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     Abstract-In this article, vibration   response of func-

tionally graded material(FGM) plates are investigated by 

finite element formulation. By applying the Hamilton’s 

principle, the governing equations of the FGM plates are 

derived based on the first-order shear deformation the-

ory. The FGM plate is modelled by using 9-noded heter-

osis element by incorporating the effect of rotary inertia 

and shear deformation. 9- noded heterosis plate element 

is used to formulate the elastic stiffness matrix and mass 

matrix. The results are also extracted from Abaqus CAE 

by using S8R5 shell elements. Free vibration analysis is 

done to obtain the different modes as well as the frequen-

cies. Harmonic sine load is applied at the centre of the 

FGM plate to obtain a forced vibration response. Im-

pulse forces of rectangular, triangular, and  half-cycle 

sine shapes are applied on the top of the plate at the cen-

tre and the Response spectra of C-Si C FGM plate is plot-

ted. 

 

     Keywords-FGMs, Finite element method, heterosis 

plate element, Response spectra 

 
1. INTRODUCTION 

      The diverse and potential applications of FGMs in aero-

space, medicine, defence, energy, and other industries have 

attracted a lot of attention recently. The concept of function-

ally graded materials (FGMs) were first demonstrated by a 

group of scientists in Japan in 1984during a space plane pro-

ject[1]. Combination of materials used here served the pur-

pose of a thermal barrier system capable of withstanding a 

surface temperature of 2000 K with a temperature gradient of 

1000 K across a 10 mm thick section (Jha et al. [2]). Later, its 

applications have been expanded to also the components of 

chemical plants, solar energy generators, heat exchangers, nu-

clear reactors, and high-efficiency combustion systems. The 

concept of FGMs has been successfully applied in thermal 

barrier coatings where requirements are aimed to improve 

thermal, oxidation and corrosion resistance. FGMs can also 

find application in communication and information tech-

niques. Abrasive tools for metal and stone cutting are other 

important examples where the gradation of the surface layer 

has improved performance. 

It has been found from the literature that not many studies are 

done to the vibration analysis of functionally graded plates. 

B. Sidda Reddy et al. [3] carried out the free vibration analysis 

of functionally graded plates. The variations of the volume 

fractions through the thickness are assumed to follow a 

power-law function. The Reissener-Mindlin first-order shear 

deformation theory is very much appropriate for thick plates 

[4]. It was taken to analyze the behaviour of the plate sub-

jected to free and forced vibration. They have developed ana-

lytical formulations and solutions for the free vibration anal-

ysis of functionally graded plates using higher-order shear de-

formation theory (HSDT). The principle of virtual work was 

used to derive the equations of equilibrium and boundary con-

ditions. Navier’s technique was used to obtain the solutions 

for FGM plates. Jyoti Vimal et al. [5] have studied the free 

vibration analysis of functionally graded skew plates using 

the finite element method. The first-order shear deformation 

plate theory is used to consider the transverse shear effect and 

rotary inertia. The properties of functionally graded skew 

plates are assumed to vary through the thickness according to 

a power law. It is found that when the length to thickness ratio 

of functionally graded skew plates increases beyond 25, the 

variation in the frequency parameter is very negligible and 

also found that a volume fraction exponent that ranges be-

tween 0 and 5 has a significant influence on the frequency. M. 

N. Gulshan Taj et al. [6] carried out a free vibration analysis 

of functionally graded material (FGM) skew plates subjected 

to the thermal environment. It was concluded that the volume 

fraction index and skew angle plays an important role in pre-

dicting the vibration of FGM skew plate subjected to thermal 

load. 

J. N. Reddy [7] have studied theoretical formulation and FEM 

model based on TSDT for FGM plate. The formulation ac-

counted for thermo-mechanical effects combining change 

with time and geometric nonlinearity. In this higher-order the-

ory, transverse shear stress was expressed as a quadratic func-

tion along with the depth. Hence this theory requires no shear 

correction factor. The plate was considered as the homoge-

nous and material composition was varied along with the 

thickness. The Young's modulus was assumed to vary as per 

rule of the mixture in terms of the volume fractions of the ma-

terial constituents. Hughes and Cohen [8] developed the het-

erosis element and elemental equation. They derived lumped 

positive definite mass matrix, element matrix and load vector 

and method for finding critical time step. High-accuracy finite 

element for thick and thin plate bending is developed, based 

upon Mindlin plate theory. 

It has been found from the literature survey that not many re-

searchers attempted to the vibration analysis of functionally 

graded plates. Further, we observed that many authors could 
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model such problems with a stepped variation in material 

properties instead of continuous variation. This would have 

happened because of the limitations of the commercial soft-

ware available. In this context, we felt that MATLAB  code 

could be used for tailoring the continuous variation in material 

properties in FE Modelling. Hence MATLAB code was de-

veloped for vibration analysis of FG plate. The analysis was 

carried out for C-Si C FGM plate with different volume frac-

tion indices. The results are compared with Abaqus CAE by 

using S8R5 shell elements. 

2. PROBLEM FORMULATION 

    First-order shear deformation theory is used for plate for-

mulation. Displacement variation is linear, across the plate 

thickness. But there is no change in plate thickness during de-

formation. A further assumption is that the normal stress 

across the thickness is neglected. Properties are graded 

through the thickness direction which follows a volume frac-

tion power-law distribution. The different elements of the 

plate are expected to undergo translational and rotational dis-

placement. In the present work 9- noded heterosis element is 

used to discretize the plate.  

2.1 Strain-Displacement Relations 

    The displacement field at any arbitrary distance z from the 

midplane based on the first-order shear deformation plate the-

ory is given by  

 p p p 0 0 0 x y
(x, y, z),  (x, y, z), (x,y,z) (x, y),  (x, y), (x, y) (x, y),  (x, y),  u v w  u v w  z 0  = +                                           

   (1) 

   where, u̅p, v̅p, w̅p are displacements in x, y and z directions 

respectively, u0, v0 and w0 are the associated midplane dis-

placements along x, y and z axes respectively. and θx and θy 

are the rotations about y and x-axes respectively. 
The linear strain displacement relations are given by 

xl 0,x x

yl 0,y y

xyl 0,y 0,x xy

xzl 0,x x

yzl 0,y y

u z  

v z

u v z  

w  

w

 = + 

 = + 

 = + + 

 = + 

 = + 

                                        (2) 

    where, εxl, εyl and γxyl   are the linear in-plane normal and 

shear strains, γxzl   and γxzl are transverse shear strains, z is the 

distance of any layer from the middle plane of the plate and χ 

are the curvatures. 
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  

           (3) 

The strain-displacement field at any distance z as shown in  

Figure.1. 
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Figure 1. Deformed and un-deformed beam 

2.2  Finite element formulation 

In the current work, the FGM plate has been discretized using 

9-noded heterosis element with 5-degree of freedom (dofs) at 

all the edge nodes and 4 dofs at the internal node as shown in 

the Figure 2. The serendipity shape functions have been used 

for the transverse dofs, w, and Lagrange shape function are 

used in the remaining dofs, u, v, θ x, and θ y 

 
        8-N SE                  9-N HE                   9- N LE 

                   Node with u, v, w, θ x, and θ y degrees of free-

dom 

                   Node with u, v, θ x, and θ y degrees of freedom 
 

Figure 2. Nodal configuration of the plate element 

 

 

2.3  Resultant Forces and moments.  

The analysis of FG plate is carried out to establish the relation 

between the forces and strains by considering transverse shear 

terms. 

Constitutive matrix of the isotropic plate is  

11 12

12 11

66

Q Q 0

Q Q Q 0

0 0 Q

 
 

=
 
  

                                                        (4) 

where, 
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( )
11 12 662 2

E E E
Q , Q , Q

1 1 2 1


= = =

− − +

 

The material properties PZ (Elastic constants E, , density) at 

distance, z from the middle surface of the plate is   

( )  ( )
n

fz b t b b t bP P  P P (z / h) 0.5  P  P P V= + − + = + −  (5) 

where, h is the plate thickness, t and b denotes the top and 

the bottom surface ( ) z / 2  ,n is material volume fraction 

index, Vf  is volume fraction. 

Stress-strain relationship is     

     Q =    (6) 

where,     0

T

x y xy = , ,      ,       = z      +   

The in-plane resultant forces and moments in the kth layer are 

evaluated as 

   ( )
k

k 1

zN

k 1 z

N, M =  1, z dz

−
=

                                                   (7) 

Resultant Transverse Shear Force on the kth layer is given by 

k k

k 1 k 1

z zN N
xz xz xz44 45

k 1 k 1yz yz yz45 55z z

Q Q Q
 dz  dz

Q Q Q
− −

= =

          
= =                
    (8) 

( )
( )

( )
( )

k

44 13t 13b 13b

k

55 23t 23b 23b

45

2z h
Q G G G

2h

2z h
Q G G G

2h

Q 0

+ 
= − + 

 

+ 
= − + 

 

=

                                 

(9) 

The constitutive relation for FGM plate is given by 

    N C=     (10) 

 Where, 

   
T

x y xy x y xy xz yzN N , N , N , M , M , M , Q , Q= rep-

resents the in-plane stress resultants (N), out of plane bending 

moments (M) and shear resultants (Q). Here, [C] is the con-

stitutive matrix [9] of the FGM plate. To compensate for the 

parabolic shear stress variation across the thickness of the 

plate, a correction factor of 5/6 is used in the shear-shear cou-

pling components of the constitutive matrix [10]. Using 

Green-Lagrange’s strain-displacement expression [11], the 

linear strain-displacement matrix[B] have been worked out.  

The different participating element-level matrices such as 

elastic stiffness matrix  ek , and consistent mass matrix  em  

have been derived using corresponding energy expression. 

The element elastic stiffness matrix and element mass matrix 

are derived using the following relations 

       
T

e

1 1
k B C B J d d

1 1

=   
− −

 

  (11) 

   
T

e

1 1
m N I N J d d  

1 1

   =       
− −

  (12) 

In which, [I] is the inertia matrix 

 

2.4 Computer coding and Implementation  

A computer program is developed using MATLAB to imple-

ment the finite element formulation and include all the neces-

sary parameters to investigate the vibration behaviour of the 

FGM plate. In the present code, selective integration scheme 

is incorporated for the generation of the element stiffness ma-

trix. The 3x3 Gauss quadrature rule is adopted to get the bend-

ing terms and 2x2 Gauss rule is used to solve shear terms to 

avoid possible shear locking. The mass matrix is evaluated by 

using 3x3 Gauss rule [12]. 

2.5   Formulation of Dynamic problems 

 Stiffness matrix is  validated by bending problems and mass 

matrix is  validated through vibration problems. In order to 

validate the formulation of mass matrix, one has to solve a 

free vibration problem by incorporating the validated elastic 

stiffness matrix. The standard governing equation in matrix 

form for the deflection problem is  

     eK q F=   (13) 

 F  is the nodal load vector,  eK is the system elastic stiff-

ness matrix. For a given set of loads, the displacement  q

can be  

 

 

 determined using the above equation. If the displacement 

vector is validated, it ensures the correctness of formulation 

and coding of the stiffness matrix. 

The standard governing equation in matrix form for the free 

vibration problem is   

       eM q K q F+ + =                                                   (14) 

The standard governing equation in matrix form for the force 

vibration problem is   

           eM q C q K q F+ + =

           (15) 
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   eM  , K  and  C  represents global mass matrix, global 

stiffness matrix and damping matrix respectively.  

      eC M K=  +

  (16) 

where,    and are the Rayleigh damping coefficients. From 

this, we can solve the forced vibration problem. From this, we 

can solve the force vibration problem using Newmark-beta 

method. 

3  RESULTS AND DISCUSSION 

The properties of FGM plates are graded through the thick-

ness direction according to a volume fraction power law dis-

tribution (Figure 3). 

3.1 Free vibration analysis 

The heterosis element is used in the code for free vibration 

analysis. For validation of the present code, the data available 

for the functionally graded plate aluminium oxide –titanium 

alloy of size 0.4m x 0.4m x 0.005m available in the literature 

of He et al. [13] is used.  In numerical simulation by Abaqus, 

S8R5 element has been used. Table 1. shows the material 

properties. Table 2. validated the code with literature and sim-

ulation. 

Table1. Material properties of Aluminium Oxide –Titanium alloy 

FGM plate 

 

Figure 3. Variation of volume fraction with the non-dimensional thick-

ness 

 

 

Table2. Variation of fundamental frequency with n values – 

Cantilever FGM  plate-comparison 

The present code is validated with results of He et al. (2001). 

The simulation results are also in good agreement with results 

obtained from FEM coding. This ensures the correctness of 

the formulation of the stiffness and mass matrix. 

3.2 Free Vibration Analysis of C-Si C Plate 

The analysis is done for C-Si C plate (0.5x0.5x0.001m). Ma-

terial properties are given in Table 3. Convergence results are 

shown in Figure 4. First four mode of vibration shown in  

Figure. 5 by Abaqus using  S8R5 shell element .Frequency of 

Vibration is minimum for carbon plate as shown in Table 4.  

Table3. Material Properties C-Si C FGM plate 

Material 
E(G 

Pa) 
ν ρ (Kg/m3) 

Si-C 

(Ce-

ramic) 

320 0.3 3220 

    

C(Metal) 28 0.3 1780 

     Material E(N/m2) ρ(kg/m3) υ 

 Ti-6A1-4V   
 (ceramic)  

122.56 x 109 4429 0.2884 

 Aluminium  

oxide  
349.55 x 109 3750 0.26 

n 9-NHE Simulation He 2001) 

0 25.37 27.21 25.58  
0.2 29.14 31.45 29.87 
0.5 32.27 33.86 32.84 

1 33.90 36.79 35.33 

5 38.48 42.14 40.97 
15 42.16 45.34 43.97 

100 45.64 48.12 46.12 

1000 46.08 48.94 46.55 
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Figure 4. Convergence of fundamental frequency of simply 
supported C-Si C FGM plate for first 4 modes (n=2) 

 

 
Figure 5. First 4 mode shapes of simply supported C-Si C FGM 

plate (n=2)-Simulation 

Table 4. Variation of the natural frequencies (Hz) of FGM simply   

supported Square Plate for different k values. 22x22 mesh-Heterosis        

element(FEM) 

Mode no k=0 Si C n=2 k=15 
k=1000 

Carbon 

1 37.91 27.39 22.2114 15.08 

2 94.77 60.84 51.9549 37.7 

3 94.77 60.84 51.9549 37.7 

4 151.63 98.77 83.7656 60.33 

5 189.55 121.26 103.718 75.41 

6 189.55 123.04 104.522 75.41 

7 246.41 158.98 135.449 98.03 

8 246.41 158.98 135.449 98.03 

9 322.27 202.97 174.955 128.21 

10 322.27 202.97 174.955 128.21 

3.3  Forced vibration analysis 

Forced vibration analysis was carried out at the centre of the 

plate using harmonic sine loading and different impulse load-

ings. 

 

3.3.1 Harmonic Sine Wave Loading.  

A harmonic force P(t)= P0 sin( t ) load is applied at the centre 

of the plate(Figure6(a)-6(b), where  P0 is the amplitude or 

peak value of the force and   is the forcing frequency. 

T 2 /=   is the forcing period of the FGM plate P0 =1N and 

= 2 f  where   is circular frequency and f  is natural fre-

quency of the Plate.. Table 5 compares the un-damped and 

damped cases. Figure 6(c) for simply supported plate. The 

maximum displacement at the center of the fixed plate as 

shown in Figure 6(d) is less than that of simply supported 

plate. Fig. 6 shows that maximum displacement at the centre 

of the plate increases with the material index (n value) 

 

Table5. Displacement of simply supported C-Si C plate for differ-

ent n values 

Power-law in-
dex 

Maximum Displacement at Centre(m) 

CCCC  SSSS 

Undamped Damped Undamped Damped 

n=0  (Si C) 4.759x 
10-5 

4.73x 
10-5 

1.165 x 
10-4 

1.006 x 
10-4 

  n=2 1.722 x10-

4 

1.71 x 

10-4 

3.142 x 

10-4 

3.035 x 

10-4 
n=15 2.796 x10-

4 

2.68 x 

10-4 

5.222x 

10-4 

5.201x 

10-4 

n=1000(C) 5.442 x10-

4 
5.41 x 
10-4 

1.229x10-3 1.199x 
10-3 

 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070251
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

473

www.ijert.org
www.ijert.org
www.ijert.org


 

 

 

Figure 6. Response of C-Si C FGM plate for different  k 

values using heterosis element. 

 

3.3.2  Impulse loading 

 

 A very large force that acts for a very short time but with a 

time integral that is finite is called an impulse force. Impulse 

forces of rectangular, half-cycle sine, triangular shapes each 

with the same value of maximum force 1N is applied at the 

centre of the plate. The response behavior of FGM plate is 

studied for material index(k) value=2. td is pulse duration.  

The Response spectra of the FGM plate with material index 

n=2 is shown in Figure 7. Tn is the natural time period of 

vibration of the plate and u st0 is the static deflection of the 

plate. Static deflection is 1.438e-4m and Natural time period 

is 0.0365 sec. Table 6 presents the variation of deformation 

response factor (Rd) with td/T n values (n=2).The present results 

are in good agreement with the available literature [14].  

 
 
 

 
 
 
 
 
 
 

 

Figure 7. Response spectra of  simply supported C-Si C FGM Plate 

(material index n=2) 

 

Table7. Variation of deformation response factor (Rd) with td/T n 

values (n=2) 

td/T n 

Rd= u0/ u st0 

Rectangular 

Loading 

Half 

Sine 

Loading 

  Trian-

gular   

Loading 

0 0 0 0 

   0.5      1.569 0.982 
     

0.863 

   

0.75 
     1.876 1.469  1.3 

1      1.901 1.701    1.52 

   1.5      1.901 1.5 
     

1.298 

2      1.901 1.25    0.93 

   2.5      1.901 1.071 
     

0.996 

3      1.901 1.15 
     

1.148 

   3.5      1.901 1.111 
     

1.103 

4      1.901 1.108 
     

1.003 

 

4. CONCLUSIONS 

In the present study, an FE solution is obtained for free and 

forced vibration analysis of FG plates using heterosis element. 

The analysis is carried out by developing a computer program 

in MATLAB. A 9- noded heterosis element is used to model 

the FGM plate. The heterosis element exhibits improved char-

acteristics as compared to the 8- noded serendipity and 9-

noded Lagrange elements. It offers a high level of accuracy 

for extremely thin plate configurations. Convergence study 

has been carried out for ensuring the convergence of the nu-

merical results. The results are also extracted from Abaqus 

CAE by using S8R5 shell elements and are in very good 

agreement with the developed elements. Free vibration anal-

ysis is done to study the different modes as well as frequen-

cies. It is observed that free vibration response is minimum 
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for carbon and maximum for Silicon carbide plate. The cen-

tral deflection of the plate increases with increase in volume 

fraction index for all types of boundary conditions. From the 

Response spectra, it is clearly understood that if the pulse du-

ration (td) is longer than Tn/2, the overall maximum defor-

mation occurs during the pulse. Then the pulse shape is of 

great significance.  For the larger value of td/Tn, the overall 

maximum deformation is influenced by the rapidity of the 

loading. The rectangular pulse in which the force increases 

suddenly from zero to maximum show the large deformation. 

The triangular pulse in which the increase in the force is ini-

tially slowest among the three pulses produces the smallest 

deformation. The half-cycle sine pulse in which the force ini-

tially increases at an intermediate rate causes deformation that 

for many values of td/Tn is larger than the response of the tri-

angular pulse. Sufficient duration steep loading produces a 

magnification factor of 2 and gradual loading increase results 

in a magnification factor of 1. 
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