

VLSI Architecture for Multilevel Inverters

Athira T. N

PG Scholar

Applied Electronics & Instrumentation
Younus College of Engineering & Technology
Kollam, India

Sarah Gopal

Assistant Professor

Electronics & Communication
Younus College of Engineering & Technology
Kollam, India

Abstract—The DC/AC power inverters constitute the major unit of the power generation systems implemented in renewable energy sources, AC motor drives, and UPS applications. The digital implementation of SPWM generator is executed through FPGA which makes it capable to operate at high switching frequencies with lower power consumption. The Total Harmonic Distortion reduction as well as better performance can be obtained through multilevel inverters. The complexity of multilevel circuit topologies will be high. This paper presents the simulation of a transistor clamped H-bridge multilevel inverter with reduced number of switches using phase disposition pulse width modulation technique. Simulation is verified through MATLAB Simulink and implemented using FPGA in XILINX ISE Design Suite 14.5. Phase Disposition pulse width modulation (PDPWM) technique is employed for generating pulses for multilevel inverters.

Keywords—Sinusoidal Pulse Width Modulation (SPWM); Field Programmable Gate Array (FPGA); Multilevel inverter; THD; Phase Disposition Modulation Technique; Transistor Clamped H-Bridge MLI

I. INTRODUCTION

An inverter is basically a device that converts electrical energy of DC form into that of AC, which are widely used in renewable energy production, motor drive, and uninterruptible power supply applications [1] – [4]. A simplified block diagram of a single-phase, full bridge dc/ac power converter is depicted in Fig.1. The Sinusoidal Pulse Width Modulation (SPWM) technique is widely employed in order to adjust the dc/ac inverter output voltage amplitude and frequency to the desired value. In this case, the power converter switches are set to the ON or OFF state according to the result of the comparison between a high-frequency, constant-amplitude triangular wave (carrier) with two low-frequency reference sine waves of adjustable amplitude and/or frequency [5], [6]. In the unipolar SPWM technique which is illustrated in Fig. 2, the generated pulses are either positive or negative during each half period of the SPWM wave. The high-frequency harmonics of the generated SPWM signal, V_{spwm} in Fig. 2, posses are then filtered using a low-pass LC -, LCL - or $LLCL$ type filter [5], [7] thus producing the high-power and low-frequency sinusoidal waveform V_o at the output terminals of the dc/ac inverter.

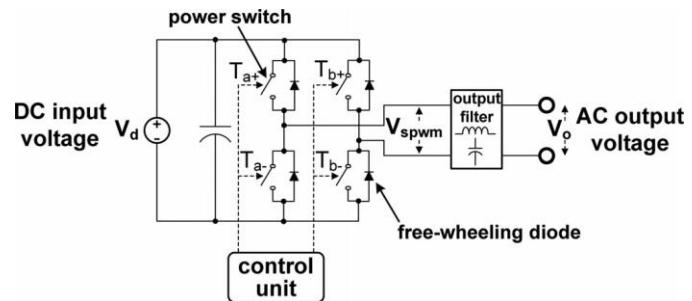


Fig. 1. Block diagram of a single-phase, full-bridge dc/ac power converter.

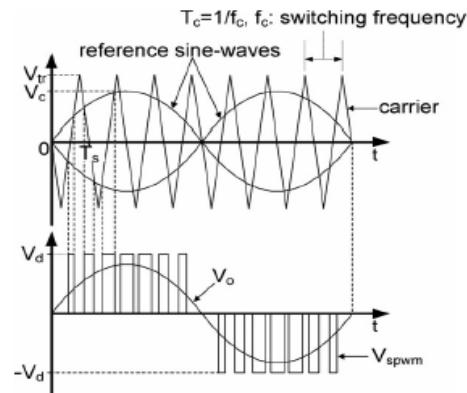


Fig. 2. Unipolar SPWM technique.

The AC output available from an inverter should have less distortion in order to obtain a good power quality [8],[9]. To obtain low distortion on the output voltage waveforms, the conventional inverters are switched at very high frequency [8]. However, high switching frequency causes high dv/dt of output voltages, higher switching losses, voltage doubling effects and electro-magnetic interferences [8]. One of the alternatives for the above mentioned problem is made by the development of multilevel inverters. Multilevel inverters generate an AC voltage using small voltage steps obtained with the help of DC supplies or capacitor banks [10]. Output voltages obtained from multilevel inverters are superior in quality and need less filter requirements thereby reducing the overall system size [11]. The output voltage of the multilevel inverter can be improved by increasing its number of levels. The total harmonic distortion (THD) also reduces thereby improving the power quality of the overall system.

There are mainly three most common multilevel inverters which include the neutral point clamped inverter, flying capacitor inverter and cascaded H-bridge inverter [8]-

[12], [13]-[14]. The diode clamped multilevel inverter topology requires more number of clamping diodes thereby making the circuit complex, bulky and expensive [15], [16]. In a capacitor clamped topology, floating capacitors are used to hold the voltage levels [17]. Compared to the other two topologies, cascaded H-bridge multilevel inverter is more reliable as it has a modular structure [17]-[18], [13], and [19]. But it require separate DC source for each H-Bridge unit, causing an increase in the cost [20].

For getting a better output voltage with minimum harmonic distortion, multilevel inverters employ different modulation techniques. Some of the commonly used modulation techniques include Sinusoidal Pulse Width Modulation, Selective Harmonic Elimination, Space Vector Modulation etc [21], [9]-[10], [18], [13], [22], and [23]. Various topologies of multilevel inverters have been introduced with several modulation techniques. Nowadays, researchers focus on topologies and modulation techniques that can produce a higher output voltage level with reduced number of switches. A 5-level transistor clamped multilevel inverter with reduced number of switches is introduced in this paper. The output voltage, output current and voltage stress across the switches of the transistor clamped H-bridge multilevel inverter is obtained by employing pulse disposition pulse width carrier modulation technique.

This paper is organized as follows: Section II discusses in brief the existing system. Section III describes the proposed transistor clamped H-bridge multilevel inverter with reduced number of switches. Section IV shows the simulation results and Section V concludes the work.

II. EXISTING SYSTEM

There are different types of methodologies found in existing system to obtain high switching frequency. Here the system is implemented using FPGA. SPWM generator is used to adjust the dc/ac inverter output voltage and frequency. The architecture of existing SPWM generation unit is presented in Fig. 3. The system inputs are the modulation index of the output SPWM wave M , as well as the “clock” and “reset” signals. The architecture of the proposed system consists of five subsystems, like Clock Generator Subsystem, Modulation Index Subsystem, Sine-carrier Subsystem, Adjustable Amplitude Sine Subsystem and Comparison Subsystem, which implement the SPWM generation algorithm. The values of a sinusoidal wave, mathematically being in the range $[-1, 1]$, have been adapted in the proposed architecture to the equivalent range of $[0, 255]$ with the zero point corresponding to the discrete value of “128.”

A. Clock Generator Subsystem

The FPGA input clock will be the input of the “Clock generator” subsystem and in turn produces a new clock signal used by the digital circuits of the proposed SPWM generator. Thereby the desired SPWM switching frequency f_c specified by the designer/user is generated. The input clock frequency f_{clk} is set to $f_{clk}/2$ using two state finite state machine (FSM).

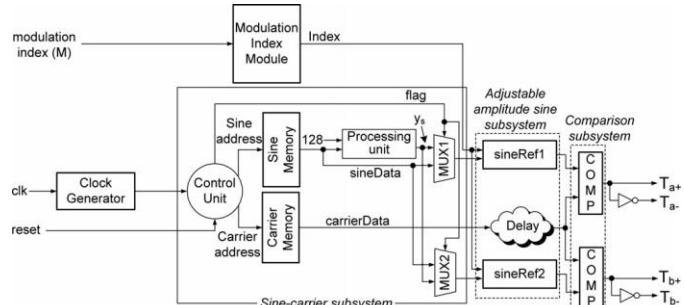


Fig. 3. Architecture of the proposed SPWM generation unit.

A Digital Clock Manager module adapts this frequency to the desired value. DCM module uses the Very high speed integrated circuit Hardware Description Language (VHDL) code. The operational parameters “CLKFX_MULTIPLY” and “CLKFX_DIVIDE” of the DCM module are changed according to the switching frequency requirements of the SPWM output waveform, while the FSM is kept constant. Therefore, the proposed SPWM generator is flexible to be adapted to the generation of any operating switching frequency specified by the system designer.

B. Modulation Index Subsystem

The “Modulation index” subsystem will convert the floating-point modulation index M , which is input in the proposed SPWM generation system ($M \in [0, 1]$) to the corresponding value in fixed-point arithmetic.

C. Sine-Carrier Subsystem

The “Sine-Carrier” subsystem consists of the control unit, two BRAMs, which contain samples of the sinusoidal and triangular (i.e., carrier) waves and two multiplexers that produce the two constant-amplitude reference sine waves used for the production of the SPWM output signals. The BRAMs of the sine wave and carrier operate as LUTs. Both the sinusoidal and triangular waves are simulated through MATLAB simulink and through FPGA using VHDL. The value of the sine waves are obtained from the MATLAB and is used in FPGA to produce a sine wave and the produced wave is then inverted to obtain sine wave of opposite phase.

D. Adjustable Amplitude Sine Subsystem

The constant-amplitude reference sinusoidal value produced by the “Sine-Carrier” subsystem is the input of the “Adjustable amplitude sine”. It generates a sinusoidal digital signal y_a with adjustable amplitude according to the value of the modulation index M which is an input in the SPWM generation system. The value of y_a is in the range 0– 255 and it is then calculated. The value of the constant amplitude reference sine wave and $Index$ is the output of the “Modulation Index” subsystem.

E. Comparison Subsystem

The comparison between the high-frequency constant amplitude triangular waves (carrier) with the two low frequency reference sine waves, using two comparators (“COMP”) is implemented by the “Comparison” subsystem. The control signals T_a+ , T_a- , T_b+ , and T_b- are generated from the outputs of the corresponding comparators of this subsystem. They form the SPWM wave (V_{spwm}) at the dc/ac inverter output terminals. The outputs of the comparators in

the Comparison" subsystem (i.e., control signals $Ta+$ and $Tb+$) are equal to one when the corresponding output of the "Adjustable amplitude sine" subsystem is equal to or greater than the current digital value of the carrier signal. The DC/AC inverter control signals $Ta-$ and $Tb-$ are produced by inverting $Ta+$ and $Tb+$, respectively.

An FPGA-based SPWM generator has been implemented and simulated as depicted in fig. 4, which is capable to operate at high switching frequencies.

III. PROPOSED 5- LEVEL TRANSISTOR CLAMPED H-BRIDGE MULTILEVEL INVERTER

Fig.5. Shows a 5-level transistor clamped Multilevel Inverter. It has a normal H-Bridge inverter and an auxiliary circuit which consisting of a single IGBT switch is combined. The power circuit of TCHB multilevel inverter is such that it can produce more output levels with reduced number of power switches [24], [23] thereby reducing the complexity.

Fig. 6. Shows the multicarrier level shifted sinusoidal pulse width modulation technique. In this method, four triangular carrier waves of equal amplitude arranged one over the other is compared with a sinusoidal wave was introduced to generate

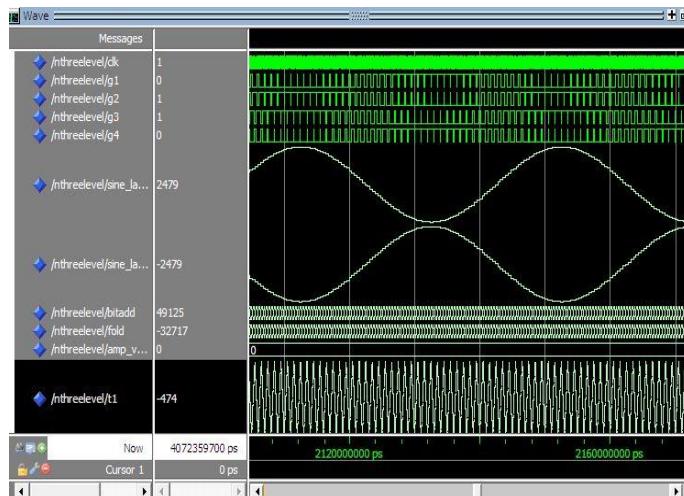


Fig. 4. Output waveform of Comparison of Sine wave with reference carrier waveform.

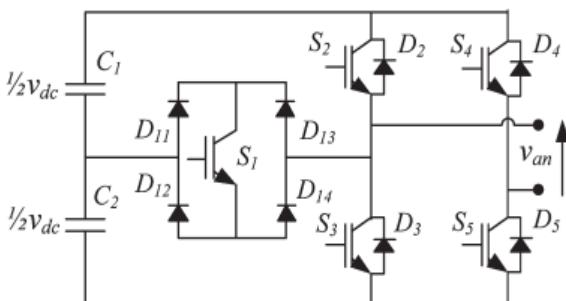


Fig. 5. Transistor clamped CHB multilevel inverter

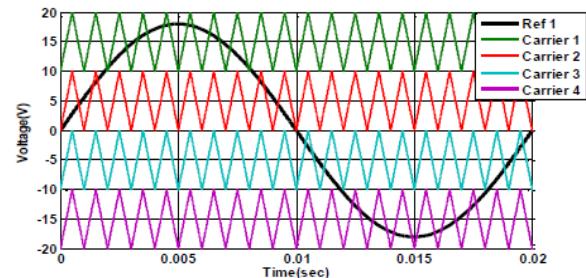


Fig. 6. Multicarrier level shifted modulation techniques

the PWM switching signals in the proposed system. In this method all the carriers above and below zero reference line are in same phase. If all the carriers are selected with the same phase, the method is known as Phase Disposition (PD) method [25]. Carrier and reference wave arrangements are as shown in Fig. 6. The PDPWM is the widely used strategy for Modular Multilevel converters and conventional multilevel inverters because it provides load voltage and current with lower harmonic distortion [26].

The converter is switched to $+V_{dc}/2$ when the sine wave is greater than both carriers, the converter switches to $+V_{dc}/4$ when the sine wave is lower than the uppermost carrier waveform and greater than all other carriers, the converter is switched to zero when sine wave is lower than upper carrier but higher than the lower carrier, the converter switches to $-V_{dc}/4$ when the sine wave is higher than the lowermost carrier waveform and lesser than all other carriers and the converter is switched to $-V_{dc}/2$ when the sine wave is less than both carrier waveforms.

In this topology five level output voltage is obtained by reduced number of switches compared to that of conventional cascaded H-Bridge multilevel inverter. The pulse pattern for a TCHB MLI is shown in Fig 7.

IV. SIMULATION RESULTS

The TCHB multilevel inverter with reduced number of switches is simulated using MATLAB-Simulink. The simulation is carried out for modulation index of 1.25. Fig. 8 and Fig. 9 shows expected waveforms of output current and output voltage. It is seen that the total harmonic distortion is reduced. The simulation of the multilevel inverter is then implemented using FPGA in XILINX ISE Design Suite14.5.

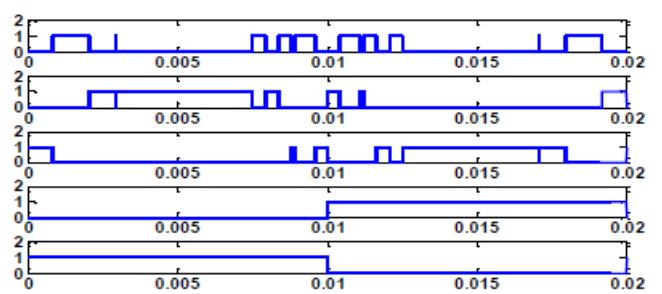


Fig. 7. Gate pulses for the switches from s1-s5

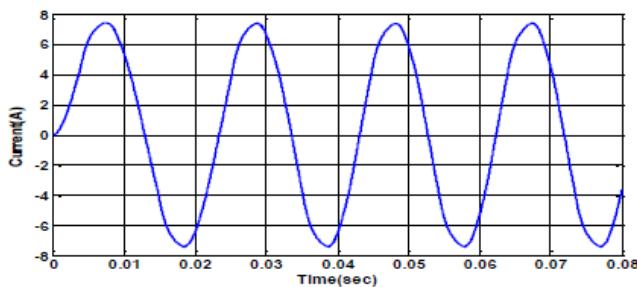
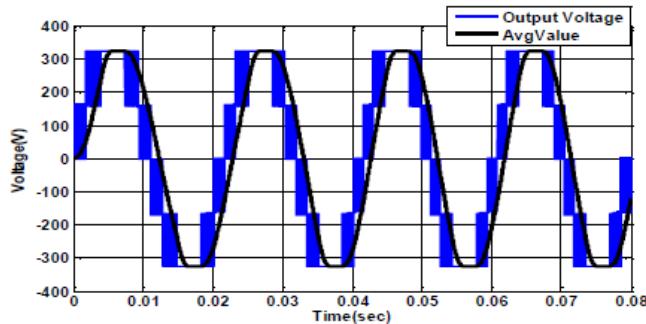


Fig. 8. Output current of TCHB MLI for $m=1.25$ Fig. 9. Output voltage of TCHB MLI for $m=1.25$

TABLE I. DESIGN PARAMETERS FOR A TRANSISTOR CLAMPED H-BRIDGE MLI

DC Voltage	325 V
Modulation Index	$0.85 < mi < 1.25$
Switching Frequency	20 kHz
Rated output voltage	1000 V
Power factor	.89
Capacitance C1-C2	1100 μ F

Table I shows the various design parameters used for the simulation of a single-phase five level transistor clamped H-Bridge inverter.

V. CONCLUSION

For controlling multilevel inverter different modulation scheme are used. Of these different modulation schemes SPWM method has gained more interest in industrial application. The same can be implemented using hardware. Mainly DSP or microcontroller based controller are preferred over analog controller for implementing SPWM scheme for multilevel inverter. But DSP based scheme such as symmetrical sampling, asymmetrical sampling or regular sampling method either produce phase delay in generated output waveform or required dedicated processor for continuous sampling. In this paper, phase disposition pulse width modulation technique is employed for a transistor clamped H-bridge multilevel inverter. The simulation is done through MATLAB simulink and implemented using FPGA. It is found that the transistor clamped H-Bridge multilevel inverter requires only reduced number of switches and exhibits a better performance with reduced Total Harmonic Distortion.

ACKNOWLEDGMENT

I would also like to extend my gratitude to the Head of the Department of Electronics and Communication, Mr. Rajeev S K, who were always ready to help for rectifying the mistakes that crept up time to time during the completion of this venture. I would also like to thank my friends and last but not the least the staff of ECE department for their support and encouragement. Above all, I am thankful to the GOD almighty.

REFERENCES

- R. Teodorescu, M. Liserre, and P. Rodriguez, *Grid Converters for Photovoltaic and Wind Power Systems*, 1st ed. New York, NY, USA: Wiley, 2011.
- N. D. Patel and U. K. Madawala, "A bit-stream-based PWM technique for sine-wave generation," *IEEE Trans. Ind. Electron.*, vol. 56, no. 7, pp.2530-2539, Jul 2009.
- S. Dasgupta, S. K. Sahoo, and S. K. Panda, "Single-phase inverter control techniques for interfacing renewable energy sources with microgrid- part I: Parallel-connected inverter topology with active and reactive power flow control along with grid current shaping," *IEEE Trans. Power Electron.*, vol. 26, no. 3, pp.717-731, Mar. 2011.
- S. A. Saleh and M. A. Rahman, "Experimental performances of the singlephase wavelet-modulated inverter," *IEEE Trans. Power Electron.*, vol.26, no. 9, pp. 2650-2661, Sep. 2011.
- N. Mohan, T. M. Undeland, and W.P. Robbins, *Power Electronics: Converters, Applications, and Design*, 3rd ed. New York, NY, USA: Wiley, 2002.
- A. M. Hava and N. O. C. etin, "A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters," *IEEE Trans. Power Electron.*, vol. 26 , no. 5, pp.1385-1395, May 2011.
- W. Wu, Y. He, and F. Blaabjerg, "An LLCL power filter for single-phase grid-tied inverter," *IEEE Trans. Power Electron.*, vol. 27 no. 2, pp. 782-789, Feb 2012.
- A.R.Beg and A.Dekka,"Experimental verification of multilevel inverter-based standalone power supply for low-voltage and low-power applications",*IET Power Electron.*,2012,Vol.5,Iss.6,pp.635-643.
- C.Govindaraju and K.Baskaran, "Efficient sequential switching hybrid – modulation techniques for cascade multilevel inverters",*IEEE Transactions on Power Electronics*,vol.26,June 2011.
- K.Ding K.W.E. Cheng and Y.P.Zou,"Analysis of an asymmetric modulation method for cascaded multilevel inverters",*IET Power Electron.*,2012,vol.5,iss.1,pp.74-85.
- Nasrudin Abd.Rahim,Mohamad Fatih Mohammad Elias and Wooi Ping Hew,"Transistor -Clamped H-Bridge Cascaded Multilevel Inverter With New Method of Capacitor Voltage Balancing",*IEEE Transactions on Industrial Electronics*,Vol.60,No.8,August 2013
- Faete Fiho, Helder Zandonadi Maia, Tiago H.A.Mateus, Burak Ozpineci,Leon M.Tolbert and Joao O.P.Pinto,"Adaptive selective harmonic minimization based on ANNs for cascaded multilevel inverters with varying DC sources",*IEEE Transactions on Industrial Electronics* ,Vol.60,No.5,May 2013.
- A.K. Panda and Y. Suresh,"Performance of cascaded multilevel inverter by employing single and three phase transformers",*IET Power Electron.*,2012,Vol.5,Iss.9,pp.1694-1705
- Y.Suresh and Anup Kumar Panda,"Investigation on hybrid cascaded multilevel inverter with reduced dc sources",*ELSEVIER, Renewable and Sustainable Energy Reviews* 26(2013) 49-59.
- M.R.Banaei,H. Khounjahan and E.Salary,"Single source cascaded transformers multilevel inverter with reduced number of switches",*IET Power Electron.*,2012,vol.5,iss.9,pp.1748-1753.
- Ebrahim Babei and Seyed Hosseini,"New cascaded multilevel inverter topology with minimum number of switches",*ELSEVIER Energy Conversion and Management* 50(2009)2761-2767.
- Mariusz Malinowski, K.Gopakumar,Jose Rodriguez and Marcelo A.Perez,"A survey on cascaded multilevel inverter",*IEEE Transactions on Industrial Electronics*,Vol.57,No.7,July 2010.

[18] Jeyraj Selvaraj and Nasrudin A.Rahim,"Multilevel inverter for grid-connected pv system employing digital PI controller",IEEE Transactions on Industrial Electronics ,Vol.56,No.1,January 2009.

[19] Y.Suresh and A.K. Panda, "Research on a cascaded multilevel inverter by employing three-phase transformers", IET Power Electron.,2012,Vol.5,Iss.5,pp.561-570.

[20] Faete Fiho, Helder Zandonadi Maia, Tiago H. A. Mateus, Burak Ozpineci,Leon M.Tolbert and Joao O. P. Pinto," Adaptive selective harmonic minimization based on ANNs for cascaded multilevel inverters with varying DC sources", IEEE Transactions on Industrial Electronics, Vol. 60, No.5, May 2013.

[21] Ilahi Colak ,Ersan Kabalci and Ramazan Bayindir,"Review of multilevel voltage source inverter topologies and control schemes",ELSEVIER, Energy Conversion and Management 52(2011)1114-1128.

[22] Anup Kumar Panda and Yellasiri Suresh,"Research on cascaded multilevel inverter with single DC source by using three-phase transformers",ELSEVIER, Electrical Power and Energy Systems 40(2012)9-20.

[23] P.Palanivel and SS Dash,"Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques",IET Power Electron.2011,Vol.4,Iss.8,pp.951-958..

[24] N.A.Rahim, J.Selvaraj and C.Krismadinata,"Five-level inverter with dual reference modulation technique for grid-connected PV system", ELSEVIER, Renewable Energy 35(2010)712-720.

[25] K. Ilves, A. Antonopoulos, S. Norrga and H-P. Nee "A New Modulation Method Multilevel Converter Allowing Fundamental Switching Frequency," 8th International Conference on Power Electronics- ECCE Asia May 30-June 3, 2011, The Shilla Jeju, Korea, pp. 991-998.

[26] Xiaojie Shi, Zhiqiang Wang, Leon M. Tolbert and Fred Wang "A Comparison of Phase Disposition and Phase Shift PWM Strategies for Modular Multilevel Converter," Energy Conversion Congress and Exposition (ECCE), IEEE, pp. 4089-4096, Sep. 2013.