpus contains a list of commands, specific
to the application supported by the system. Once the model is
trained, the application is ready for use. It expects vocal
inputs which need to be commands within the trained corpus
that are then converted to raw text. From the obtained text,
entities like command and the target application are
extracted. To ensure the exact matching of the entities, word-
matching is used. Efficient algorithms are utilized over sorted
command lists for optimum searching to ensure results in real
time.

Once the application starts running, the user has the
option to either give vocal inputs or type the commands in the
command prompt as a failsafe. The commands are placed in a
buffer from which the target application is extracted first.
This is proceeded by applying certain filters to the text to
classify and search the matching command.

The obtained entities include type of command,
keystroke and the target application which are passed to the
executor module that generates the relevant keystrokes to
facilitate the execution of the command over the respective
target application. Hence the executable command is
generated from the entities by matching the keyboard events
corresponding to the command entity.

The application can be left running in the background for
the user to use it as an assistant while using the supported
applications.

The user can also type ‘help’ followed by the command
name to get the documentation on the usage of that respective
command. To terminate the execution of VAAC in
background, the user can use ‘exit’ command. In case of an
ambiguity, the application makes sure not to disturb the flow
of the user by not executing any junk vocal input detected by
it. The user can also view the commands detected by the
application immediately on the terminal after they speak and
can also check the log file to evaluate the accuracy.

B. Data Flow Diagrams

i DFD Level 0: The input device, generally the
microphone or keyboard provide the initial input to the
VAAC system which identifies signals and keystrokes and
transmits it to the application module to perform necessary
operations.

IJERTV101S080148

www.ijert.org 289

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 08, August-2021

Input Device

Input Signals/Keystrokes
Applications

Fig. 2. Data Flow Diagram Level 0

i DFD Level 1: The process is represented in a higher
detail. The input from the microphone and keyboard in the
form of voice and text is sent to the terminal, which then
converts these signals into textual format and sends it to the
extractor module. The extractor module classifies the text
into entities such as types of commands, key strokes and
target applications. This is then passed through another
extractor module where signals and keystrokes entered are
identified and further sent to the application module to
perform necessary operations.

Keyboard

Types of Commands, Key Strokes, Target Applications

Entities

Signals/Keystrokes

Applications

Fig. 3. Data Flow Diagram Level 1

iii DFD Level 2: The inputs in the form of text and
voice are directed to a buffer, this module converts the input
into textual form which is sent to identify the target
application and to a filter module where the test is classified
and searched for commands. These commands are passed
onto an executor module and finally the signals from this
module is channeled to the application module to perform the
necessary operations.

Keyboard

== Classify Text

spuewIWway

== Search

Applications @

Fig. 4. Data Flow Diagram Level 2

I1l. IMPLEMENTATION

This is the logical conclusion, after evaluating, deciding,
visioning, planning, applying for funds and finding the
financial resources of a project. Technical implementation is
one part of executing a project. This section discusses about
the various algorithms that are used, and the reason behind
using them.

This section elaborates on the functioning and the
operations of the important modules that VAAC is comprised
of, the algorithms and approach used in implementation are
also defined in this section. Following are the modules
implemented -

A. Recorder Module

When the recorder module is initiated, the recorder.py script
prompts a phrase from the corpus and records it into a file in
the recordings folder. If the phrase recorded is a single word,
it will be stored under the
‘recordings/{word}/{word} {n}.wav’ extension. Else if the
phrase recorded is a line from the corpus, it will be stored
under the
‘recordings/{corpus_name}/{line_number} {n}.wav’
extension, where ‘n’ is the nth recording of the phrase
recorded by the module. To initiate recording, the user is
expected to read aloud the prompted phrase into an audio
input device such as a microphone. Relevant options are
displayed to start recording, stop recording, store recording,
re-record without storing and to exit. If one makes any
mistakes when recording it can be skipped using the re-record
while storing option. However, if it is saved by mistake and
one wants to redo it, simply delete the recording, and run
recorder again. It will automatically search for missing files
and prompt the corresponding phrase.

Test mic

Reduce
Noise

Promoted Phrase

Read Aloud

Not Saved

Do not Store

Re-record

B. Setup Module

The Setup Module has the ability to unzip and extract the
contents of ‘TAR****tgz’ file downloaded from Imtool into
‘vaac_model/etc’ extension. The Imtool builds a consistent
set of lexical and language model files for decoders. The
target decoders are the Sphinx family, though any system that
can read ARPA-format files can use them. Currently Imtool is
configured for the English language.

The input to Imtool is a file containing the corpus which
has to be trained. Notably, a corpus file needs to be generated
consisting of all sentences that needs to be recognized by the
decoder. The sentences should be one to a line without any

Fig. 5. Recorder Module

IJERTV101S080148

www.ijert.org 290

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 08, August-2021

punctuations. It also renames the files to have a prefix
vaac_model. This is to easily identify and streamline the

process.

Unzips ouput Converts .im file
from Imtool to Im.dmp file
. . Extract phones
Run Sphinxtrain Setup Script
Copies recordings Copy filler files
A

Generate file IDs
and transcription

Fig. 6. Setup Module

C. Terminal Module

The terminal.py script provides an interface to the client
to use VAAC. One can type into this terminal, or speak into
it. Because of inherent inaccuracies in speech recognition, the
terminal will not prompt messages for commands that do not
make 'sense’. That means, if VAAC cannot understand a
certain command, it will not prompt errors in the terminal.
However, such errors are recorded in the logs.

This module acts as an interface between the target
application and the user. It allows the users to speak their
commands that are entered into the terminal, to search for
commands that available and specific to that application or to
list out generic commands that can be executed on any
application window.

The terminal normally accepts simple, natural language
commands containing words already recorded by the user
during recordings. This means that the quality of recordings
plays a significant role in identifying the words. In case the
words spoken or detected are not a part of the corpus, similar
sounding words from the corpus are referenced.

Run

is command
valid?

Fig. 7. Terminal Module

D. Extractor Module

The extractor module comprises of the Extractor class. This
Extractor class provides various methods to extract and write
words from the commands to run them. There are certain

filters inside this, these filter methods return the matched
command.
The extractor
parameters:

i Browser: Mozilla Firefox.
i Text editor: Gedit.

iii IDE: Visual Studio Code.
iv Terminal: Gnome-terminal.
\% Files: Nautilus.

module assumes the following default

The extractor module accepts the input from the terminal,
evaluates it and determines the target application. It also
detects the command that needs to be performed in that
application.

llnput from terminal

Extractor class

Find target application
Open filter Apply filters Repeat filter
Buffer filter

Execute

Fig. 8. Extractor Module

IVV. RESULTS AND DISCUSSIONS
Following are a set of results and corresponding screenshots
depicting the functioning of VAAC -

A. Test 1: To open an application (example used: Firefox)
The first screenshot is the terminal view after the speech has
been recognized and converted to text. In the terminal
program, the converted text is analyzed to realize the target
application (here, ‘Firefox’) and the action (here, to launch
it).

ubuntu@ubuntu-Inspiron-14-3467: ~/Downloads/vaacmini

File Edit View Search Terminal Help
This is the vaac terminal program.
Type "help" for more information.
> up new

> firefox

Fig. 9. Test window to open an application

The system understands clearly that the application needs to
be launched and performs the action as depicted in the
screenshot as seen in the next page.

IJERTV101S080148

www.ijert.org 291

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 08, August-2021

c e ¢ MO W=

2

@

Q -

meetgoogle ww17.shein gitlab

speech_recognition/pock...

web.whatsa. youtube wikipedia

A

docs.google

OBo v .

{ils e

5.

Fig. 10. Test result of successfully opened application

B. Test 2: Ignoring unwanted commands and performing no
action for the same (example used: VS Code)

Here, we command VAAC to ‘open’ the VS Code. VAAC
unfortunately for the first time does not identify the word
‘open’ and instead recognizes ‘undo’ (a similar sounding
word). Although when spoken the second time, it recognizes
and opens VS Code. Notably, despite of recognizing the word
‘undo’ in place of code, VAAC does not disturb the regular
flow by performing unexpected actions. Since there is no
active application initially when VAAC is run, ‘undo’ does
not make any sense, it is ignored by VAAC.

ubuntu@ubuntu-Inspiron-14-3467: ~/Downloads/vaacmini

rminal Help

Fig. 11. Test window where unwanted command is uttered

VS Code is opened on the second utterance as depicted in the
screenshot below.

5o s

Fig. 12. Tst relt of VS code being opened ignoring unwanted commands

C. Test 3: Testing VAAC within an application (example
used: ‘Firefoz’)

Initially the user commands ‘Firefox’, which is executed, and

the application is launched. The user has multiple browser

windows open and commands ‘rext tab’. VAAC understands

the context and shifts to the next tab.

ubuntu@ubuntu-Inspiron-14-3467: ~/Downloads/vaacmini

File Edit View Search Terminal Help
This is the vaac terminal program.
Type "help" for more information.
> bottom up

> firefox

> copy

> new up
> paste gedit
> new
> new up next up
next
P
> firefox
Esxt tab
|

Fig. 13. Test window of VAAC operating within an application
This is the tab that the user was browsing on initially.

e ola ministryoftesting com Y IND® &=
THESCLUB rea
How would you test voice recognition?
AN Tesang Ttk How To Test
";hu o
. fer 12

Hi Heather, nice 18

o

Fig. 14. Initial

tab view of Firefox before execution of command

This is the screenshot after VAAC executes the “next tab”
command and shifts the browser to the next tab.

1BM Watson N

Testing Strategies For Speech
Applications

Fig. 15. Tab view of Firefox after execution of command

D. Test 4: Testing VAAC within an application (example
used: ‘Firefox’ and gedit)

Initially, the user says ‘Firefox’. VAAC executes it. The user

selects the text in Firefox and give a vocal command ‘copy’.

Internally, VAAC copies it as shown below.

IJERTV101S080148

www.ijert.org

292

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 08, August-2021

Wikipedia, the free encyclopedia - Mozilla Firefox

[

« ll portals

In the news

€OVID-19 pandemic

. ccioss O this day
Archive - By emall - More featured articles
May 13

1373 - English

Fig. 16. Internal view of image copied by VAAC

Did you know ...

ystic Jullan of

VAAC copies the selected text and ignores the word ‘new’
which is not relevant in the current context of the application
that is running.

Fig. 17. Window view of VAAC ignoring commands that are irrelevant to the
context

After ignoring ‘new’, VAAC recognizes ‘paste’ but it still
does not get the right target application from the user.
Although it comes across unnecessary commands, VAAC still
stores the contents and until it recognizes the command
‘paste gedit’ (gedit is the target application) as depicted in the
screenshot below.

ubuntu@ubuntu-Inspiron-14-3467: ~/Downloads/vaacmini

Terminal Hely

Fig. 18. View of VAAC recognizing commands without mentioned target

On recognizing ‘paste gedit’ command, it opens gedit and
pastes the copied text there as shown in the screenshot below.

PlainText » Tab LColds v ms

Fig. 19. Successful execution of command when target épplicaiion is
mentioned

V. PERFORMANCE EVALUATION

Fuzzy matching is a technique used in computer-assisted
translation as a special case of record linkage. It works with
matches that may be less than 100% perfect when finding
correspondences between segments of a text and entries in a
database of previous translations. FuzzyWuzzy is a library of
Python which is used for string matching. Fuzzy string
matching is the process of finding strings that match a given
pattern. It uses Levenshtein Distance to calculate the
differences between sequences.

Binary search is another algorithm, also known as a half-
interval search, is used for computer science to locate a
specified value (key) within an array. For the search to be
binary, the array must be sorted in either ascending or
descending order. Binary search is much faster when
compared to Fuzzy algorithm and hence contributes to the
improvement in performance of VAAC during runtime where
the command needs to be searched from the command lists
and various filters applied once the raw text is obtained from
the terminal.

As evident from the screenshot below, for a constant
number of commands, the binary search turns out to be a
thousand times faster than the Fuzzy search. Notably, both
are applied on a sorted data since Binary search can be
implemented on a sorted data only. This is another reason
why Binary search is faster in this scenario.

ubuntu@ubuntu-Inspiron-14-3467: ~/Desktop/Project/vaac

File Edit View Search Terminal Help

ubuntu@ubuntu-Inspiron-14-

Fuzzy search Average access time: 0.0018410487409163303
len: 633

ubuntu@ubuntu-Inspiron-14-3467:~/Des

Fig. 20. Comparison of access time between Binary Search and Fuzzy Search

IJERTV101S080148

www.ijert.org

293

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 08, August-2021

No. of recordings | No. of occurrences of the | Avg. no. of re-occurrences
per word word in the corpus before recognition

5 10 3

5 20 2

10 10 2

10 20 1

15 10 1

15 20 0

TABLE I: EVALUATION OF COMMAND RECOGNITION AGAINST

THE NUMBER OF RECORDINGS

VI. CONCLUSION

The core intent of VAAC was to develop a Voice User
Interface-based approach for a command & control model
that accepts user input in the form of speech and translates it
to an executable kernel level instruction to provide improved
convenience to the user in terms of device usage, across
various applications. In the course of development of the
project we have gained valuable insights into the software
development cycle, concepts of speech analysis, entity
mapping and some concepts of natural language processing.

(1]

[2]

(3]
[4]

[5]

(6]

(71

REFERENCES

W Walker, P Lamere, P Kwok, B Raj,R Singh, E Gouvea, P Wolf, J
Woelfel, “Sphinx-4: A Flexible Open Source Framework for Speech
Recognition” - CMU Sphinx-4 Speech Recognition System, Technical
Report, 2004.

JR. Evans, W A. Tjoland and L G. Allred, “Achieving a Hands-Free
Computer Interface using Voice Recognition and Speech Synthesis” —
IEEE AES Systems Magazine, 2000.

P Warden, "Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition” - ArXiv, Cornell University, 2018

S Amann, S Proksch ,S Nadi, "FeedBaG: An Interaction Tracker for
Visual Studio" - IEEE 24th International Conference on Program
Comprehension (ICPC), 2016.

T Bulmer, L Montgomery, D Damian, “Predicting Developers’ IDE
Commands with Machine Learning” - MSR 2018 Association for
Computing Machinery, 2018.

H Lee, Y Peirsman, A Chang, N Chambers, M Surdeanu, D Jurafsky,
“Stanford University,Multi-Pass Sieve Coreference Resolution
System”, Stanford University CoONLL Shared Task, 2011.

K Lunuwilage, S Abeysekara, L Witharama, S Mendis and S
Thelijjagoda, "Web Based Programming Tool with Speech
Recognition for Visually Impaired Users”- 11th International
Conference on Software, Knowledge, Information Management and
Applications, 2011

IJERTV101S080148

www.ijert.org

294

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

