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Abstract--This paper presents an efficient processing unit for 

Fully Homomorphic Encryption and Decryption hardware 

design using finite state machine. The encryption unit consist of 

a three Linear feedback shift registers, a noise correlator and 

FSM. The decryption unit has combinational blocks. The 

processing unit consist of a single hardware having an 

encryption as well as a decryption unit and a cloud computing 

unit. There are two proposed architectures, one with a normal 

LFSR and the other with modified Fibonacci LFSR. As the two 

architecture is compared, the processing unit with modified 

Fibonaaci LFSR using FSM has a reduction in the power as well 

as area.  

Keywords—Fully Homomorphic Encryption;Cloud 

Computing; Processing Unit; LFSR; Finite State Machine 

I.  INTRODUCTION  

Cloud Computing has raised as an extensive paradigm that 

has attracted attention in both commercial and educational 

section. Cloud Computing[8] exists in different names like 

"outsourcing" as well as "server hosting." The word cloud 

computing means to store and access data and program over 

internet instead of storing the data in the hard drive of 

computer or in large capacity systems. But the poor 

performance of processors used, slow Internet connections 

and the exorbitant costs of the materials used, do not allow 

the use of services and storage spaces. However, recent 

advances in current technology[8][7] of virtualization, paved 

the way for these operations with faster processing. This is an 

attractive solution that can provide low cost storage and 

processing capabilities for government organizations, 

hospitals, and small or medium enterprises. It has the 

advantage of reducing the IT expenses and providing services 

for the requesting parties through making specialized 

software and computing resources available. Nevertheless, 

there are some apprehensions that should be considered by all 

organization migrating to cloud computing. As the data is 

transferred to the Cloud, encryption technique is used to 

secure the operations and the storage of the data. The basic 

concept is to encrypt the data before sending it to the Cloud 

provider or the server. The client provides the private key to 

the server to decrypt data, which might affect the 

confidentiality and privacy of data stored in the Cloud. A 

method to execute operations on encrypted data without 

decrypting them, which will provide the same results after 

calculations as if we have worked directly on the raw data. 

 

Homomorphic Encryption[21] systems are used to perform 

operations on encrypted data without knowing the private key 

which means without decryption, the client is the only holder 

of the secret key. When we decrypt the result of any 

operation, it is the same as if we had carried out the 

calculation on the raw data.  

  

The paper is structured as follows. Section II recapitulate the 

earlier works in this topic. Section III introduces the Fully 

homomorphic encryption and different types with equations. 

Section IV describes the use and architecture of processing 

unit for homomorphic system. Section V presents the main 

experimental results collected from hardware synthesis. 

Section VI concludes the paper with some final remarks.    

 

II. PREVIOUS WORKS 

Cloud computing arose as an important case for a large class 

of applications. Security is a major concern in cloud 

processing, pointing out the importance of advanced 

cryptographic techniques like homomorphic encryption, 

allowing computation to take place on encrypted data on the 

server side. In specific, this work addresses Fully 

Homomorphic Encryption (FHE), introduced by 

Gentry’s[3][1] inspiring work just a few years ago. In 2009 

Gentry familiarized a fully homomorphic encryption (FHE) 

scheme. FHE allows the evaluation of arbitrary functions 

directly on encrypted data. The Gentry–Halevi scheme was 

the first software implementation of FHE, but this 

implementation remains unworkable due to the high latency.  

An implementation of a variant of the original scheme is 

proposed by Gentry and Halevi[2]. Their solution, despite 

various optimizations and small size security parameters, 

takes more than one second for encrypting a single bit on an 

Intel Xeon server. Recent software implementations include, 

open-source library, crypt, is available on-line, while contains 

an optimized implementation reaching a significant speed-up 

over the previous solutions. Several research works 

concerning FHE computing platforms have looked for 

alternative architectures, mainly GPUs and FPGAs. A FPGA-

based accelerator[6] implementing ultralong integer 

multiplication, the main performance bottleneck in most 

homomorphic encryption schemes, but this process has been 

time consuming. The work describes an implementation 

based on an Altera’s Stratix V FPGA platform. For high 

performance data path element, which provides high speed 

architecture by combining the karatsuba operand splitting 

parallel multiplier with existing Toom cook based modular 

multiplier[4] and another architecture with FFT based 

modular multiplications. Generally, modular multiplications 
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is major mission for FHE encryption which consists of 

modular multiplications which is used to convert plain text to 

cipher text. Our architecture provides high speed for modular 

multiplications so large number integers also processed at 

high speed. 

III. FULLY HOMOMORPHIC ENCRYPTION 

Homomorphic encryption is a method of encryption that 

allows calculation on ciphertexts, generating an encrypted 

result which, when decrypted, matches the result of the 

operations as if it was performed on the plaintext. 

 

Homomorphic encryption[1] can be used for secure 

outsourced computation, such as  secure cloud computing 

services, and securely chaining together different services 

without exposing sensitive data. For example, services from 

different companies to estimate the tax, the in the case of 

currency exchange rate. Homomorphic encryption[19] can 

also be used to create more secure systems such as secure 

voting systems, collision-resistant hash functions, private set 

intersection, and private information retrieval schemes. In 

highly controlled industries, such as healthcare, 

homomorphic encryption can be used to enable new services 

by removing privacy blockades inhibiting data sharing. For 

example, analytics in health care can be hard to use due to 

medical data privacy concerns, but if the predictive analytics 

service provider can function on encrypted data in place of 

these privacy concerns are diminished. 

 

Homomorphic encryption schemes are inherently soft. In 

terms of malleability, homomorphic encryption schemes have 

weaker security properties than non-homomorphic schemes. 

A cryptosystem that supports arbitrary computation on 

ciphertexts[2][3] is known as fully homomorphic encryption 

(FHE). Such a scheme enables the creation of programs for 

any wanted functionality, which can be performed on 

encrypted inputs to produce an encryption of the output. 

Since such a program need not decrypt its inputs, it can be 

run by an untrusted party without revealing its inputs and 

internal state. Fully homomorphic cryptosystems have great 

practical implications in the outsourcing of private 

computations.  Mostly, FHE allows for arbitrary 

computations[9] on encrypted data. Computing on encrypted 

data means that if a user has a function f and want to get f 

(m1, . . . , mn) for some inputs m1, . . . , mn, it is possible to 

instead compute on encryptions of these inputs, c1, . . . , cn, 

obtaining a result which decrypts to f(m1, . . . , mn).   

 

An encryption is homomorphic, if, from Enc(a) and Enc(b) it 

is possible to compute Enc(f (a, b)), where f can be: +, ×, ⊕ 

and without using the private key. Among the Homomorphic 

encryption we differentiate, according to the operations that 

allows to assess on raw data, the additive Homomorphic 

encryption only additions of the raw data is the Pailler and 

Goldwasser-Micalli  cryptosystems, and the multiplicative 

Homomorphic encryption only products on raw data is the 

RSA [14] and El Gamal [9] cryptosystems. Ek is an 

encryption algorithm with k and Dk is a decryption algorithm 

with key L, as represented in (1) and (2). 

 

Dk(Ek(n)×Ek(m)) = n×m or Enc(x⊗y)=Enc(x)⊗ Enc(y)    (1)  

 

DL(EL(n)×EL(m)) = n×m or Enc(x⊕ y)=Enc(x)⊗Enc(y)   (2) 

A. Multiplicative Homomorphic Encryption   

Multiplicative homomorphic encryption is also known as 

RSA cryptosystem. Suppose x1 and x2 are the plaintexts. 

Then the equation is defined as (3),  

 

eK(x1)eK(x2)=x1
bx2

b mod n=(x1x2)bmod n=eK(x1x2)              (3)  

  

B. Multiplicative Homomorphic Encryption 

 Additive homomorphic encryption is also known as   Paillier 

Cryptosystem. Suppose x1 and x2 are the Plaintext. Then 

defined as in (4) and (5),  

 

eK(x1,r1)eK(x2,r2)=gx1r1
n.gx2r2

n mod n2                                   (4)  

 

eK(x1,r1)eK(x2,r2) =gx1+x2(r1r2)n mod n2                                  (5)            

  

To perform addition and multiplication on encrypted data 

stored in the cloud provider, the client must have two 

different key generators (one for RSA and one for Paillier).  

 

C. El Gamal Cryptosystem  

El Gamal cryptosystem that is basically a multiplicative 

homomorphic cryptosystem but by modifying coding mode 

we can make it additive. El Gamal Cryptosystem performs 

multiplicative homomorphic encryption propriety                                                            

Let x1 and x2 be plaintexts. Then (7), 

 

 ek(x1, r1)ek(x2, r2) = αr1+r2 mod p, (x1 x2) βr1+ r2 mod p          (7)                                          

 

If we put the plaintext in the exponent, we get the equation as 

(8),    

                                                                                                         

ek(x, r)  = (αr mod p, αx βr  mod p)                                       (8) 

 

IV.  PROCESSING UNIT FOR CRYPTOGRAPHY 

The processing unit[18] is used to process data for effective 
cost and to avoid hardware. The idea behind this Processing 
Unit is, many companies need to perform processing 
operations on the data present but because of the cost 
effectiveness and to avoid hardware providing place they 
decide to use third party clouds. The process is, data is 
encrypted using corresponding encryption algorithm and 
transmitted to cloud. The cloud will perform operations on 
encrypted data but the cloud does not have knowledge of the 
data. The key computed encrypted data is transmitted again to 
processing unit. After decryption the result is obtained without 
using complex computational hardware. In the architecture 
shown in Fig.1 we implemented Gentry’s Fully Homomorphic 
Encryption[2] and Decryption. The Encryption consists of 
three LFSRs, one noise correlation and one Finite State 
Machine for Encryption process. The Decryption consist of 
combinational block for decryption process. The Multiplier 
consists of one parallel 32x32 multiplier[12][4] for processing 
the encrypted data one clock cycle one pair of data both 
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addition and multiplication it is also similar like mimic of 
cloud vendors. 

 

Fig. 1. Architecture of processing unit 

 

A Linear Feedback Shift Register Linear Feedback Shift 
Register is a sequential shift register with combinational logic 
that causes it to pseudo randomly cycle through a sequence of 
binary values. Feedback around an LFSR's shift register 
comes from selection of points in the register chain and 
constitutes XOR of these taps to provide taps back into the 
register. Register bits that do not need an input tap, operate as 
a standard shift register. It is this feedback that causes the 
register to loop through repetitive sequences of pseudo 
random value. The choice of taps determines how many 
values are there in a given sequence before the sequence 
repeats. A n-bit Linear Feedback Shift Register (LFSR)[17] is 
a n-bit length shift register with feedback to its input. The 
feedback is formed by XOR or XNOR of the outputs of 
selected stages of the shift register mentioned as taps. The 
input to least significant bit. The linear part of the term LFSR 
derives from the fact that XOR and XNOR are XOR and 
XNOR are linear functions. An LFSR will produce a 
pseudorandom sequence of length (2n – 1) states. An LFSR is 
of maximal length when the sequence generates passes 
through all possible 2 passes through all possible 2n-1 values. 
The LFSR sequence depends on the seed value. In an LFSR, 
the bits contained in selected positions in In an LFSR, the bits 
contained in selected positions in the shift register are 
combined in some sort of function the shift register are 
combined in some sort of function and the result is fed back 
into the register's input bit. By definition[16], the selected bit 
values are collected before the register is clocked before the 
register is clocked and result of the feedback function is 
inserted, filling the position that is emptied as a during the 
shift. The implemented LFSR typically uses a one-to-many 
structure, rather than a many-to-one structure, shortest clock-
to-clock delay path. 

Fibonacci LFSR: In the fig.2 the Fibonacci LFSR with the 
rightmost bit of the LFSR is called the output bit. The bit 
positions that affect the next state are called the taps. The taps 
are XOR sequentially with the output bit and then fed back 
into the leftmost bit. The sequence of bits in the rightmost 
position is called the output stream. The bits in the LFSR state 
that influence the input are called taps. 

 

Fig. 2. Fibonacci LFSR 

 

A maximum length LFSR produces an m sequence, unless it 
contains all zeros, in which case it will never change. As an 
alternative to the XOR based feedback in an LFSR, XNOR 
can be used. This function is not strictly linear, but it results in 
an equivalent polynomial counter whose state is the 
complement of the state of an LFSR. A state which has all 
ones is illegal when using an XNOR feedback. In the same 
way as a state with all zeroes is illegal when using XOR. This 
state is considered illegal because the counter remains locked 
up in this state. The arrangement of taps for feedback in an 
LFSR can be expressed in finite field arithmetic as a 
polynomial mod 2. This means that the coefficients of the 
polynomial must be 1 or 0. This is known as feedback 
polynomial or reciprocal characteristic polynomial. There can 
be more than one maximum length sequence for a LFSR 
length. Also, once one maximum length tap sequence has been 
found, another automatically follows. If the tap sequence in an 
n-bit LFSR is [n, S, T, U, 0], where the 0 corresponds to the 
x0 = 1 term, then the corresponding "mirror" sequence is [n, n 
− U, n − T, n − S, 0].  

Galois LFSR: This kind of LFSR is named after the French 
mathematician Evariste Galois, an LFSR in Galois 
configuration, which is also known as modular or internal 
XOR or one to many LFSR, is an alternate structure that can 
generate the same output stream as a conventional LFSR. In 
the Galois configuration as shown in Fig 3, when the design is 
clocked, bits that are not taps are shifted one position to the 
right unchanged. On the other hand, are XOR with the output 
bit before they are stored in the next position. The new output 
bit is the next input bit. The effect of this is that when the 
output bit is zero, all the bits in the register shift to the right 
unchanged, and the input bit becomes zero. When the output 
bit is one, the bits in the tap positions all flip and then the 
whole register is shifted to the right and the input bit becomes 
1. For getting the same output stream, the order of the taps is 
the counterpart of the order for the conventional LFSR else 
the stream will be in reverse. The internal state of the LFSR is 
not certainly the same. The Galois register has the same output 
stream as the Fibonacci register. A time offset exists between 
the streams, so a different start point will be needed to get the 
same output each cycle. Galois LFSRs do not concatenate 
every tap to produce the new input. Therefore, it is possible 
for each tap to be calculated in parallel, snowballing the speed 
of execution. In implementation of an LFSR in case of 
software, the Galois form is more efficient. 
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Fig. 3. Galois LFSR 

 

In the architecture, for generation Random numbers for p, q 
and r we need a LFSR here we are using LFSR with certain 
seed values. Each p, r1, r2, q1, q2, we provide different seeds. 
The value of q1 and q2 must be greater than p and also it 
should be multiples of p, now q1 and q2 will be bigger than p 
for reduction of hardware utilization we implemented a 4 bit 
LFSR for q1 and q2 and multiplying with p so hardware 
utilization is reduced. In Galois LFSR the critical path is very 
less compared to Fibonacci LFSR. Extra hardware is used to 
check whether p is odd or not. If odd, we will pass the values 
to correlator logic for further processing. 

A. Correlator Logic 

 The equation of FHE[4]  before the noise is adding to bits and   
key, the hacker can reverse it such as by finding GCD of value 
to decrypt the data so noise is helpful in security scenarios but 
as multiplications and additions on cloud computing increases 
noise. Hence, while decrypting we get incorrect data. To avoid 
this the noise value has to correlated with p values. If the 
condition satisfies then it will sent to encryption 
combinational block for encryption of data. Therefore, p value 
must be as given in (9), 

 

p>=(2*r1+b1) *(2*r2+b2)                                                       (9) 

 

whereas p is key r1 and r2 is noise for pair of cipher text and b1 
and b2 is corresponding bit value for data pair.  

 

Fig. 4. Cryptography Processing unit using FHE 

 

 

B. Encryption Combinational Block 

The obtained value of p, r1, r2, q1, q2 after certain checking and 

processing. Encryption is to be performed for bits of data. 

This data is to be encrypted and transferred from memory 

SRAM using memory controller as in Fig.4. To process four 

pairs of data, it needs four cycle because the process is 

performed using single hardware at latency of 4 clock cycles. 

After encryption the data is transmitted to Multiplication and 

Addition unit which is mimic of cloud and it is a 32 X 32 

multiplier[12] and adder parallel unit. The Memory unit 

consists of memory which will get input n bits for each clock 

cycle and store it in memory then it was used by Encryption 

FSM system for encrypting the data.   
 

Here in Fig.5 the reset block is first activated when we need to 

clear the data in queue or clear old data because FSM is state 

machine and load cycle data is loaded from memory and 

necessary noise and random variable are generated in that 

cycle and 4 bit of data each bit is encrypted and each cycle 

using Fully Homomorphic Encryption and data is sent to 

cloud.  

 

Fig. 5. Encryption using FSM 
 

C.  FSM Fibonacci LFSR 

The traditional LFSR is considered, having reset signal in 
synchronous with clock, In the traditional Fibonacci LFSR, a 
condition is maintained to bypass the stuck at zero state[20]. 
The state prior to zero state is found by running classical 
Fibonacci LFSR that is without any modification. This method 
ensures that all the 256 states are achieved without leading to 
stuck at 0 states. 

 

 

Fig. 6. State Machine for Fibonacci LFSR 
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In Fig.6, if the reset is 0, then the output of LFSR is assigned 
to be state 0 that is the output is zero. According to the 
traditional LFSR if it enters state 0 then it will be stuck there. 
So next state is assigned to be state 1 that is the output is 
forced to 1. As long as the reset is zero, the LFSR output will 
be 0 and next state or output expected from LFSR will be 1. 
Once the reset is made high, it works as per the polynomial 
equation described for Fibonacci LFSR. The Fibonacci LFSR 
polynomial equation is designed in such a way that it skips 
state 0 which causes the LFSR to enter the stuck state. 
Therefore, it is required to know the state prior to state 0 and 
forcefully assign it to some other state. The algorithm for 
modified Fibonacci LFSR is given as, 

i. Declare the inputs for LFSR clock, reset and output data. 
Also declare an intermediate signal data_next. Both data and 
data_next are of 8 bit in size.   

 ii. Check if data is state prior to state 0. If so, then assign next 
state as state 0. In a classical LFSR this state would be 
skipped.   

 iii. If result is false in step ii, then check if data is state 0 if so, 
then assign data_next as state 1 else perform as per 
polynomial equation of Fibonacci LFSR.  

 iv. If positive edge of the clock and reset 0 has occurred and 
are synchronised, check if reset is zero then assign data to 
state 0 else assign data to data_next which is calculated from 
step ii and step iii. 

V. EXPERIMENTAL RESULT 

The design of the processing unit for encryption as well as 

decryption was implemented using Verilog. The FHE ASIC 

was synthesized for 90-nm technology and 32-nm 

technology, using the Synopsys Design Compiler. The table 

above shows the power report and the area report of the 

processing unit using normal LFSR and by Fibonacci LFSR 

using FSM. The power and the area of modified Fibonacci 

LFSR is less compared to normal LFSR as in table 1 and 

table 2. The modified Fibonacci LFSR has a reduced power 

and area as the hardware use is less as compared to a 

traditional Fibonacci LFSR because it uses finite state 

machine. Since, the processing unit consist of three LFSRs 

the total power and area of the whole system is reduced.  

 

TABLE I.   TABLE PROCESSING UNIT WITH 90NM TECHNOLOGY 

 

TABLE II.   TABLE PROCESSING UNIT WITH 32NM TECHNOLOGY 

Processing Unit with Power (µm) Area (µm2) 

LFSR 2.1469e+03 42615.5 

FSM Fibonacci LFSR 1.0253e+03 17699.55 

 

VI. CONCLUSION 

In this paper, an efficient processing unit for encryption and 

decryption of homomorphic cryptosystem is implemented. 

The encryption unit consist of three LFSR, a noise correlator 

and FSM while the decryption unit consist of combinational 

blocks. The design is implemented using verilog and 

synthesized for 90-nm technology as well as 32-nm 

technology. Experimental results showed that the system of 

processing unit has a reduction in power and area. The 

modified Fibonacci LFSR is more efficient as compared to 

normal LFSR. 
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