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Abstract-In this article, vibration response of func-
tionally graded material(FGM) plates are investigated by
finite element formulation. By applying the Hamilton’s
principle, the governing equations of the FGM plates are
derived based on the first-order shear deformation the-
ory. The FGM plate is modelled by using 9-noded heter-
osis element by incorporating the effect of rotary inertia
and shear deformation. 9- noded heterosis plate element
is used to formulate the elastic stiffness matrix and mass
matrix. The results are also extracted from Abaqus CAE
by using S8R5 shell elements. Free vibration analysis is
done to obtain the different modes as well as the frequen-
cies. Harmonic sine load is applied at the centre of the
FGM plate to obtain a forced vibration response. Im-
pulse forces of rectangular, triangular, and half-cycle
sine shapes are applied on the top of the plate at the cen-
tre and the Response spectra of C-Si C FGM plate is plot-
ted.

Keywords-FGMs, Finite element method, heterosis
plate element, Response spectra

1. INTRODUCTION

The diverse and potential applications of FGMs in aero-
space, medicine, defence, energy, and other industries have
attracted a lot of attention recently. The concept of function-
ally graded materials (FGMs) were first demonstrated by a
group of scientists in Japan in 1984during a space plane pro-
ject[1]. Combination of materials used here served the pur-
pose of a thermal barrier system capable of withstanding a
surface temperature of 2000 K with a temperature gradient of
1000 K across a 10 mm thick section (Jha et al. [2]). Later, its
applications have been expanded to also the components of
chemical plants, solar energy generators, heat exchangers, nu-
clear reactors, and high-efficiency combustion systems. The
concept of FGMs has been successfully applied in thermal
barrier coatings where requirements are aimed to improve
thermal, oxidation and corrosion resistance. FGMs can also
find application in communication and information tech-
niques. Abrasive tools for metal and stone cutting are other
important examples where the gradation of the surface layer
has improved performance.
It has been found from the literature that not many studies are
done to the vibration analysis of functionally graded plates.
B. Sidda Reddy et al. [3] carried out the free vibration analysis
of functionally graded plates. The variations of the volume

fractions through the thickness are assumed to follow a
power-law function. The Reissener-Mindlin first-order shear
deformation theory is very much appropriate for thick plates
[4]. It was taken to analyze the behaviour of the plate sub-
jected to free and forced vibration. They have developed ana-
Iytical formulations and solutions for the free vibration anal-
ysis of functionally graded plates using higher-order shear de-
formation theory (HSDT). The principle of virtual work was
used to derive the equations of equilibrium and boundary con-
ditions. Navier’s technique was used to obtain the solutions
for FGM plates. Jyoti Vimal et al. [5] have studied the free
vibration analysis of functionally graded skew plates using
the finite element method. The first-order shear deformation
plate theory is used to consider the transverse shear effect and
rotary inertia. The properties of functionally graded skew
plates are assumed to vary through the thickness according to
a power law. It is found that when the length to thickness ratio
of functionally graded skew plates increases beyond 25, the
variation in the frequency parameter is very negligible and
also found that a volume fraction exponent that ranges be-
tween 0 and 5 has a significant influence on the frequency. M.
N. Gulshan Taj et al. [6] carried out a free vibration analysis
of functionally graded material (FGM) skew plates subjected
to the thermal environment. It was concluded that the volume
fraction index and skew angle plays an important role in pre-
dicting the vibration of FGM skew plate subjected to thermal
load.

J. N. Reddy [7] have studied theoretical formulation and FEM
model based on TSDT for FGM plate. The formulation ac-
counted for thermo-mechanical effects combining change
with time and geometric nonlinearity. In this higher-order the-
ory, transverse shear stress was expressed as a quadratic func-
tion along with the depth. Hence this theory requires no shear
correction factor. The plate was considered as the homoge-
nous and material composition was varied along with the
thickness. The Young's modulus was assumed to vary as per
rule of the mixture in terms of the volume fractions of the ma-
terial constituents. Hughes and Cohen [8] developed the het-
erosis element and elemental equation. They derived lumped
positive definite mass matrix, element matrix and load vector
and method for finding critical time step. High-accuracy finite
element for thick and thin plate bending is developed, based
upon Mindlin plate theory.

It has been found from the literature survey that not many re-
searchers attempted to the vibration analysis of functionally
graded plates. Further, we observed that many authors could
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model such problems with a stepped variation in material
properties instead of continuous variation. This would have
happened because of the limitations of the commercial soft-
ware available. In this context, we felt that MATLAB code
could be used for tailoring the continuous variation in material
properties in FE Modelling. Hence MATLAB code was de-
veloped for vibration analysis of FG plate. The analysis was
carried out for C-Si C FGM plate with different volume frac-
tion indices. The results are compared with Abaqus CAE by
using S8R5 shell elements.

2. PROBLEM FORMULATION

First-order shear deformation theory is used for plate for-
mulation. Displacement variation is linear, across the plate
thickness. But there is no change in plate thickness during de-
formation. A further assumption is that the normal stress
across the thickness is neglected. Properties are graded
through the thickness direction which follows a volume frac-
tion power-law distribution. The different elements of the
plate are expected to undergo translational and rotational dis-
placement. In the present work 9- noded heterosis element is
used to discretize the plate.

2.1 Strain-Displacement Relations

The displacement field at any arbitrary distance z from the
midplane based on the first-order shear deformation plate the-
ory is given by

(0,600 T, W = [0V, 000 W50 [+ 2] 0,600 8,600 |

1)

where, Ty, Vp, Wp are displacements in x, y and z directions
respectively, Uo, Vo and wo are the associated midplane dis-
placements along x, y and z axes respectively. and 0x and 6y
are the rotations about y and x-axes respectively.

The linear strain displacement relations are given by

00x
T gg
y
Af =AUy (=9 —— (3)
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The strain-displacement field at any distance z as shown in
Figure.1.

=
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Figure 1. Deformed and un-deformed beam

2.2 Finite element formulation

In the current work, the FGM plate has been discretized using
9-noded heterosis element with 5-degree of freedom (dofs) at
all the edge nodes and 4 dofs at the internal node as shown in
the Figure 2. The serendipity shape functions have been used
for the transverse dofs, w, and Lagrange shape function are
used in the remaining dofs, u, v, 6 x, and 0 y

® ® o o o o [ ] e

8-N SE 9-N HE 9-NLE
® Node with u, v, w, 8 4, and 6 y degrees of free-
dom
0 Node with u, v, 8 4, and 0 y degrees of freedom

Figure 2. Nodal configuration of the plate element

le = uo,x + ZXX
&y = Vo,y + ny
2.3 Resultant Forces and moments.
Yot = Uy +Vox T 20y ) ) ) ) . )
The analysis of FG plate is carried out to establish the relation
Yo =Woy + 0, between the forces and strains by considering transverse shear
_ terms.
Tya =Woy + gy Constitutive matrix of the isotropic plate is
where, &x, &y and yxy  are the linear in-plane normal and Q, Q, O
shear strains, yxz1 and yxz are transverse shear strains, z is the o-l0, 0 0 4
distance of any layer from the middle plane of the plate and ¥ | e u “)
are the curvatures. 0 0 Qg
where,
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The material properties Pz (Elastic constants E, v, density) at
distance, z from the middle surface of the plate is

P,=P,+ (P.—R,)[(z/h)+05]" = P, + (P,—P,)Vr ®)

z

where, h is the plate thickness, t and b denotes the top and
the bottom surface (+ z/2) ,n is material volume fraction

index, V¢ is volume fraction.
Stress-strain relationship is

{o} = [Ql{e} (6)

where, {c} :{Gx, o, rxy}T . e=g, 2y

The in-plane resultant forces and moments in the k™ layer are
evaluated as
N %

(N, M=) [{o}(t 2)a )

k=lz,

Resultant Transverse Shear Force on the k™ layer is given by
{ } N {r } b {QM QM—,HYXZ}

> I dz

keig,, T ks, Qi Qs ||Vye ®)

K
Qu = (GlBt _Gl3b)|:(22+h):| +Gyy

2h
k
2z+h
Qss = (stt _GZ3D)|:( oh )} +Gy,
Q45 =0
9)
The constitutive relation for FGM plate is given by
{N} = [C]{e} (10)
Where,

IN}=[Nx, Ny, No, My, My, My, Qe Q] rep-

resents the in-plane stress resultants (N), out of plane bending
moments (M) and shear resultants (Q). Here, [C] is the con-
stitutive matrix [9] of the FGM plate. To compensate for the
parabolic shear stress variation across the thickness of the
plate, a correction factor of 5/6 is used in the shear-shear cou-
pling components of the constitutive matrix [10]. Using
Green-Lagrange’s strain-displacement expression [11], the
linear strain-displacement matrix[B] have been worked out.

The different participating element-level matrices such as
elastic stiffness matrix[ke], and consistent mass matrix [ me|

have been derived using corresponding energy expression.
The element elastic stiffness matrix and element mass matrix
are derived using the following relations

11
[k]=[ | [B][C][B]}|dedn
-1-1

11)

I][N]Mdsdn (12)

11
[m]={ ] [N][
-1 -1
In which, [1] is the inertia matrix

2.4 Computer coding and Implementation

A computer program is developed using MATLAB to imple-
ment the finite element formulation and include all the neces-
sary parameters to investigate the vibration behaviour of the
FGM plate. In the present code, selective integration scheme
is incorporated for the generation of the element stiffness ma-
trix. The 3x3 Gauss quadrature rule is adopted to get the bend-
ing terms and 2x2 Gauss rule is used to solve shear terms to
avoid possible shear locking. The mass matrix is evaluated by
using 3x3 Gauss rule [12].

2.5 Formulation of Dynamic problems

Stiffness matrix is validated by bending problems and mass
matrix is validated through vibration problems. In order to
validate the formulation of mass matrix, one has to solve a
free vibration problem by incorporating the validated elastic
stiffness matrix. The standard governing equation in matrix
form for the deflection problem is

[K.]{a} = {F} (13)

{F} is the nodal load vector, [K,]is the system elastic stiff-

ness matrix. For a given set of loads, the displacement {q}
can be

determined using the above equation. If the displacement
vector is validated, it ensures the correctness of formulation
and coding of the stiffness matrix.

The standard governing equation in matrix form for the free
vibration problem is

[M]{d}++[K.]{a} = {F} (14)
The standard governing equation in matrix form for the force
vibration problem is
[MI{d} +[Cl{a}+[K.]{a} = {F}
(15)
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[M] ,[K,.] and[C] represents global mass matrix, global

stiffness matrix and damping matrix respectively.
[C]=a[M]+B[K.]

(16)
where, o B and are the Rayleigh damping coefficients. From
this, we can solve the forced vibration problem. From this, we
can solve the force vibration problem using Newmark-beta
method.

3 RESULTS AND DISCUSSION
The properties of FGM plates are graded through the thick-
ness direction according to a volume fraction power law dis-
tribution (Figure 3).

3.1 Free vibration analysis

The heterosis element is used in the code for free vibration
analysis. For validation of the present code, the data available
for the functionally graded plate aluminium oxide —titanium
alloy of size 0.4m x 0.4m x 0.005m available in the literature
of He et al. [13] is used. In numerical simulation by Abaqus,
S8R5 element has been used. Table 1. shows the material
properties. Table 2. validated the code with literature and sim-
ulation.

Tablel. Material properties of Aluminium Oxide —Titanium alloy

Table2. Variation of fundamental frequency with n values —
Cantilever FGM plate-comparison

n 9-NHE Simulation He 2001)
0 25.37 27.21 25.58
0.2 29.14 31.45 29.87
0.5 32.27 33.86 32.84
1 33.90 36.79 35.33
5 38.48 42.14 40.97
15 42.16 45.34 43.97
100 45.64 48.12 46.12
1000 46.08 48.94 46.55

The present code is validated with results of He et al. (2001).
The simulation results are also in good agreement with results
obtained from FEM coding. This ensures the correctness of
the formulation of the stiffness and mass matrix.

3.2 Free Vibration Analysis of C-Si C Plate

The analysis is done for C-Si C plate (0.5x0.5x0.001m). Ma-
terial properties are given in Table 3. Convergence results are
shown in Figure 4. First four mode of vibration shown in
Figure. 5 by Abaqus using S8R5 shell element .Frequency of
Vibration is minimum for carbon plate as shown in Table 4.

Table3. Material Properties C-Si C FGM plate

FGM plate Material EE,S p (Kg/im®)
- Si-C
3
- Material E(N/m2) p(kg/m?) v (Ce- 320 0.3 3220
Ti-6AL-4V 122.56 x 10° 4429 0.2884 ramic)
(ceramic)
Aluminium
- 349.55 x 10° 3750 0.26
oxide X C(Metal) 28 0.3 1780
Figure 3. Variation of volume fraction with the non-dimensional thick-
ness
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Figure 4. Convergence of fundamental frequency of simply
supported C-Si C FGM plate for first 4 modes (n=2)

Figure 5. First 4 mode shapes of simply supported C-Si C FGM
plate (n=2)-Simulation

Table 4. Variation of the natural frequencies (Hz) of FGM simply
supported Square Plate for different k values. 22x22 mesh-Heterosis

3.3 Forced vibration analysis

Forced vibration analysis was carried out at the centre of the
plate using harmonic sine loading and different impulse load-
ings.

3.3.1 Harmonic Sine Wave Loading.

A harmonic force P(t)= Po sin( wt ) load is applied at the centre
of the plate(Figure6(a)-6(b), where Pq is the amplitude or
peak value of the force and ® is the forcing frequency.
T =2xn/ w is the forcing period of the FGM plate P, =1N and
o= 2rf where o is circular frequency and f is natural fre-
quency of the Plate.. Table 5 compares the un-damped and
damped cases. Figure 6(c) for simply supported plate. The
maximum displacement at the center of the fixed plate as
shown in Figure 6(d) is less than that of simply supported
plate. Fig. 6 shows that maximum displacement at the centre
of the plate increases with the material index (n value)

Table5. Displacement of simply supported C-Si C plate for differ-

ent n values
Power-law in- Maximum Displacement at Centre(m)
dex Cccc SSSS
Undamped  Damped Undamped Damped
n=0 (SiC) 4.759x  4.73x 1.165 x 1.006 x
10  10° 10 10+
n=2 1.722x100  1.71x 3.142 x 3.035 x
4 10* 10+ 10+
n=15 2.796 X100 2.68 x 5.222x 5.201x
4 10* 10* 10*
n=1000(C) 5442 x100 5.41x 1.229x10°3 1.199x
4 10¢ 10°

element(FEM)
Mode no k=0SiC n=2 k=15 k=1000
Carbon
1 37.91 27.39 22.2114 15.08
2 94.77 60.84 51.9549 37.7
3 94.77 60.84 51.9549 37.7
4 151.63 98.77 83.7656 60.33
5 189.55 121.26 103.718 75.41
6 189.55 123.04 104.522 75.41
7 246.41 158.98 135.449 98.03
8 246.41 158.98 135.449 98.03
9 322.27 202.97 174.955 128.21
10 322.27 202.97 174.955 128.21
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Figure 6. Response of C-Si C FGM plate for different k
values using heterosis element.

3.3.2 Impulse loading

A very large force that acts for a very short time but with a
time integral that is finite is called an impulse force. Impulse
forces of rectangular, half-cycle sine, triangular shapes each
with the same value of maximum force 1N is applied at the
centre of the plate. The response behavior of FGM plate is
studied for material index(k) value=2. tq is pulse duration.
The Response spectra of the FGM plate with material index
n=2 is shown in Figure 7. T, is the natural time period of
vibration of the plate and u «o is the static deflection of the
plate. Static deflection is 1.438e-4m and Natural time period
is 0.0365 sec. Table 6 presents the variation of deformation
response factor (Rq) with td/T n values (n=2).The present results
are in good agreement with the available literature [14].

2.0+
1.5+
Ra _
1.0+
0.5 —=— Rectangular loading
s —=— Hall ¢ycle sine loading
—a&— Triangular loading
0.0 T " T .
0 1 2 3 4

ta/Th

Figure 7. Response spectra of simply supported C-Si C FGM Plate
(material index n=2)

Table7. Variation of deformation response factor (Rqg) with td/T n

values (n=2)
R¢= Uos U sto
ta/T » Rectangular g-alf Trllan-
Loading ine gutar
Loading  Loading
0 0 0 0
0.5 1.569 0.982 0.863
0.75 1.876 1.469 1.3
1 1.901 1.701 1.52
1.5 1.901 1.5 1.298
2 1.901 1.25 0.93
25 1.901 1.071 0.996
3 1.901 1.15 1.148
3.5 1.901 1.111 1103
4 1.901 1.108 1.003

4. CONCLUSIONS
In the present study, an FE solution is obtained for free and
forced vibration analysis of FG plates using heterosis element.
The analysis is carried out by developing a computer program
in MATLAB. A 9- noded heterosis element is used to model
the FGM plate. The heterosis element exhibits improved char-
acteristics as compared to the 8- noded serendipity and 9-
noded Lagrange elements. It offers a high level of accuracy
for extremely thin plate configurations. Convergence study
has been carried out for ensuring the convergence of the nu-
merical results. The results are also extracted from Abaqus
CAE by using S8R5 shell elements and are in very good
agreement with the developed elements. Free vibration anal-
ysis is done to study the different modes as well as frequen-
cies. It is observed that free vibration response is minimum
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for carbon and maximum for Silicon carbide plate. The cen-
tral deflection of the plate increases with increase in volume
fraction index for all types of boundary conditions. From the
Response spectra, it is clearly understood that if the pulse du-
ration (tq) is longer than T./2, the overall maximum defor-
mation occurs during the pulse. Then the pulse shape is of
great significance. For the larger value of t4/T,, the overall
maximum deformation is influenced by the rapidity of the
loading. The rectangular pulse in which the force increases
suddenly from zero to maximum show the large deformation.
The triangular pulse in which the increase in the force is ini-
tially slowest among the three pulses produces the smallest
deformation. The half-cycle sine pulse in which the force ini-
tially increases at an intermediate rate causes deformation that
for many values of ty/T, is larger than the response of the tri-
angular pulse. Sufficient duration steep loading produces a
magnification factor of 2 and gradual loading increase results
in a magnification factor of 1.
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