
Voice Assist and Control through Hidden Markov

Model [HMM] and Natural Language Processing

[NLP]

An Application to Recognize, Interpret and Execute Speech Commands

Mrs. Pooja B S
Assistant Professor: Dept. of Computer Science & Engineering

BNM Institute of Technology

Bengaluru, India

Abstract— The absence of a system where spoken commands

to a computer are standardized, or at least confined to a dialect,

leads to increased complexity in providing speech support. To

combat this problem, we propose to develop: VAAC - Voice

Assist and Control [pronounced /väk/]: an application to

recognize, interpret and execute speech commands across other

applications and programs. To implement such a system,

techniques of Speech Recognition through HMM models and

Natural Language Processing: Entity Extraction by Word

Matching & Co-reference and Anaphora Resolution is

proposed. To enable automated learning, Machine Learning

Techniques of Language Model training, Acoustic Model

training and Phonetic model generation, which improve speech

recognition accuracy are used.

Keywords— Hidden Markov Model, Natural Language

Processing, Entity Extraction, Anaphora Resolution, Acoustic

Model Training, Phonetic Model generation

I. INTRODUCTION

Interacting with computers by voice is a complex task

involving speech recognition and natural language

processing. In many cases, it makes sense to provide support

only for a certain set of commands: this is known as

command and control. However, such a system to interpret

and interact through voice commands would provide great

ease of access through command and control.

Command and Control applications are concerned with

providing the user of these systems, the means to control

items within their environment with voice commands

appropriate to the domain. The appliance of command and

control technology may manifest itself in the control of user

interface menus in personal computing desktop applications

or the control of large scale mechanical or electronic and

computing devices. Command and Control to develop a

Voice User Interface for programming assistance is

implemented. A VUI is the interface to any speech

application which relies on technologies like text-to-speech,

speech-to-text, Natural Language Processing and Entity

Extraction to develop a ubiquitous programming assistant.

Many command & control programs do exist, for example

in Home automation, automobile command and military

applications. These are built for very specific applications in

platform specific environments, with large amounts of

development, and training time. These programs are not

scalable and maintainable by the general community. Also,

they do not provide sufficient accuracy when support for a

wider range of commands is necessary.

Most voice assistants do not provide interfaces into other

applications. There is no single program which can take vocal

input and execute commands in the format of an input device.

There is a lack of a dialect for spoken commands to a

computer. We address this problem, and propose VAAC,

which fundamentally is the equivalent of an input device

which takes speech as input and executes commands as

output.

II. SYSTEM DESIGN

A. Proposed Model

In the proposed approach of the implementation of VAAC,

it uses PocketSphinx as the speech recognition engine.

PocketSphinx is an open source toolkit for speech

recognition. The system requires SphinxBase and

SphinxTrain libraries for setting up and training the

PocketSphinx model. It consists of a framework that eases the

creation of a PocketSphinx model for an individual speaker to

perform command and control, and provides a simple

interface to make use of this model to perform basic tasks in

other applications.

The system on initial deployment can support applications

such as: Mozilla Firefox, Visual Studio Code, Gedit, Gnome-

Terminal, Nautilus and will work on Ubuntu 18.04 with the

Gnome3 shell. It works by matching the words in the

command to a list of standard commands supported by the

application. These standard commands will then be translated

into different types of keyboard events before being sent to

the target application via xdotool and other utilities.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS080148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 08, August-2021

288

www.ijert.org
www.ijert.org
www.ijert.org

Fig 1. Proposed Model for VAAC

The system aims at providing sufficient support to

complement actions performed using other input devices and

enhancing device accessibility by incorporating it in all

computing environments. Following are the vital components

utilized to implement the VAAC system.

i Pocketsphinx: Speech recognition can be useful in

many scenarios such as personal assistant bots, dictation,

voice command-based control systems, audio transcriptions,

quick notes with audio support, voice-based authentication,

etc. PocketSphinx is a library that depends on another library

called SphinxBase which provides common functionality

across all CMUSphinx projects. The CMUSphinx toolkit is a

speech recognition toolkit with various tools used to build

speech applications. CMUSphinx contains several packages

for different tasks and applications.

ii xdotool: It lets to programmatically (or manually)

simulate keyboard input and mouse activity, move, and resize

windows, etc. It does this using X11's XTEST extension and

other XLib functions. There is some support for Extended

Window Manager Hints. Aliases exist for ‘alt’, ‘ctrl’, ‘shift’,

‘super’, and ‘meta’ which all map to Foo_L, such as Alt_L

and Control_L, etc. In cases where the keyboard does not

actually have the key that want to type, xdotool will

automatically find an unused keycode and use that to type the

key. ‘Command Chaining’ allows the consumption of

pending arguments or until a new xdotool command is seen,

because no xdotool commands are valid keystrokes.

iii NCurses (New Curses): It is a programming library

that provides an application programming interface (API) that

allows the programmer to write text-based user interfaces in a

terminal-independent manner. It is a toolkit for developing

GUI application software that runs under a terminal emulator.

It also optimizes screen changes, in order to reduce the

latency experienced when using remote shells.

iv wmctrl: It is a tool or rather a command that can be

used to interact with an X Window manager that is

compatible with the EWMH/NetWM specification. wmctrl

can query the window manager for information, and request

for certain window management actions to be taken. wmctrl

is controlled entirely by its command line arguments. These

command line arguments are used to specify the action to be

performed (with options that modify behavior) and any

arguments that might be needed to perform these actions.

Only one action can be executed with the invocation of the

wmctrl command.

Initially, the user needs to set up a few resources before

making use of the text corpus facilitated by the application to

make recordings of the corpus. The recordings are made

using internal or external microphones. The grammar file of

the recordings is generated, and the model is set up to train

the VAAC corpus. Use of short phrases is recommended

although the phrases need not be exact commands. The

recordings try to balance the frequency of words so that each

word accounts to equal weights for their accurate

identification.

Notably, the corpus contains a list of commands, specific

to the application supported by the system. Once the model is

trained, the application is ready for use. It expects vocal

inputs which need to be commands within the trained corpus

that are then converted to raw text. From the obtained text,

entities like command and the target application are

extracted. To ensure the exact matching of the entities, word-

matching is used. Efficient algorithms are utilized over sorted

command lists for optimum searching to ensure results in real

time.

Once the application starts running, the user has the

option to either give vocal inputs or type the commands in the

command prompt as a failsafe. The commands are placed in a

buffer from which the target application is extracted first.

This is proceeded by applying certain filters to the text to

classify and search the matching command.

The obtained entities include type of command,

keystroke and the target application which are passed to the

executor module that generates the relevant keystrokes to

facilitate the execution of the command over the respective

target application. Hence the executable command is

generated from the entities by matching the keyboard events

corresponding to the command entity.

The application can be left running in the background for

the user to use it as an assistant while using the supported

applications.

The user can also type ‘help’ followed by the command

name to get the documentation on the usage of that respective

command. To terminate the execution of VAAC in

background, the user can use ‘exit’ command. In case of an

ambiguity, the application makes sure not to disturb the flow

of the user by not executing any junk vocal input detected by

it. The user can also view the commands detected by the

application immediately on the terminal after they speak and

can also check the log file to evaluate the accuracy.

B. Data Flow Diagrams

i. DFD Level 0: The input device, generally the

microphone or keyboard provide the initial input to the

VAAC system which identifies signals and keystrokes and

transmits it to the application module to perform necessary

operations.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS080148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 08, August-2021

289

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 2. Data Flow Diagram Level 0

ii DFD Level 1: The process is represented in a higher

detail. The input from the microphone and keyboard in the

form of voice and text is sent to the terminal, which then

converts these signals into textual format and sends it to the

extractor module. The extractor module classifies the text

into entities such as types of commands, key strokes and

target applications. This is then passed through another

extractor module where signals and keystrokes entered are

identified and further sent to the application module to

perform necessary operations.

Fig. 3. Data Flow Diagram Level 1

iii DFD Level 2: The inputs in the form of text and

voice are directed to a buffer, this module converts the input

into textual form which is sent to identify the target

application and to a filter module where the test is classified

and searched for commands. These commands are passed

onto an executor module and finally the signals from this

module is channeled to the application module to perform the

necessary operations.

Fig. 4. Data Flow Diagram Level 2

III. IMPLEMENTATION

 This is the logical conclusion, after evaluating, deciding,

visioning, planning, applying for funds and finding the

financial resources of a project. Technical implementation is

one part of executing a project. This section discusses about

the various algorithms that are used, and the reason behind

using them.

This section elaborates on the functioning and the

operations of the important modules that VAAC is comprised

of, the algorithms and approach used in implementation are

also defined in this section. Following are the modules

implemented -

A. Recorder Module

When the recorder module is initiated, the recorder.py script

prompts a phrase from the corpus and records it into a file in

the recordings folder. If the phrase recorded is a single word,

it will be stored under the

‘recordings/{word}/{word}_{n}.wav’ extension. Else if the

phrase recorded is a line from the corpus, it will be stored

under the

‘recordings/{corpus_name}/{line_number}_{n}.wav’

extension, where ‘n’ is the nth recording of the phrase

recorded by the module. To initiate recording, the user is

expected to read aloud the prompted phrase into an audio

input device such as a microphone. Relevant options are

displayed to start recording, stop recording, store recording,

re-record without storing and to exit. If one makes any

mistakes when recording it can be skipped using the re-record

while storing option. However, if it is saved by mistake and

one wants to redo it, simply delete the recording, and run

recorder again. It will automatically search for missing files

and prompt the corresponding phrase.

Fig. 5. Recorder Module

B. Setup Module

The Setup Module has the ability to unzip and extract the

contents of ‘TAR****.tgz’ file downloaded from lmtool into

‘vaac_model/etc’ extension. The lmtool builds a consistent

set of lexical and language model files for decoders. The

target decoders are the Sphinx family, though any system that

can read ARPA-format files can use them. Currently lmtool is

configured for the English language.

The input to lmtool is a file containing the corpus which

has to be trained. Notably, a corpus file needs to be generated

consisting of all sentences that needs to be recognized by the

decoder. The sentences should be one to a line without any

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS080148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 08, August-2021

290

www.ijert.org
www.ijert.org
www.ijert.org

punctuations. It also renames the files to have a prefix

vaac_model. This is to easily identify and streamline the

process.

Fig. 6. Setup Module

C. Terminal Module

The terminal.py script provides an interface to the client

to use VAAC. One can type into this terminal, or speak into

it. Because of inherent inaccuracies in speech recognition, the

terminal will not prompt messages for commands that do not

make 'sense'. That means, if VAAC cannot understand a

certain command, it will not prompt errors in the terminal.

However, such errors are recorded in the logs.

This module acts as an interface between the target

application and the user. It allows the users to speak their

commands that are entered into the terminal, to search for

commands that available and specific to that application or to

list out generic commands that can be executed on any

application window.

The terminal normally accepts simple, natural language

commands containing words already recorded by the user

during recordings. This means that the quality of recordings

plays a significant role in identifying the words. In case the

words spoken or detected are not a part of the corpus, similar

sounding words from the corpus are referenced.

Fig. 7. Terminal Module

D. Extractor Module

The extractor module comprises of the Extractor class. This

Extractor class provides various methods to extract and write

words from the commands to run them. There are certain

filters inside this, these filter methods return the matched

command.

The extractor module assumes the following default

parameters:

i Browser: Mozilla Firefox.

ii Text editor: Gedit.

iii IDE: Visual Studio Code.

iv Terminal: Gnome-terminal.

v Files: Nautilus.

The extractor module accepts the input from the terminal,

evaluates it and determines the target application. It also

detects the command that needs to be performed in that

application.

Fig. 8. Extractor Module

IV. RESULTS AND DISCUSSIONS

Following are a set of results and corresponding screenshots

depicting the functioning of VAAC -

A. Test 1: To open an application (example used: Firefox)

The first screenshot is the terminal view after the speech has

been recognized and converted to text. In the terminal

program, the converted text is analyzed to realize the target

application (here, ‘Firefox’) and the action (here, to launch

it).

Fig. 9. Test window to open an application

The system understands clearly that the application needs to

be launched and performs the action as depicted in the

screenshot as seen in the next page.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS080148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 08, August-2021

291

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 10. Test result of successfully opened application

B. Test 2: Ignoring unwanted commands and performing no

action for the same (example used: VS Code)

Here, we command VAAC to ‘open’ the VS Code. VAAC

unfortunately for the first time does not identify the word

‘open’ and instead recognizes ‘undo’ (a similar sounding

word). Although when spoken the second time, it recognizes

and opens VS Code. Notably, despite of recognizing the word

‘undo’ in place of code, VAAC does not disturb the regular

flow by performing unexpected actions. Since there is no

active application initially when VAAC is run, ‘undo’ does

not make any sense, it is ignored by VAAC.

Fig. 11. Test window where unwanted command is uttered

VS Code is opened on the second utterance as depicted in the

screenshot below.

Fig. 12. Test result of VS code being opened ignoring unwanted commands

C. Test 3: Testing VAAC within an application (example

used: ‘Firefoz’)

Initially the user commands ‘Firefox’, which is executed, and

the application is launched. The user has multiple browser

windows open and commands ‘next tab’. VAAC understands

the context and shifts to the next tab.

Fig. 13. Test window of VAAC operating within an application

This is the tab that the user was browsing on initially.

Fig. 14. Initial tab view of Firefox before execution of command

This is the screenshot after VAAC executes the “next tab”

command and shifts the browser to the next tab.

Fig. 15. Tab view of Firefox after execution of command

D. Test 4: Testing VAAC within an application (example

used: ‘Firefox’ and gedit)

Initially, the user says ‘Firefox’. VAAC executes it. The user

selects the text in Firefox and give a vocal command ‘copy’.

Internally, VAAC copies it as shown below.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS080148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 08, August-2021

292

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 16. Internal view of image copied by VAAC

VAAC copies the selected text and ignores the word ‘new’

which is not relevant in the current context of the application

that is running.

Fig. 17. Window view of VAAC ignoring commands that are irrelevant to the

context

After ignoring ‘new’, VAAC recognizes ‘paste’ but it still

does not get the right target application from the user.

Although it comes across unnecessary commands, VAAC still

stores the contents and until it recognizes the command

‘paste gedit’ (gedit is the target application) as depicted in the

screenshot below.

Fig. 18. View of VAAC recognizing commands without mentioned target

On recognizing ‘paste gedit’ command, it opens gedit and

pastes the copied text there as shown in the screenshot below.

Fig. 19. Successful execution of command when target application is

mentioned

V. PERFORMANCE EVALUATION

Fuzzy matching is a technique used in computer-assisted

translation as a special case of record linkage. It works with

matches that may be less than 100% perfect when finding

correspondences between segments of a text and entries in a

database of previous translations. FuzzyWuzzy is a library of

Python which is used for string matching. Fuzzy string

matching is the process of finding strings that match a given

pattern. It uses Levenshtein Distance to calculate the

differences between sequences.

Binary search is another algorithm, also known as a half-

interval search, is used for computer science to locate a

specified value (key) within an array. For the search to be

binary, the array must be sorted in either ascending or

descending order. Binary search is much faster when

compared to Fuzzy algorithm and hence contributes to the

improvement in performance of VAAC during runtime where

the command needs to be searched from the command lists

and various filters applied once the raw text is obtained from

the terminal.

As evident from the screenshot below, for a constant

number of commands, the binary search turns out to be a

thousand times faster than the Fuzzy search. Notably, both

are applied on a sorted data since Binary search can be

implemented on a sorted data only. This is another reason

why Binary search is faster in this scenario.

Fig. 20. Comparison of access time between Binary Search and Fuzzy Search

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS080148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 08, August-2021

293

www.ijert.org
www.ijert.org
www.ijert.org

TABLE I: EVALUATION OF COMMAND RECOGNITION AGAINST

THE NUMBER OF RECORDINGS

VI. CONCLUSION

 The core intent of VAAC was to develop a Voice User

Interface-based approach for a command & control model

that accepts user input in the form of speech and translates it

to an executable kernel level instruction to provide improved

convenience to the user in terms of device usage, across

various applications. In the course of development of the

project we have gained valuable insights into the software

development cycle, concepts of speech analysis, entity

mapping and some concepts of natural language processing.

REFERENCES

[1] W Walker, P Lamere, P Kwok, B Raj,R Singh, E Gouvea, P Wolf, J

Woelfel, “Sphinx-4: A Flexible Open Source Framework for Speech

Recognition” - CMU Sphinx-4 Speech Recognition System, Technical
Report, 2004.

[2] J R. Evans, W A. Tjoland and L G. Allred, “Achieving a Hands-Free

Computer Interface using Voice Recognition and Speech Synthesis” –
IEEE AES Systems Magazine, 2000.

[3] P Warden, "Speech Commands: A Dataset for Limited-Vocabulary

Speech Recognition" - ArXiv, Cornell University, 2018
[4] S Amann, S Proksch ,S Nadi, "FeedBaG: An Interaction Tracker for

Visual Studio" - IEEE 24th International Conference on Program

Comprehension (ICPC), 2016.
[5] T Bulmer, L Montgomery, D Damian, “Predicting Developers’ IDE

Commands with Machine Learning” - MSR 2018 Association for

Computing Machinery, 2018.
[6] H Lee, Y Peirsman, A Chang, N Chambers, M Surdeanu, D Jurafsky,

“Stanford University,Multi-Pass Sieve Coreference Resolution

System”, Stanford University CoNLL Shared Task, 2011.
[7] K Lunuwilage, S Abeysekara, L Witharama, S Mendis and S

Thelijjagoda, "Web Based Programming Tool with Speech

Recognition for Visually Impaired Users”- 11th International
Conference on Software, Knowledge, Information Management and

Applications, 2011

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS080148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 08, August-2021

294

www.ijert.org
www.ijert.org
www.ijert.org

