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Abstract-Using the Urey-Bradley force field and Wilson’s GF 

matrix method as modified by Higgs, normal modes of 

vibration and their dispersions in poly (ethylene glycol) have 

been obtained. It provides a detailed interpretation of I.R. and 

Raman spectra. Characteristic features of the dispersion 

curves, such as regions of high density-of-states, repulsion and 

character mixing of dispersive modes are discussed. 

Predictive values of the heat capacity as a function of 

temperature have been calculated. 
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1. INTRODUCTION 

Poly (ethylene glycol) (PEG)/Poly (ethylene oxide) (PEO) 

is a crystalline, non-ionic homopolymer of ethylene oxide. 

PEG has varied uses in the medical field, including drug 

delivery (e.g.; treatment of hepatitis C), cell 

immobilization, (as adhesion promoters), biosensor 

materials, and encapsulation of islets of langerhans for 

treatment of diabetes. It is also used as carrier material for 

encapsulated cells for tissue engineering purposes. Thus 

PEG, with its biocompatibility, flexibility and stealth 

properties is an ideal material for use in pharmaceutical 

applications [1-5].  

 The conductivity values for PEO complexes increased 

continuously and reached a maximum of 10
-3

 S cm
-1

 when 

doped with carbon nano tubes [6]. The PEO chains adopt a 

helical conformation with four monomers per turn, which 

is very similar to the 72 helix of the pure polymer [7, 8]. 

Vibrational spectroscopy plays a very important role in 

elucidating polymer structure and normal mode analysis. It 

provides a better identification of various vibrational 

modes and interpretation of IR and Raman spectra. Several 

authors have reported the infrared and Raman spectra of 

PEO [8-11].  

Infrared absorption, Raman spectra, and inelastic neutron 

scattering from polymeric systems are very complex and 

cannot be unraveled without the full knowledge of their 

dispersion curves. Dispersion curves and dispersion 

profiles also provide information about the extent of 

coupling along the polymeric chain or between the chains. 

These curves also facilitate correlation of the microscopic 

behavior of a crystal with its macroscopic properties such 

as specific heat, enthalpy and free energy. The frequency of 

a given mode depends upon the sequence length of ordered 

conformation. Thus, the study of phonon dispersion in 

polymeric systems continues to be of topical importance. In 

the present work, we report a complete normal mode 

analysis of PEO using the Urey-Bradley force field, 

including calculation of the phonon dispersion and heat 

capacity obtained via the density-of-states derived from the 

dispersion curves. The experimental data of IR and Raman 

spectroscopic studies reported by previous authors [8-11] 

have been used for comparison. 

2. THEORITICAL APPROACH 

2.1 Normal Mode Calculation: 

The calculation of normal mode frequencies was carried 

out according to the well-known Wilson’s GF matrix 

method [12], as modified by Higgs [13]. The method 

consists of writing the inverse kinetic energy matrix G, and 

the potential energy matrix F, in terms of internal 

coordinates. In the case of an infinite isolated helical 

polymer, there are an infinite number of internal 

coordinates that lead to G and F matrices of infinite order. 

The presence of screw symmetry in the polymer enables 

that a transformation similar to that given by Born and Von 

Karman can be performed that reduces the infinite problem 

to finite dimensions [14]. The vibrational secular equation 

gives normal mode frequencies and their dispersion as a 

function of phase angle and has the form: 

| G () F ()  () I |  0,    0           ……. (1) 

The vibrational frequencies () (in cm
-1

) are related to the 

eigen values () by the following relation: 

()  4
2
c

2


2
()  ……. (2) 

2.2 Calculation of Specific Heat: 

Dispersion curves can be used to calculate the specific heat 

of a polymeric system. For a one-dimensional system, the 

density-of-state function, g  ( ) ,  or the frequency 

distribution function, expresses the way the energy is 

distributed among various branches of normal modes in the 

crystal. It can be calculated from the relation: 

g ( )  =  j  (  j  /   )
 1

   j (  ) =  …….(3)  

with       g ( j  )   j  =  1  

The sum is over all branches j, where j is the index for 

dispersion curves. Considering a solid as an assembly of 

harmonic oscillators, the frequency distribution g( )  is 

equivalent to a partition function. The constant volume heat 

capacity Cv can be calculated using Debye’s relation. 
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                                                  exp (h  j / kT) 

C v =  j g( j) kN A (h  j / kT) 2      ………. (4) 

                                       [exp (h  j / kT) - 1] 2 

The constant volume heat capacity, Cv, given by the above 

equation is converted into constant pressure heat capacity, 

Cp, using the Nernst-Lindemann approximation [15, 16].  

C p - C v = 3RA o (C
2

p T/C v Tm
o
)      ……. (5) 

Where Ao is a constant, often of a universal value [3.9x10
-9 

(Kmol/J)], and Tm
o
 is the equilibrium melting temperature. 

 

3. RESULTS AND DISCUSSION 

Using molecular modeling technique, the minimum energy 

structure as a function of dihedral angles of PEO was 

determined by us as helical structure. It also agrees with the 

helical structure reported by others [7, 8]. The number of 

atoms per residue in PEO is nine and, hence, there would 

be (9 x 3) - 4 = 23 normal modes of vibration. The 

vibrational frequencies have been calculated for each of the 

values of  varying from 0 to  in steps of 0.05. The 

optically active modes are those for which  = 0,  and. 

The four zone center zero-frequencies correspond to 

acoustic modes; three representing translations along the 

three axes and one rotation around the chain axis.  The 

assignments have been made on the basis of potential 

energy distribution (PED), band intensity, band profile and 

absorption/scattering in similar molecules having groups 

placed in similar environments. The Urey-Bradley force 

constants have been initially transferred from the earlier 

work on molecules having similar groups and have been 

further refined by using the least-square deviation method 

[17]. All vibrational modes along with their potential 

energy distribution are given in Table 1 at  = 0.0. 

3.1. Dispersion Curves: 

The dispersion curves below 1400 cm
-1

 are shown in Fig. 

1(a). The modes above 1400 cm
-1

 have been either non-

dispersive or their dispersion was less than 5 cm
-1

. A very 

interesting feature of the dispersion curves is the 

convergence of various modes. The modes that are 

separated by a large wave number at the zone center 

0.0) come very close at the zone boundary ( = 1.0). 

This convergence arises mainly because of phonon-phonon 

coupling and consequent sharing of potential energy in 

different measures by the coupled modes. The extent of 

sharing depends on the strength of coupling. For example, 

the two zone center modes calculated at 1162 and 1055 cm
-

1 
are separated by 107 wave numbers but at the zone 

boundary they are separated by only 5 wave numbers. 

Similar features have been observed in the pair of modes, 

which appear at the zone center at 873 and 834 cm
-1

, and 

583 and 545 cm
-1 

etc.. 

Another specific feature of some of the dispersion curves 

was the exchange of character that occurs at repulsion 

points. For instance, the modes calculated at 545 and 343 

cm
-1

 at the zone center showed repulsion at = 0.60. These 

two modes have been separated by 202 wave numbers at 

= 0.0, but at = 0.60, they come close to each other, 

separated by only 9 wave numbers but again they repel to 

each other and separated by 178 wave numbers at = 1.0.  

3.2. Heat Capacity: 

The dispersion curves obtained for PEO have been used to 

calculate the density-of-states and heat capacity as a 

function of temperature. The density-of-states are shown in 

Fig. 1(b). Heat capacity of PEO has been calculated in the 

temperature range 0–300 K, as shown in Fig. 2. 

4. CONCLUSION 

The vibrational dynamics of PEO have been satisfactorily 

interpreted from the dispersion curves and dispersion 

profiles of the normal modes of PEO as obtained by Higg’s 

method for infinite systems. Some of the internal 

symmetry-dependent features, such as attraction and 

exchange of characters, have been predicted. Heat capacity 

behavior of PEO with temperature was nearly linear in 
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(a)                                                                   (b) 

Figure 1(a): Dispersion curves of PEO (0-1400 cm
-1

) (b) Density-of-states of PEO (0-1400 cm
-1

) 

 

 

Figure 2: Variation of heat capacity with temperature of PEO 
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Table 1: Vibrational modes at = 0.0

Calculated        Observed % Potential Energy Distribution 

IR Raman

2890 2879 (C-H)(100) 

2890 2879 v(C-H)(100)  

2883 2879 (C-H)(99) 

2882 2879 (C-H)(99) 

2811 2808 (C-H)(100) 

2811 2808 (C-H)(100) 

2809 2808 (C-H)(99) 

2808 2808 (C-H)(99) 

1477 1470 1487 (H-C-H)(72)+(H-C-C)(24) 

1474 1470 1471 (H-C-H)(67)+(H-C-C)(22)  

1458 1464 1445 (H-C-H)(67)+(H-C-C)(13) 

1452 1451 1445 (H-C-H)(69)+(H-C-C)(13) 

1372   1362 1397 (H-C-C)(39)+(O-C-H)(30)+(C-O)(22) 

1368 1362 1363 (H-C-C)(41)+(O-C-H)(29)+(C-O)(18) 

1300 1306 (O-C-H)(43)+(H-C-C)(30)+C-O)(23)        

1282 1279 1283 (O-C-H)(55)+(H-C-C)(35)    

1229 1231 1234 (H-C-C)(82)+(C-C)(15)       

1228 1231 1234 (H-C-C)(85)+(O-C-H)(11)  

1191       1183 (O-C-H)(53)+(H-C-C)(47)        

1171 1171 (H-C-C)(54)+(O-C-H)(46)  

1162 1171 1143 (O-C-C)(32)+(C-O)(29)+(O-C-H)(17)     

1055 1062 1065 (C-O)(81)+(O-C-H)(18)        

1045 1033 1065 (O-C-H)(78)+(C-H)(16)         

1012 1010 (C-O)(70)+(O-C-H)(24)       

1002 1010 (O-C-H)(81)+(C-H)(15)         

998 1010 (C-O)(84)+(O-C-H)(12)                         

931 932 936 (C-C)(62)+(O-C-C)(28)       

919 917 (C-C)(67)+(C-O)(19)          

873 884 862 (H-C-C)(44)+(O-C-H)(35)+(C-H)(23)  

834 843 844 (O-C-H)(43)+(H-C-C)(37)+(C-H)(19)  

583 (O-C-C)(56)+(C-C)(30)           

545 (C-O-C)(46)+(O-C)(39) 
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343 (O-C-C)(87)+(C-C)(15)      

248 (C-O-C)(64) + (O-C-C)(25)       

168 (C-C)(29)+(C-C)(26)+(C-O)(21)+(C-O)(18)                                                        

159 (O-C)(54)+(C-H)(31)+(C-O)(14)         

82 (C-O)(63)+(C-H)(19)+(O-C)(15)         

34 (C-C)(52)+(C-H)(28)+(C-O)(22)

2 (C-C)(36)+(C-O)(21)+(C-H)(17)

1 (C-O)(32)+(O-C)(28)(C-H)(22)

Note: All frequencies are in cm
-1

.
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