
VLSI Implementation of an Efficient Processing

Unit for Fully Homomorphic Encryption

Blessy Cherian
SENSE Department

Vellore Institute of Technology

Vellore, Tamil Nadu, India

Abstract--This paper presents an efficient processing unit for

Fully Homomorphic Encryption and Decryption hardware

design using finite state machine. The encryption unit consist of

a three Linear feedback shift registers, a noise correlator and

FSM. The decryption unit has combinational blocks. The

processing unit consist of a single hardware having an

encryption as well as a decryption unit and a cloud computing

unit. There are two proposed architectures, one with a normal

LFSR and the other with modified Fibonacci LFSR. As the two

architecture is compared, the processing unit with modified

Fibonaaci LFSR using FSM has a reduction in the power as well

as area.

Keywords—Fully Homomorphic Encryption;Cloud

Computing; Processing Unit; LFSR; Finite State Machine

I. INTRODUCTION

Cloud Computing has raised as an extensive paradigm that

has attracted attention in both commercial and educational

section. Cloud Computing[8] exists in different names like

"outsourcing" as well as "server hosting." The word cloud

computing means to store and access data and program over

internet instead of storing the data in the hard drive of

computer or in large capacity systems. But the poor

performance of processors used, slow Internet connections

and the exorbitant costs of the materials used, do not allow

the use of services and storage spaces. However, recent

advances in current technology[8][7] of virtualization, paved

the way for these operations with faster processing. This is an

attractive solution that can provide low cost storage and

processing capabilities for government organizations,

hospitals, and small or medium enterprises. It has the

advantage of reducing the IT expenses and providing services

for the requesting parties through making specialized

software and computing resources available. Nevertheless,

there are some apprehensions that should be considered by all

organization migrating to cloud computing. As the data is

transferred to the Cloud, encryption technique is used to

secure the operations and the storage of the data. The basic

concept is to encrypt the data before sending it to the Cloud

provider or the server. The client provides the private key to

the server to decrypt data, which might affect the

confidentiality and privacy of data stored in the Cloud. A

method to execute operations on encrypted data without

decrypting them, which will provide the same results after

calculations as if we have worked directly on the raw data.

Homomorphic Encryption[21] systems are used to perform

operations on encrypted data without knowing the private key

which means without decryption, the client is the only holder

of the secret key. When we decrypt the result of any

operation, it is the same as if we had carried out the

calculation on the raw data.

The paper is structured as follows. Section II recapitulate the

earlier works in this topic. Section III introduces the Fully

homomorphic encryption and different types with equations.

Section IV describes the use and architecture of processing

unit for homomorphic system. Section V presents the main

experimental results collected from hardware synthesis.

Section VI concludes the paper with some final remarks.

II. PREVIOUS WORKS

Cloud computing arose as an important case for a large class

of applications. Security is a major concern in cloud

processing, pointing out the importance of advanced

cryptographic techniques like homomorphic encryption,

allowing computation to take place on encrypted data on the

server side. In specific, this work addresses Fully

Homomorphic Encryption (FHE), introduced by

Gentry’s[3][1] inspiring work just a few years ago. In 2009

Gentry familiarized a fully homomorphic encryption (FHE)

scheme. FHE allows the evaluation of arbitrary functions

directly on encrypted data. The Gentry–Halevi scheme was

the first software implementation of FHE, but this

implementation remains unworkable due to the high latency.

An implementation of a variant of the original scheme is

proposed by Gentry and Halevi[2]. Their solution, despite

various optimizations and small size security parameters,

takes more than one second for encrypting a single bit on an

Intel Xeon server. Recent software implementations include,

open-source library, crypt, is available on-line, while contains

an optimized implementation reaching a significant speed-up

over the previous solutions. Several research works

concerning FHE computing platforms have looked for

alternative architectures, mainly GPUs and FPGAs. A FPGA-

based accelerator[6] implementing ultralong integer

multiplication, the main performance bottleneck in most

homomorphic encryption schemes, but this process has been

time consuming. The work describes an implementation

based on an Altera’s Stratix V FPGA platform. For high

performance data path element, which provides high speed

architecture by combining the karatsuba operand splitting

parallel multiplier with existing Toom cook based modular

multiplier[4] and another architecture with FFT based

modular multiplications. Generally, modular multiplications

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060651
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1105

www.ijert.org
www.ijert.org
www.ijert.org

is major mission for FHE encryption which consists of

modular multiplications which is used to convert plain text to

cipher text. Our architecture provides high speed for modular

multiplications so large number integers also processed at

high speed.

III. FULLY HOMOMORPHIC ENCRYPTION

Homomorphic encryption is a method of encryption that

allows calculation on ciphertexts, generating an encrypted

result which, when decrypted, matches the result of the

operations as if it was performed on the plaintext.

Homomorphic encryption[1] can be used for secure

outsourced computation, such as secure cloud computing

services, and securely chaining together different services

without exposing sensitive data. For example, services from

different companies to estimate the tax, the in the case of

currency exchange rate. Homomorphic encryption[19] can

also be used to create more secure systems such as secure

voting systems, collision-resistant hash functions, private set

intersection, and private information retrieval schemes. In

highly controlled industries, such as healthcare,

homomorphic encryption can be used to enable new services

by removing privacy blockades inhibiting data sharing. For

example, analytics in health care can be hard to use due to

medical data privacy concerns, but if the predictive analytics

service provider can function on encrypted data in place of

these privacy concerns are diminished.

Homomorphic encryption schemes are inherently soft. In

terms of malleability, homomorphic encryption schemes have

weaker security properties than non-homomorphic schemes.

A cryptosystem that supports arbitrary computation on

ciphertexts[2][3] is known as fully homomorphic encryption

(FHE). Such a scheme enables the creation of programs for

any wanted functionality, which can be performed on

encrypted inputs to produce an encryption of the output.

Since such a program need not decrypt its inputs, it can be

run by an untrusted party without revealing its inputs and

internal state. Fully homomorphic cryptosystems have great

practical implications in the outsourcing of private

computations. Mostly, FHE allows for arbitrary

computations[9] on encrypted data. Computing on encrypted

data means that if a user has a function f and want to get f

(m1, . . . , mn) for some inputs m1, . . . , mn, it is possible to

instead compute on encryptions of these inputs, c1, . . . , cn,

obtaining a result which decrypts to f(m1, . . . , mn).

An encryption is homomorphic, if, from Enc(a) and Enc(b) it

is possible to compute Enc(f (a, b)), where f can be: +, ×, ⊕

and without using the private key. Among the Homomorphic

encryption we differentiate, according to the operations that

allows to assess on raw data, the additive Homomorphic

encryption only additions of the raw data is the Pailler and

Goldwasser-Micalli cryptosystems, and the multiplicative

Homomorphic encryption only products on raw data is the

RSA [14] and El Gamal [9] cryptosystems. Ek is an

encryption algorithm with k and Dk is a decryption algorithm

with key L, as represented in (1) and (2).

Dk(Ek(n)×Ek(m)) = n×m or Enc(x⊗y)=Enc(x)⊗ Enc(y) (1)

DL(EL(n)×EL(m)) = n×m or Enc(x⊕ y)=Enc(x)⊗Enc(y) (2)

A. Multiplicative Homomorphic Encryption

Multiplicative homomorphic encryption is also known as

RSA cryptosystem. Suppose x1 and x2 are the plaintexts.

Then the equation is defined as (3),

eK(x1)eK(x2)=x1
bx2

b mod n=(x1x2)bmod n=eK(x1x2) (3)

B. Multiplicative Homomorphic Encryption

 Additive homomorphic encryption is also known as Paillier

Cryptosystem. Suppose x1 and x2 are the Plaintext. Then

defined as in (4) and (5),

eK(x1,r1)eK(x2,r2)=gx1r1
n.gx2r2

n mod n2 (4)

eK(x1,r1)eK(x2,r2) =gx1+x2(r1r2)n mod n2 (5)

To perform addition and multiplication on encrypted data

stored in the cloud provider, the client must have two

different key generators (one for RSA and one for Paillier).

C. El Gamal Cryptosystem

El Gamal cryptosystem that is basically a multiplicative

homomorphic cryptosystem but by modifying coding mode

we can make it additive. El Gamal Cryptosystem performs

multiplicative homomorphic encryption propriety

Let x1 and x2 be plaintexts. Then (7),

 ek(x1, r1)ek(x2, r2) = αr1+r2 mod p, (x1 x2) βr1+ r2 mod p (7)

If we put the plaintext in the exponent, we get the equation as

(8),

ek(x, r) = (αr mod p, αx βr mod p) (8)

IV. PROCESSING UNIT FOR CRYPTOGRAPHY

The processing unit[18] is used to process data for effective
cost and to avoid hardware. The idea behind this Processing
Unit is, many companies need to perform processing
operations on the data present but because of the cost
effectiveness and to avoid hardware providing place they
decide to use third party clouds. The process is, data is
encrypted using corresponding encryption algorithm and
transmitted to cloud. The cloud will perform operations on
encrypted data but the cloud does not have knowledge of the
data. The key computed encrypted data is transmitted again to
processing unit. After decryption the result is obtained without
using complex computational hardware. In the architecture
shown in Fig.1 we implemented Gentry’s Fully Homomorphic
Encryption[2] and Decryption. The Encryption consists of
three LFSRs, one noise correlation and one Finite State
Machine for Encryption process. The Decryption consist of
combinational block for decryption process. The Multiplier
consists of one parallel 32x32 multiplier[12][4] for processing
the encrypted data one clock cycle one pair of data both

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060651
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1106

www.ijert.org
www.ijert.org
www.ijert.org

addition and multiplication it is also similar like mimic of
cloud vendors.

Fig. 1. Architecture of processing unit

A Linear Feedback Shift Register Linear Feedback Shift
Register is a sequential shift register with combinational logic
that causes it to pseudo randomly cycle through a sequence of
binary values. Feedback around an LFSR's shift register
comes from selection of points in the register chain and
constitutes XOR of these taps to provide taps back into the
register. Register bits that do not need an input tap, operate as
a standard shift register. It is this feedback that causes the
register to loop through repetitive sequences of pseudo
random value. The choice of taps determines how many
values are there in a given sequence before the sequence
repeats. A n-bit Linear Feedback Shift Register (LFSR)[17] is
a n-bit length shift register with feedback to its input. The
feedback is formed by XOR or XNOR of the outputs of
selected stages of the shift register mentioned as taps. The
input to least significant bit. The linear part of the term LFSR
derives from the fact that XOR and XNOR are XOR and
XNOR are linear functions. An LFSR will produce a
pseudorandom sequence of length (2n – 1) states. An LFSR is
of maximal length when the sequence generates passes
through all possible 2 passes through all possible 2n-1 values.
The LFSR sequence depends on the seed value. In an LFSR,
the bits contained in selected positions in In an LFSR, the bits
contained in selected positions in the shift register are
combined in some sort of function the shift register are
combined in some sort of function and the result is fed back
into the register's input bit. By definition[16], the selected bit
values are collected before the register is clocked before the
register is clocked and result of the feedback function is
inserted, filling the position that is emptied as a during the
shift. The implemented LFSR typically uses a one-to-many
structure, rather than a many-to-one structure, shortest clock-
to-clock delay path.

Fibonacci LFSR: In the fig.2 the Fibonacci LFSR with the
rightmost bit of the LFSR is called the output bit. The bit
positions that affect the next state are called the taps. The taps
are XOR sequentially with the output bit and then fed back
into the leftmost bit. The sequence of bits in the rightmost
position is called the output stream. The bits in the LFSR state
that influence the input are called taps.

Fig. 2. Fibonacci LFSR

A maximum length LFSR produces an m sequence, unless it
contains all zeros, in which case it will never change. As an
alternative to the XOR based feedback in an LFSR, XNOR
can be used. This function is not strictly linear, but it results in
an equivalent polynomial counter whose state is the
complement of the state of an LFSR. A state which has all
ones is illegal when using an XNOR feedback. In the same
way as a state with all zeroes is illegal when using XOR. This
state is considered illegal because the counter remains locked
up in this state. The arrangement of taps for feedback in an
LFSR can be expressed in finite field arithmetic as a
polynomial mod 2. This means that the coefficients of the
polynomial must be 1 or 0. This is known as feedback
polynomial or reciprocal characteristic polynomial. There can
be more than one maximum length sequence for a LFSR
length. Also, once one maximum length tap sequence has been
found, another automatically follows. If the tap sequence in an
n-bit LFSR is [n, S, T, U, 0], where the 0 corresponds to the
x0 = 1 term, then the corresponding "mirror" sequence is [n, n
− U, n − T, n − S, 0].

Galois LFSR: This kind of LFSR is named after the French
mathematician Evariste Galois, an LFSR in Galois
configuration, which is also known as modular or internal
XOR or one to many LFSR, is an alternate structure that can
generate the same output stream as a conventional LFSR. In
the Galois configuration as shown in Fig 3, when the design is
clocked, bits that are not taps are shifted one position to the
right unchanged. On the other hand, are XOR with the output
bit before they are stored in the next position. The new output
bit is the next input bit. The effect of this is that when the
output bit is zero, all the bits in the register shift to the right
unchanged, and the input bit becomes zero. When the output
bit is one, the bits in the tap positions all flip and then the
whole register is shifted to the right and the input bit becomes
1. For getting the same output stream, the order of the taps is
the counterpart of the order for the conventional LFSR else
the stream will be in reverse. The internal state of the LFSR is
not certainly the same. The Galois register has the same output
stream as the Fibonacci register. A time offset exists between
the streams, so a different start point will be needed to get the
same output each cycle. Galois LFSRs do not concatenate
every tap to produce the new input. Therefore, it is possible
for each tap to be calculated in parallel, snowballing the speed
of execution. In implementation of an LFSR in case of
software, the Galois form is more efficient.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060651
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1107

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 3. Galois LFSR

In the architecture, for generation Random numbers for p, q
and r we need a LFSR here we are using LFSR with certain
seed values. Each p, r1, r2, q1, q2, we provide different seeds.
The value of q1 and q2 must be greater than p and also it
should be multiples of p, now q1 and q2 will be bigger than p
for reduction of hardware utilization we implemented a 4 bit
LFSR for q1 and q2 and multiplying with p so hardware
utilization is reduced. In Galois LFSR the critical path is very
less compared to Fibonacci LFSR. Extra hardware is used to
check whether p is odd or not. If odd, we will pass the values
to correlator logic for further processing.

A. Correlator Logic

 The equation of FHE[4] before the noise is adding to bits and
key, the hacker can reverse it such as by finding GCD of value
to decrypt the data so noise is helpful in security scenarios but
as multiplications and additions on cloud computing increases
noise. Hence, while decrypting we get incorrect data. To avoid
this the noise value has to correlated with p values. If the
condition satisfies then it will sent to encryption
combinational block for encryption of data. Therefore, p value
must be as given in (9),

p>=(2*r1+b1) *(2*r2+b2) (9)

whereas p is key r1 and r2 is noise for pair of cipher text and b1
and b2 is corresponding bit value for data pair.

Fig. 4. Cryptography Processing unit using FHE

B. Encryption Combinational Block

The obtained value of p, r1, r2, q1, q2 after certain checking and

processing. Encryption is to be performed for bits of data.

This data is to be encrypted and transferred from memory

SRAM using memory controller as in Fig.4. To process four

pairs of data, it needs four cycle because the process is

performed using single hardware at latency of 4 clock cycles.

After encryption the data is transmitted to Multiplication and

Addition unit which is mimic of cloud and it is a 32 X 32

multiplier[12] and adder parallel unit. The Memory unit

consists of memory which will get input n bits for each clock

cycle and store it in memory then it was used by Encryption

FSM system for encrypting the data.

Here in Fig.5 the reset block is first activated when we need to

clear the data in queue or clear old data because FSM is state

machine and load cycle data is loaded from memory and

necessary noise and random variable are generated in that

cycle and 4 bit of data each bit is encrypted and each cycle

using Fully Homomorphic Encryption and data is sent to

cloud.

Fig. 5. Encryption using FSM

C. FSM Fibonacci LFSR

The traditional LFSR is considered, having reset signal in
synchronous with clock, In the traditional Fibonacci LFSR, a
condition is maintained to bypass the stuck at zero state[20].
The state prior to zero state is found by running classical
Fibonacci LFSR that is without any modification. This method
ensures that all the 256 states are achieved without leading to
stuck at 0 states.

Fig. 6. State Machine for Fibonacci LFSR

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060651
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1108

www.ijert.org
www.ijert.org
www.ijert.org

In Fig.6, if the reset is 0, then the output of LFSR is assigned
to be state 0 that is the output is zero. According to the
traditional LFSR if it enters state 0 then it will be stuck there.
So next state is assigned to be state 1 that is the output is
forced to 1. As long as the reset is zero, the LFSR output will
be 0 and next state or output expected from LFSR will be 1.
Once the reset is made high, it works as per the polynomial
equation described for Fibonacci LFSR. The Fibonacci LFSR
polynomial equation is designed in such a way that it skips
state 0 which causes the LFSR to enter the stuck state.
Therefore, it is required to know the state prior to state 0 and
forcefully assign it to some other state. The algorithm for
modified Fibonacci LFSR is given as,

i. Declare the inputs for LFSR clock, reset and output data.
Also declare an intermediate signal data_next. Both data and
data_next are of 8 bit in size.

 ii. Check if data is state prior to state 0. If so, then assign next
state as state 0. In a classical LFSR this state would be
skipped.

 iii. If result is false in step ii, then check if data is state 0 if so,
then assign data_next as state 1 else perform as per
polynomial equation of Fibonacci LFSR.

 iv. If positive edge of the clock and reset 0 has occurred and
are synchronised, check if reset is zero then assign data to
state 0 else assign data to data_next which is calculated from
step ii and step iii.

V. EXPERIMENTAL RESULT

The design of the processing unit for encryption as well as

decryption was implemented using Verilog. The FHE ASIC

was synthesized for 90-nm technology and 32-nm

technology, using the Synopsys Design Compiler. The table

above shows the power report and the area report of the

processing unit using normal LFSR and by Fibonacci LFSR

using FSM. The power and the area of modified Fibonacci

LFSR is less compared to normal LFSR as in table 1 and

table 2. The modified Fibonacci LFSR has a reduced power

and area as the hardware use is less as compared to a

traditional Fibonacci LFSR because it uses finite state

machine. Since, the processing unit consist of three LFSRs

the total power and area of the whole system is reduced.

TABLE I. TABLE PROCESSING UNIT WITH 90NM TECHNOLOGY

TABLE II. TABLE PROCESSING UNIT WITH 32NM TECHNOLOGY

Processing Unit with Power (µm) Area (µm2)

LFSR 2.1469e+03 42615.5

FSM Fibonacci LFSR 1.0253e+03 17699.55

VI. CONCLUSION

In this paper, an efficient processing unit for encryption and

decryption of homomorphic cryptosystem is implemented.

The encryption unit consist of three LFSR, a noise correlator

and FSM while the decryption unit consist of combinational

blocks. The design is implemented using verilog and

synthesized for 90-nm technology as well as 32-nm

technology. Experimental results showed that the system of

processing unit has a reduction in power and area. The

modified Fibonacci LFSR is more efficient as compared to

normal LFSR.

REFERENCES

[1] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in

Proc. 41st Annu. ACM Symp. Theory Comput., Jun. 2009, pp. 169–
178.

[2] C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomorphic
encryption scheme,” in Advances Cryptology–EUROCRYPT (Lecture
Notes in Computer Science). New York, NY, USA: Springer-Verlag,
2011, pp. 129–148

[3] “A fully homomorphic encryption scheme”, C.Gentry, Ph.D.
dissertation, Stanford University, 2009.

[4] Ravi S, Ajith krishna R, and Harish M Kittur, “High Performance
Datapath Element for Fully Homomorphic Encryption.”

[5] “VLSI Design of a Large-Number Multiplier for Fully Homomorphic
Encryption”, Wei Wang, Xinming Huang.

[6] “Securing the Cloud with Reconfigurable Computing: An FPGA
Accelerator for Homomorphic Encryption”,Alessandro Cilardo and
Domenico Argenziano.

[7] Mahs TEBAA, Said EL HAJII, “ Secure Cloud Computing through
Homomorphic Encryption.”.

[8] Youssef Gahi, Mouhcine Guennoun, Khalil El-Khatib, “ A secure
database System Using Homomorphic Encryption Schemes”.

[9] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen ,
Angela J¨aschke , Christian A. Reuter, and Martin Strand, “A Guide to
Fully Homomorphic Encryption”.

[10] Akhila K, Karuna N, Kavya C, Yasha Jyothi M Shirur,” Design and
Implementation of Power Efficient Linear Feedback Shift Register for
BIST using Verilog”.

[11] “FPGA Implementation of a Large-Number Multiplier for Fully
Homomorphic Encryption”,Wei Wang and Xinming Huang.

[12] M.-D. Shieh, J.-H. Chen, H.-H. Wu, and W.-C. Lin, “A new modular
exponentiation architecture for efficient design of RSA cryptosystem,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 9, pp.
1151–1161, Sep. 2008.

[13] Selvaraj Ravi,”A Performance Comparsion on of Low Power LFSR”.

[14] Shiv Dutta Mishra, Prof. Anurag Shrivastav,” Advance Parallel LFSR
for Cryptography”.

[15] Praveen J, M N Shanmukhaswamy,” Power Reduction Technique in
LFSR using Modified Control Logic for VLSI Circuit”.

[16] Mark Goresky, Andrew Klapper,”Fibonacci and Galois Representations
of Feedback with Carry Shift Registers”.

[17] Praveen, J. & Shanmukhaswamy, M. (2012), ‘Power reduction
technique in lfsr using modified control logic for vlsi circuit’,
International Journal of Computer Applications 975, 8887.

[18] Barrett, P. (1986), Implementing the rivest shamir and adleman public
key encryption algorithm on a standard digital signal processor, in
‘Conference on the Theory and Application of Cryptographic
Techniques’, Springer, pp. 311–323.

[19] Cheon, J. H. & Kim, J. (2015), ‘A hybrid scheme of public-key
encryption and somewhat homomorphic encryption’, IEEE transactions
on information forensics and security 10(5), 1052–1063.

[20] Singh, B., Khosla, A. & Bindra, S. (2009), Power optimization of linear
feedback shift register (lfsr) for low power bist, in ‘2009 IEEE
International Advance Computing Conference’, IEEE, pp. 311–314.

[21] Singh, J. & Kaur, P. (2016), Digital image watermarking of
homomorphic encrypted images: A review, in ‘2016 International
Conference on Electrical, Electronics, and Optimization Techniques
(ICEEOT)’, IEEE, pp. 1790–1793.

Processing Unit with Power (µm) Area (µm2)

LFSR 2.6206e+03 140024

FSM Fibonacci LFSR 1.558e+03 57365

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060651
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1109

www.ijert.org
www.ijert.org
www.ijert.org

