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Abstract--This paper presents an efficient processing unit for
Fully Homomorphic Encryption and Decryption hardware
design using finite state machine. The encryption unit consist of
a three Linear feedback shift registers, a noise correlator and
FSM. The decryption unit has combinational blocks. The
processing unit consist of a single hardware having an
encryption as well as a decryption unit and a cloud computing
unit. There are two proposed architectures, one with a normal
LFSR and the other with modified Fibonacci LFSR. As the two
architecture is compared, the processing unit with modified
Fibonaaci LFSR using FSM has a reduction in the power as well
as area.
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l. INTRODUCTION

Cloud Computing has raised as an extensive paradigm that
has attracted attention in both commercial and educational
section. Cloud Computing[8] exists in different names like
"outsourcing" as well as "server hosting." The word cloud
computing means to store and access data and program over
internet instead of storing the data in the hard drive of
computer or in large capacity systems. But the poor
performance of processors used, slow Internet connections
and the exorbitant costs of the materials used, do not allow
the use of services and storage spaces. However, recent
advances in current technology[8][7] of virtualization, paved
the way for these operations with faster processing. This is an
attractive solution that can provide low cost storage and
processing capabilities for government organizations,
hospitals, and small or medium enterprises. It has the
advantage of reducing the IT expenses and providing services
for the requesting parties through making specialized
software and computing resources available. Nevertheless,
there are some apprehensions that should be considered by all
organization migrating to cloud computing. As the data is
transferred to the Cloud, encryption technique is used to
secure the operations and the storage of the data. The basic
concept is to encrypt the data before sending it to the Cloud
provider or the server. The client provides the private key to
the server to decrypt data, which might affect the
confidentiality and privacy of data stored in the Cloud. A
method to execute operations on encrypted data without
decrypting them, which will provide the same results after
calculations as if we have worked directly on the raw data.

Homomorphic Encryption[21] systems are used to perform
operations on encrypted data without knowing the private key

which means without decryption, the client is the only holder
of the secret key. When we decrypt the result of any
operation, it is the same as if we had carried out the
calculation on the raw data.

The paper is structured as follows. Section Il recapitulate the
earlier works in this topic. Section Il introduces the Fully
homomorphic encryption and different types with equations.
Section IV describes the use and architecture of processing
unit for homomorphic system. Section V presents the main
experimental results collected from hardware synthesis.
Section VI concludes the paper with some final remarks.

Il. PREVIOUS WORKS

Cloud computing arose as an important case for a large class
of applications. Security is a major concern in cloud
processing, pointing out the importance of advanced
cryptographic techniques like homomorphic encryption,
allowing computation to take place on encrypted data on the
server side. In specific, this work addresses Fully
Homomorphic  Encryption  (FHE), introduced by
Gentry’s[3][1] inspiring work just a few years ago. In 2009
Gentry familiarized a fully homomorphic encryption (FHE)
scheme. FHE allows the evaluation of arbitrary functions
directly on encrypted data. The Gentry—Halevi scheme was
the first software implementation of FHE, but this
implementation remains unworkable due to the high latency.
An implementation of a variant of the original scheme is
proposed by Gentry and Halevi[2]. Their solution, despite
various optimizations and small size security parameters,
takes more than one second for encrypting a single bit on an
Intel Xeon server. Recent software implementations include,
open-source library, crypt, is available on-line, while contains
an optimized implementation reaching a significant speed-up
over the previous solutions. Several research works
concerning FHE computing platforms have looked for
alternative architectures, mainly GPUs and FPGAs. A FPGA-
based accelerator[6] implementing ultralong integer
multiplication, the main performance bottleneck in most
homomorphic encryption schemes, but this process has been
time consuming. The work describes an implementation
based on an Altera’s Stratix V FPGA platform. For high
performance data path element, which provides high speed
architecture by combining the karatsuba operand splitting
parallel multiplier with existing Toom cook based modular
multiplier[4] and another architecture with FFT based
modular multiplications. Generally, modular multiplications
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is major mission for FHE encryption which consists of
modular multiplications which is used to convert plain text to
cipher text. Our architecture provides high speed for modular
multiplications so large number integers also processed at
high speed.

. FULLY HOMOMORPHIC ENCRYPTION

Homomorphic encryption is a method of encryption that
allows calculation on ciphertexts, generating an encrypted
result which, when decrypted, matches the result of the
operations as if it was performed on the plaintext.

Homomorphic encryption[1] can be wused for secure
outsourced computation, such as secure cloud computing
services, and securely chaining together different services
without exposing sensitive data. For example, services from
different companies to estimate the tax, the in the case of
currency exchange rate. Homomorphic encryption[19] can
also be used to create more secure systems such as secure
voting systems, collision-resistant hash functions, private set
intersection, and private information retrieval schemes. In
highly  controlled industries, such as healthcare,
homomorphic encryption can be used to enable new services
by removing privacy blockades inhibiting data sharing. For
example, analytics in health care can be hard to use due to
medical data privacy concerns, but if the predictive analytics
service provider can function on encrypted data in place of
these privacy concerns are diminished.

Homomorphic encryption schemes are inherently soft. In
terms of malleability, homomorphic encryption schemes have
weaker security properties than non-homomorphic schemes.
A cryptosystem that supports arbitrary computation on
ciphertexts[2][3] is known as fully homomaorphic encryption
(FHE). Such a scheme enables the creation of programs for
any wanted functionality, which can be performed on
encrypted inputs to produce an encryption of the output.
Since such a program need not decrypt its inputs, it can be
run by an untrusted party without revealing its inputs and
internal state. Fully homomorphic cryptosystems have great
practical implications in the outsourcing of private
computations. Mostly, FHE allows for arbitrary
computations[9] on encrypted data. Computing on encrypted
data means that if a user has a function f and want to get f
(my, ..., my) for some inputs my, . . ., my, it is possible to
instead compute on encryptions of these inputs, ¢, . . ., Cn,
obtaining a result which decrypts to f(my, . .., my).

An encryption is homomorphic, if, from Enc(a) and Enc(b) it
is possible to compute Enc(f (a, b)), where f can be: +, x, @
and without using the private key. Among the Homomorphic
encryption we differentiate, according to the operations that
allows to assess on raw data, the additive Homomorphic
encryption only additions of the raw data is the Pailler and
Goldwasser-Micalli  cryptosystems, and the multiplicative
Homomorphic encryption only products on raw data is the
RSA [14] and ElI Gamal [9] cryptosystems. Ex is an
encryption algorithm with k and D is a decryption algorithm
with key L, as represented in (1) and (2).

Di(Ex(n)*Ex(m)) = nxm or Enc(x®y)=Enc(X)® Enc(y) (1)

DL(EL(n)xEL(m)) = nxm or Enc(X& y)=Enc(X)QEnc(y) (2)

A. Multiplicative Homomorphic Encryption

Multiplicative homomorphic encryption is also known as
RSA cryptosystem. Suppose X; and X, are the plaintexts.
Then the equation is defined as (3),

EK(Xl)eK(Xz):leXZb mod n:(x1x2)bmod n:eK(x1x2) (3)

B. Multiplicative Homomorphic Encryption

Additive homomorphic encryption is also known as Paillier
Cryptosystem. Suppose xi and X, are the Plaintext. Then
defined as in (4) and (5),

ex(X.r)ex(Xa,r2)=g*r1".g*r," mod n? (4)
ek(Xw,r)ex(Xz.r2) =g*2(rir2)" mod n? (5)

To perform addition and multiplication on encrypted data
stored in the cloud provider, the client must have two
different key generators (one for RSA and one for Paillier).

C. El Gamal Cryptosystem

El Gamal cryptosystem that is basically a multiplicative
homomorphic cryptosystem but by modifying coding mode
we can make it additive. El Gamal Cryptosystem performs

multiplicative homomorphic encryption propriety
Let x; and Xz be plaintexts. Then (7),
ex(X1, r)ex(Xz, r2) = a2 mod p, (X1 X2) B** 2 mod p )

If we put the plaintext in the exponent, we get the equation as

8).
ex(X, r) = (" mod p, ax f* mod p) (8)

IV. PROCESSING UNIT FOR CRYPTOGRAPHY

The processing unit[18] is used to process data for effective
cost and to avoid hardware. The idea behind this Processing
Unit is, many companies need to perform processing
operations on the data present but because of the cost
effectiveness and to avoid hardware providing place they
decide to use third party clouds. The process is, data is
encrypted using corresponding encryption algorithm and
transmitted to cloud. The cloud will perform operations on
encrypted data but the cloud does not have knowledge of the
data. The key computed encrypted data is transmitted again to
processing unit. After decryption the result is obtained without
using complex computational hardware. In the architecture
shown in Fig.1 we implemented Gentry’s Fully Homomorphic
Encryption[2] and Decryption. The Encryption consists of
three LFSRs, one noise correlation and one Finite State
Machine for Encryption process. The Decryption consist of
combinational block for decryption process. The Multiplier
consists of one parallel 32x32 multiplier[12][4] for processing
the encrypted data one clock cycle one pair of data both
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addition and multiplication it is also similar like mimic of
cloud vendors.

Single Hardware

Encrypted data
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Homomorphic
Encryption

G =
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Decryption

Computed
Encrypted Data

Cloud
Computing
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Fig. 1. Architecture of processing unit

A Linear Feedback Shift Register Linear Feedback Shift
Register is a sequential shift register with combinational logic
that causes it to pseudo randomly cycle through a sequence of
binary values. Feedback around an LFSR's shift register
comes from selection of points in the register chain and
constitutes XOR of these taps to provide taps back into the
register. Register bits that do not need an input tap, operate as
a standard shift register. It is this feedback that causes the
register to loop through repetitive sequences of pseudo
random value. The choice of taps determines how many
values are there in a given sequence before the sequence
repeats. A n-bit Linear Feedback Shift Register (LFSR)[17] is
a n-bit length shift register with feedback to its input. The
feedback is formed by XOR or XNOR of the outputs of
selected stages of the shift register mentioned as taps. The
input to least significant bit. The linear part of the term LFSR
derives from the fact that XOR and XNOR are XOR and
XNOR are linear functions. An LFSR will produce a
pseudorandom sequence of length (2n — 1) states. An LFSR is
of maximal length when the sequence generates passes
through all possible 2 passes through all possible 2n-1 values.
The LFSR sequence depends on the seed value. In an LFSR,
the bits contained in selected positions in In an LFSR, the bits
contained in selected positions in the shift register are
combined in some sort of function the shift register are
combined in some sort of function and the result is fed back
into the register's input bit. By definition[16], the selected bit
values are collected before the register is clocked before the
register is clocked and result of the feedback function is
inserted, filling the position that is emptied as a during the
shift. The implemented LFSR typically uses a one-to-many
structure, rather than a many-to-one structure, shortest clock-
to-clock delay path.

Fibonacci LFSR: In the fig.2 the Fibonacci LFSR with the
rightmost bit of the LFSR is called the output bit. The bit
positions that affect the next state are called the taps. The taps
are XOR sequentially with the output bit and then fed back
into the leftmost bit. The sequence of bits in the rightmost
position is called the output stream. The bits in the LFSR state
that influence the input are called taps.

Qp_1 | Gpr_2

CoE “

Fig. 2. Fibonacci LFSR

A maximum length LFSR produces an m sequence, unless it
contains all zeros, in which case it will never change. As an
alternative to the XOR based feedback in an LFSR, XNOR
can be used. This function is not strictly linear, but it results in
an equivalent polynomial counter whose state is the
complement of the state of an LFSR. A state which has all
ones is illegal when using an XNOR feedback. In the same
way as a state with all zeroes is illegal when using XOR. This
state is considered illegal because the counter remains locked
up in this state. The arrangement of taps for feedback in an
LFSR can be expressed in finite field arithmetic as a
polynomial mod 2. This means that the coefficients of the
polynomial must be 1 or 0. This is known as feedback
polynomial or reciprocal characteristic polynomial. There can
be more than one maximum length sequence for a LFSR
length. Also, once one maximum length tap sequence has been
found, another automatically follows. If the tap sequence in an
n-bit LFSR is [n, S, T, U, 0], where the 0 corresponds to the
X0 =1 term, then the corresponding "mirror" sequence is [n, n
-U,n—T,n-S,0].

Galois LFSR: This kind of LFSR is named after the French
mathematician Evariste Galois, an LFSR in Galois
configuration, which is also known as modular or internal
XOR or one to many LFSR, is an alternate structure that can
generate the same output stream as a conventional LFSR. In
the Galois configuration as shown in Fig 3, when the design is
clocked, bits that are not taps are shifted one position to the
right unchanged. On the other hand, are XOR with the output
bit before they are stored in the next position. The new output
bit is the next input bit. The effect of this is that when the
output bit is zero, all the bits in the register shift to the right
unchanged, and the input bit becomes zero. When the output
bit is one, the bits in the tap positions all flip and then the
whole register is shifted to the right and the input bit becomes
1. For getting the same output stream, the order of the taps is
the counterpart of the order for the conventional LFSR else
the stream will be in reverse. The internal state of the LFSR is
not certainly the same. The Galois register has the same output
stream as the Fibonacci register. A time offset exists between
the streams, so a different start point will be needed to get the
same output each cycle. Galois LFSRs do not concatenate
every tap to produce the new input. Therefore, it is possible
for each tap to be calculated in parallel, snowballing the speed
of execution. In implementation of an LFSR in case of
software, the Galois form is more efficient.
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Fig. 3. Galois LFSR

In the architecture, for generation Random numbers for p, q
and r we need a LFSR here we are using LFSR with certain
seed values. Each p, r1, 12, q1, g2, we provide different seeds.
The value of g and g2 must be greater than p and also it
should be multiples of p, now g: and g2 will be bigger than p
for reduction of hardware utilization we implemented a 4 bit
LFSR for g1 and g2 and multiplying with p so hardware
utilization is reduced. In Galois LFSR the critical path is very
less compared to Fibonacci LFSR. Extra hardware is used to
check whether p is odd or not. If odd, we will pass the values
to correlator logic for further processing.

A. Correlator Logic

The equation of FHE[4] before the noise is adding to bits and
key, the hacker can reverse it such as by finding GCD of value
to decrypt the data so noise is helpful in security scenarios but
as multiplications and additions on cloud computing increases
noise. Hence, while decrypting we get incorrect data. To avoid
this the noise value has to correlated with p values. If the
condition satisfies then it will sent to encryption
combinational block for encryption of data. Therefore, p value
must be as given in (9),

p>=(2*r1+b1) *(2*I’2+b2) (9)

whereas p is key r1 and r» is noise for pair of cipher text and b;
and by is corresponding bit value for data pair.

Fully Homomorphic
Encryption

Encryption

Unit
LFSR
Memory
loise
Correlator
= Cloud
Computing

Unit
I (Addition &
Multiplication)

m—>

n —y

Fully
Homomorphic
Decryption
Unit

Fig. 4. Cryptography Processing unit using FHE

B. Encryption Combinational Block

The obtained value of p, r1, r2, g1, g2 after certain checking and
processing. Encryption is to be performed for bits of data.
This data is to be encrypted and transferred from memory
SRAM using memory controller as in Fig.4. To process four
pairs of data, it needs four cycle because the process is
performed using single hardware at latency of 4 clock cycles.
After encryption the data is transmitted to Multiplication and
Addition unit which is mimic of cloud and it is a 32 X 32
multiplier[12] and adder parallel unit. The Memory unit
consists of memory which will get input n bits for each clock
cycle and store it in memory then it was used by Encryption
FSM system for encrypting the data.

Here in Fig.5 the reset block is first activated when we need to
clear the data in queue or clear old data because FSM is state
machine and load cycle data is loaded from memory and
necessary noise and random variable are generated in that
cycle and 4 bit of data each bit is encrypted and each cycle
using Fully Homomorphic Encryption and data is sent to
cloud.

Fig. 5. Encryption using FSM

C. FSM Fibonacci LFSR

The traditional LFSR is considered, having reset signal in
synchronous with clock, In the traditional Fibonacci LFSR, a
condition is maintained to bypass the stuck at zero state[20].
The state prior to zero state is found by running classical
Fibonacci LFSR that is without any modification. This method
ensures that all the 256 states are achieved without leading to
stuck at O states.

data_next
=state0

State prior
to state0

Fibonacci

LFSR
data_next
=statel

reset=1

Fig. 6. State Machine for Fibonacci LFSR
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In Fig.6, if the reset is 0, then the output of LFSR is assigned
to be state 0 that is the output is zero. According to the
traditional LFSR if it enters state O then it will be stuck there.
So next state is assigned to be state 1 that is the output is
forced to 1. As long as the reset is zero, the LFSR output will
be 0 and next state or output expected from LFSR will be 1.
Once the reset is made high, it works as per the polynomial
equation described for Fibonacci LFSR. The Fibonacci LFSR
polynomial equation is designed in such a way that it skips
state 0 which causes the LFSR to enter the stuck state.
Therefore, it is required to know the state prior to state 0 and
forcefully assign it to some other state. The algorithm for
modified Fibonacci LFSR is given as,

i. Declare the inputs for LFSR clock, reset and output data.
Also declare an intermediate signal data_next. Both data and
data_next are of 8 bit in size.

ii. Check if data is state prior to state 0. If so, then assign next
state as state 0. In a classical LFSR this state would be
skipped.

iii. If result is false in step ii, then check if data is state O if so,
then assign data_next as state 1 else perform as per
polynomial equation of Fibonacci LFSR.

iv. If positive edge of the clock and reset O has occurred and

are synchronised, check if reset is zero then assign data to
state O else assign data to data_next which is calculated from
step ii and step iii.

V. EXPERIMENTAL RESULT

The design of the processing unit for encryption as well as
decryption was implemented using Verilog. The FHE ASIC
was synthesized for 90-nm technology and 32-nm
technology, using the Synopsys Design Compiler. The table
above shows the power report and the area report of the
processing unit using normal LFSR and by Fibonacci LFSR
using FSM. The power and the area of modified Fibonacci
LFSR is less compared to normal LFSR as in table 1 and
table 2. The modified Fibonacci LFSR has a reduced power
and area as the hardware use is less as compared to a
traditional Fibonacci LFSR because it uses finite state
machine. Since, the processing unit consist of three LFSRs
the total power and area of the whole system is reduced.

TABLE l. TABLE PROCESSING UNIT WITH 90NM TECHNOLOGY

Processing Unit with Power (um) Area (Um?)
LFSR 2.6206e+03 140024
FSM Fibonacci LFSR 1.558e+03 57365

TABLE Il. TABLE PROCESSING UNIT WITH 32NM TECHNOLOGY

Processing Unit with Power (um) Area (Um?)
LFSR 2.1469e+03 42615.5
FSM Fibonacci LFSR 1.0253e+03 17699.55

VI. CONCLUSION

In this paper, an efficient processing unit for encryption and
decryption of homomorphic cryptosystem is implemented.
The encryption unit consist of three LFSR, a noise correlator

and FSM while the decryption unit consist of combinational
blocks. The design is implemented using verilog and
synthesized for 90-nm technology as well as 32-nm
technology. Experimental results showed that the system of
processing unit has a reduction in power and area. The
modified Fibonacci LFSR is more efficient as compared to
normal LFSR.
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