**Abstract:**

VMware is a virtual machine monitor for PCs. VMware provides isolated environments in which multiple x86 operating systems and applications can run concurrently on a standard PC. VMware has a lot of capabilities hidden under the covers, besides just running multiple operating systems. This talk will cover some of the architecture of VMware and discuss some of the more interesting capabilities and technical tricks for advanced users -- including virtual disks, undoable and non-persistent disk modes, virtual networking and advanced networking and security applications.

1. Introduction

The desktop software is compatible for computer running on Microsoft windows, linux, macOS x operating system. The VMware is a software that installed in one computer and allows the duplication of the program execution to multiple computers. It provides all other computers connected to the main computer a complete system platform that support execution of the complete operating system. This software allows each computer to behave as if they are running on its own operating system having its own set of programs and hardware resources. Among the leading business challenges confronting CIOs and IT managers today are: cost-effective utilization of IT infrastructure; responsiveness in supporting new business initiatives; and flexibility in adapting to organizational changes. Driving an additional sense of urgency is the continued climate of IT budget constraints and more stringent regulatory requirements. Virtualization is a fundamental technological innovation that allows skilled IT managers to deploy creative solutions to such business challenges.

2. Virtualization in a Nutshell

2.1. Before virtualization

- Single OS image per machine
- Software and hardware tightly coupled

2.2. After virtualization

- Running multiple applications on same machine often creates conflict
- Underutilized resources
- Inflexible and costly infrastructure

![Virtualization Diagram](image-url)
Using virtual infrastructure solutions such as those from VMware, enterprise IT managers can address challenges that include:

- **Server Consolidation and Containment** – Eliminating ‘serversprawl’ via deployment of systems as virtual machines (VMs) that can run safely and move transparently across shared hardware, and increase server utilization rates.
- **Test and Development Optimization** – Rapidly provisioning test and development servers by reusing pre-configured systems, enhancing developer collaboration and standardizing development environments.
- **Business Continuity** – Reducing the cost and complexity of business continuity (high availability and disaster recovery solutions) by encapsulating entire systems into single file systems that can be replicated and restored on any target server, thus minimizing downtime.
- **Enterprise Desktop** – Securing unmanaged PCs, workstations, and laptops without compromising end user autonomy by layering a security policy in software around desktop virtual machines.

### 3. Virtualization Approaches

While virtualization has been a part of the IT landscape for decades, it is only recently (in 1998) that VMware delivered the benefits of virtualization to industry-standard x86-based platforms, which now form the majority of desktop, laptop and server shipments. A key benefit of virtualization is the ability to run multiple operating systems on a single physical system and share the underlying hardware resources – known as partitioning.

Today, virtualization can apply to a range of system layers, including hardware-level virtualization, operating system-level virtualization, and high-level language virtual machines. Hardware-level virtualization was pioneered on IBM mainframes in the 1970s, and then more recently Unix/RISC system vendors began with hardware-based partitioning capabilities, before moving on to software-based partitioning. For Unix/RISC and industry-standard x86 systems, the two approaches typically used with software-based partitioning are hosted and hypervisor architectures (See Figure 2). A **hosted** approach provides partitioning services on top of a standard operating system and supports the broadest range of hardware configurations. In contrast, a **hypervisor** architecture is the first layer of software installed on a clean x86-based system (hence it is often referred to as a “bare metal” approach). Since it has direct access to the hardware resources, a hypervisor is more efficient than hosted architectures, enabling greater scalability, robustness and performance.

#### 3.1. Hosted Architecture
- Installs and runs as an application
- Relies on host OS for device support and physical resource management

#### 3.2. Bare-Metal (Hypervisor) Architecture
- Lean virtualization-centric kernel
- Service Console for agents and helper applications
4. How Virtualization Complements New-Generation Hardware

Extensive ‘scale-out’ and multi-tier application architectures are becoming increasingly common, and the adoption of smaller form-factor blade servers is growing dramatically. Since the transition to blade architectures is generally driven by a desire for physical consolidation of IT resources, virtualization is an ideal complement for blade servers, delivering benefits such as resource optimization, operational efficiency, and rapid provisioning.

The latest generation of x86-based systems feature processors with 64-bit extensions supporting very large memory capacities. This enhances their ability to host large, memory-intensive applications, as well as allowing many more virtual machines to be hosted by a physical server deployed within a virtual infrastructure. The continual decrease in memory costs will further accelerate this trend. Likewise, the forthcoming dual-core processor technology significantly benefits IT organizations by dramatically lowering the costs of increased performance. Compared to traditional single-core systems, systems utilizing dual-core processors will be less expensive, since only half the number of sockets will be required for the same number of CPUs. By significantly lowering the cost of multi-processor systems, dual-core technology will accelerate data center consolidation and virtual infrastructure projects.

Beyond these enhancements, VMware is also working closely with both Intel and AMD to ensure that new processor technology features are exploited by virtual infrastructure to the fullest extent. In particular, the new virtualization hardware assist enhancements (Intel’s “VT” and AMD’s “Pacifica”) will enable robust virtualization of the CPU functionality. Such hardware virtualization support does not replace virtual infrastructure, but allows it to run more efficiently.

5. Para-virtualization

A virtualization approach that exports a modified hardware abstraction which requires operating systems to be explicitly modified and ported to run. Although virtualization is rapidly becoming mainstream technology, the concept has attracted a huge amount of interest, and enhancements continue to be investigated. One of these is para-virtualization, whereby operating system compatibility is stranded off against performance for certain CPU-bound applications running on systems without virtualization hardware assist (see Figure 3). The para-virtualized model offers potential performance benefits when a guest operating system or application is ‘aware’ that it is running within a virtualized environment, and has been modified to exploit this. One potential downside of this approach is that such modified guests cannot ever be migrated back to run on physical hardware.

In addition to requiring modified guest operating systems, paravirtualization leverages a hypervisor for the underlying technology. In the case of Linux distributions, this approach requires extensive changes to an operating system kernel so that it can coexist with the hypervisor. Accordingly, mainstream Linux distributions (such as Red Hat or SUSE) cannot be run in a para-virtualized mode without some level of modification. Likewise, Microsoft has suggested that a future version of the Windows operating system will be developed that can coexist with a new hypervisor offering from Microsoft. Yet para-virtualization is not an entirely new concept. For example, VMware has employed it by making available as an option enhanced device drivers (packaged as VMware Tools) that increase the efficiency of guest operating systems. Furthermore, if and when para-virtualization optimizations are eventually built into commercial enterprise Linux distributions, VMware’s hypervisor will support those, as it does all mainstream operating systems.
6. Recovery over drawback of VMware

One of the few drawbacks that a lot of computer wizards have isosy about VMware is the issue about compatibility. Although you can practically virtualize your computer machine at any time, the need for the application software to make the whole process of virtualization makes it a little complex. Take a look at who the Vista operating system works well with the VMware server. The family of windows operating system did not record any problem or issue of compatibility with Virtual Machine servers to date. As a matter of fact, the recorded most compatible operating systems to work with the VMware is the window platform. In such a cases, Vista, its VMware server then perfectly work with the VMware Server. Just a titbit of information about VMware, a VMware server works fine with Intelmachines and that it works well with any operating system. Another things Vista Operating system as we all know consume a lot of PC memory space due to its massive graphics interface. Just like Vista, the VMware server does eat too much memory space. Although you can potentially limit and control the amount of RAM that will be allotted to using the VMware server, however, the minimum requirement to have it properly downloaded and installed is still significantly higher.

With the said drawbacks, the VMware Server that you will use for your Vista Operating system will require too many resources very well should you plan to actuate virtualization on your PC with Windows Vista altogether.

7. Future scope

7.1. Environment

"When engineers develop applications, they need to test for so many things," Joshi said. "With an appliance, they can wrap the application and an OS in a tiny, confined package. It's a very controlled environment. It is a stable environment." This isn't necessarily a separate track from cloud computing. One of the issues with cloud computing, especially with regards to its cousin, grid computing, is that as the grid broadens, heterogeneous platforms are inevitable -- as are conflicts. If the point of intersection is something simple like the browser, those conflicts are more or less eliminated.

"The fundamental thing about virtual machines is that they're a set of files. That's it. They're software. They're easy to move and reallocate. Hardware, on the other hand, is clunky. There are so many components you have to consider."

With virtual machines, end users have the luxury of imposing processes on top of them. If you need an additional security layer, click off a box. If you need high-availability, check another box. We're not to the point where applications and the virtual infrastructures that serve them are that nimble yet, but VMware and others in this space are getting there.

7.2. Moving from applications to services

"Enterprises don't care about the application or the OS as such. What enterprises want are productivity and performance. What they want are service levels that can be agreed upon and measured. They care about performance parameters, about downtime, about charge-backs. Our vision of cloud computing is that applications will become platform agnostic. It won't matter where they physically reside, where users access them from, or even what devices those users choose."

VMware isn't placing all of its bets on the cloud, though. Another perhaps complementary model is to package mission-critical applications as virtual appliances. The OS is confined. The application is single-purpose, and the goal is to eliminate the problems that come with multiple installations, ongoing configuration changes and numerous conflicting processes. Maintenance costs are reduced, security should be improved and process conflicts are eliminated.

8. Conclusion

In this paper, a comprehensive study VMware. The VMware server is an application that allows you to fully maximize the virtual technology on your personal computer. With the rapid invasion of virtualization in the world of computers, we need to use VMware server. In this work, some applications exist in VMware and future of VMware. Here investigated how recover the drawback of VMware which is very useful for computer.

9. References

[1] "VMware Milestones".
[2] "VMware company history".
[5] "VMware to Acquire SpringSource".
[10] "A Performance Comparison of Hypervisors".