
VHDL Implementation Of PWM Technique

For Generation Of Switching Pulses

Veena Walimbe

PG Student

 N. R. Bhasme

Associate Professor

Department of Electrical Engineering, Government College of Engineering, Aurangabad.

Abstract:

The design and implementation of a

Variable-Voltage Variable-Frequency (VVVF)

Controller based on Sinusoidal Pulse Width

Modulation (SPWM) Technique for a 1 and / or

3 Phase Induction Motor using VHDL. Variable-

Voltage Variable-Frequency (VVVF) technique

is used extensively in the industry as it provides

the accuracy required at minimal cost. Voltage/

frequency (v/f) controlled motors fall under the

category of Variable Voltage Variable Frequency

(VVVF) drives. To maintain maximum torque

for a given working condition, the flux in the

machine must be maintained constant. The ratio

of Voltage to frequency must be held constant.

For Variable Voltage Variabe Frequency

(VVVF) drives, there is a need to control the

fundamental voltage of the inverter if its

frequency (and therefore the frequency of the

induction motor), need to be varied. To vary the

fundamental component of the inverter, the

Modulation Index of the carrier signal has to be

changed. The speed at rated supply frequency is

normally used as the base speed. At frequencies

below the base speed, the supply magnitude

needs to be reduced so as to maintain a constant

Volt/Hertz. The VHDL based controller is used

to generate SPWM pulses based on the

frequency input, that are used to control the

inverter. The VVVF output of the inverter can be

used as supply to a three phase induction motor

and thereby speed of the motor can be controlled.

Keywords: PWM Technique, Speed Control

I. Introduction

 The Motor Control industry is a strong

aggressive sector. Each industry to remain

competitive, must reduce costs but also has to

answer to power consumption reduction and

EMI radiation reduction issues imposed by

governments and power plant lobbies. The

results of these constraining factors are the need

of enhanced algorithms. PSoc technology allows

achieving both, a high level of performance as

well as a system cost reduction. The AC

induction motor is the workhorse of industrial

and residential motor applications due to its

simple construction and durability. These motors

have no brushes to wear out or magnets to add to

the cost. The rotor assembly is a simple steel

cage. ACIM’s are designed to operate at a

constant input voltage and frequency; we can

effectively control an ACIM in an close loop

speed application if the frequency of the motor

input voltage is varied. If the motor is not

mechanically overloaded, the motor will operate

at a speed that is roughly proportional to the

input frequency. As you decrease the frequency

of the drive voltage, you also need to decrease

the amplitude by a proportional amount.

Otherwise, the motor will consume excessive

current at low input frequencies. This control

method is called “Volts-Hertz control”. In

practice, a custom Volts-Hertz profile is

developed that ensures the motor operates

correctly at any speed setting. This profile can

take the form of a look-up table or can be

calculated during run time. Often, a slope

variable is used in the application that defines a

linear relationship between drive frequency and

voltage at any operating point. The Volts-Hertz

control method can be used in conjunction with

speed and current sensors to operate the motor in

a closed loop fashion. The part is targeted toward

applications in both industrial and home

appliance industries, such as washing machines,

compressors, air conditioning units, pumps &

industrial drives. Controlling the speed of

induction motors has ever since been an

important topic of research. The control

methodologies have evolved from

electromechanical switching to high speed digital

controllers using DSP and FPGA [1]. Of late,

Pulse-Width Modulation techniques have been

the subject of intensive research; as PWM

controlled power electronic devices find

increasing applications in many new industrial

processes involving more stringent performance

specifications [2]. This is particularly true in case

of high performance drive systems,

uninterruptible power supply and programmable

AC power sources. Since PWM inverters play an

68

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70043

Vol. 2 Issue 7, July - 2013

important role in each of these applications, the

whole system is dependent on the algorithm

controlling the PWM inverter [3]. In recent

years, Field Programmable Gate Arrays have

drawn much attention due to its short design

cycle, low cost and high flexibility in terms of

programmability. The Field Programmable Gate

Arrays (FPGAs) offer significant advantages

over microprocessors and DSPs for high

performance, low volume applications,

particularly for applications that can exploit

customized bit-widths and massive instruction-

level parallelism. The innovative development of

FPGAs whose configuration could be re-

programmed an unlimited number of times

spurred the invention of a new field in which

many different hardware algorithms could

execute, in turn, on single device, just as many

different software algorithms can run on a

conventional processor [4]. When comparing the

dynamic performance, control capabilities and

concurrency in PWM controlled Power

Converters, FPGA based digital techniques are

better than DSPs [4] [5]. The FPGA controller

produces the SPWM pulses which are at a

voltage of 3.3V. The voltage shifting from 3.3V

to 12V requires a voltage-level shifting circuit.

The voltage level shifted pulses will be fed to the

three phase inverter to convert the DC supply to

a three phase supply which is in turn fed to the

induction motor. The variation in the duty cycle

and the number of SPWM pulses determines the

amplitude and frequency of the inverter. This can

be achieved by varying either the amplitude or

frequency of the carrier signal (triangular wave).

II. PWM Technique

 A model for the controller was designed

using VHDL. The VHDL code developed to

generate a three phase sinusoidal pulse width

modulated signal is divided into seven entities,

namely: Interface Module, Oscillator, Addition

of 120
0
, Amplitude Module, PWM Module, Top

Level Module and Clock Divider Module. The

inputs to the program as a whole are an 8 bit

multiplexed data signal, a 2 bit selection signal

and an enable signal. The outputs are three pulse

width modulated sinusoidal signals; each signal

being phase shifted 120
0
 with respect to the

previous signal in a cyclic manner. The block

diagram of the system is shown is shown in

figure 1.

Figure 1: Block Diagram

A. Interface module

The purpose of this entity is to interface the

FPGA with the inputs. The input to the FPGA is

an 8 bit multiplexed data signal, a 2 bit selection

signal and an enable signal. The data signal is

demultiplexed with the help of the selection

signal when the enable signal is high. The

following rules are used to demultiplex the data

signal: If the selection signal is ’00’, the data

lines represent amplitude. If the selection signal

is ’01’, the data lines represent frequency. If the

selection signal is ’10’, the data lines represent

the 8 lower bits of the phase. If the selection

signal is ’11’, the data lines represent the 2

higher bits of the phase. Clearly, signals ’10’ and

’11’ can be used to set an initial phase value. If

the enable signal is low, the frequency and

amplitude values remain the same until enable is

made high again. The entity has another input, a

10 bit phasein. When enable is low, the phase

output is the same as phasein. Thus, the outputs

69

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70043

Vol. 2 Issue 7, July - 2013

of this entity are: Frequency (8 bits), Amplitude

(8 bits) and Phase (10 bits).

B. Amplitude lookup table

This entity is used to calculate the value

of modulation index from the value of frequency

input to the FPGA. It generates a Modulation

Index of 1 for frequencies of 50 Hz and above.

For frequencies below 50 Hz, it varies linearly.

The modulation index is a value between 0 and

1, and hence can be represented by cos(φ). This

is done to reduce the FPGA resources used by

changing a multiplication to an addition. This is

described in detail in the Amplitude Module. The

output of the look-up table is an 8 bit value

which represents ’φ’.

C. Oscillator

This entity is used to generate phase

values increasing from 0◦ to 360◦, and then reset

back to zero, resulting in a shape resembling a

sawtooth with a minimum value of 0◦ and

maximum value of 360◦. The entity takes the

frequency, initial phase and a clock as inputs.

The whole entity is basically a D-flip flop. The

value of phase is initialised to a given value

using the data signal and selection signals ’10’

and ’11’, or to zero by default. The Phase value

here is 10 bits wide with ’0000000000’

representing 0◦ and ’1111111111’ representing

360◦. The 8 bit frequency value determines the

phase increment that is the value of phase is

incremented by the frequency value every clock

cycle. When the phase value reaches 360◦, it is

reset to zero, thus effectively producing a

sawtooth. Clearly, if the value of frequency input

is larger, the phase value reaches 360◦ faster and

thus produces a saw tooth of higher frequency.

Note that the adder here adds an eight bit

frequency value to a 10 bit phase value. Thus,

the output of this entity is a ten bit phase value

which increases and decreases in the shape of a

sawtooth. It has to be noted that the clock signal

for the oscillator should have a frequency 1/512

times that of the frequency of clock signal used

in the counter-comparator, since the counter

counts from 0 to 511 for each pulse of the PWM

output.

D. Addition of 120◦

This entity takes a ten bit phase value as

input, increments it by 120◦ (i.e. ’0101010101’).

The output is also a ten bit phase value. Thus

when a phase value, say P1, is incremented by

120◦ once to get P2 and then P2 is incremented

by 120◦ to get P3; three values of phase are

obtained that can be arranged in a cyclic manner

resembling that of a three phase system.

Figure 2: Amplitude Module

E. Amplitude module

This entity is used to calculate the value

of the sine of the phase taking into account the

value of the amplitude input. It takes as inputs 10

bit phase, 8 bit amplitude and a clock signal, and

gives an 8 bit value as output. The value of

Acos(θ), should be calculated where ’A’ is the

amplitude and ’θ’ is the phase. The value of the

cosine can be computed using a cosine lookup

table. However, using a multiplier to multiply the

value of amplitude would use too much of the

FPGA’s resources. Thus an alternate method is

suggested. The amplitude is coded as an angle

from zero to 90◦, where ’00000000’ represents

zero and ’11111111’ represents 90◦. The cosine

of this angle can be used to represent amplitude.

Thus cos(φ)*cos(θ) has to be computed, where φ

is the amplitude angle. Using simple

trigonometric transformations, this becomes

[cos(θ+φ) + cos(θ-φ)]/2, and thus avoiding the

need to use a multiplier. The schematic of the

amplitude module is shown in figure 2. The

lookup table is generated for cos(θ) where θ is

the ten bit phase value converted to an angle. 127

represent decimal 1, and is added so that all

resulting values are positive. For example, if the

phase value is ’0101010101’ (ie. 120◦) the output

of the lookup table is 63, ie. ’00111111’, when

the actual value of cosine is -0.5. The lookup

table utilises eight most significant bits of the

phase to give an eight bit cosine output. Only

half of the phase values (from 0 to 127) need to

have entries in the table because of the symmetry

of the cosine curve. The lookup table has to be

used six times, two times for each phase. In an

ordinary case, the lookup table would be

instantiated six times, resulting in the

unnecessary use of excess resources. The lookup

table has to be instantiated only once for the

most efficient code. This is done in the following

way. A counter counting from 0 to 11 is made.

When the value of the counter is 0, the value of

(A+Θ) for the first phase is taken as input for the

70

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70043

Vol. 2 Issue 7, July - 2013

table. When it is 1, the output of the table is

taken as cos(A+Θ). When it is 2, the value of (A-

Θ) for the first phase is taken as input for the

table. When it is 3, the output of the table is

taken as cos(A-Θ).

Figure 3 : Waveforms

F. PWM module

This entity is a counter-comparator pair used to

generate the sinusoidal PWM output from a

cosine input given by the Amplitude Module.

Normally, the counter would count from 0 to 255

for an 8 bit input, but here, to have both half

wave and quarter wave symmetry, the counter

counts from zero to 512. Such symmetry greatly

reduces inverter harmonics. The comparator

outputs low if the value of the count is between

(256-input) and (256+input), and high otherwise,

thus resulting in both half wave and quarter wave

symmetry. This entity also generates the clock

for the oscillator which clearly has to have a

frequency 1/512 times the clock used for the

counter comparator pair. From the three SPWM

signals, six gate driving pulses have to be

generated. The pulses for one of the branches of

the inverter have to be phase shifted by 180◦ and

those for two adjacent branches have to be phase

shifted 120◦. Thus, to generate the two out of-

phase pulses from a single pulse, the following

steps are done: 1. Zero crossing is detected, 2.

the pulses representing the positive half cycle of

the Sinusoid form the first pulse are generated. 3.

The pulses representing the negative half cycle

are inverted to form the second pulse are

generated. 4. The process is repeated for the

other two phases. The final pulses generated for

two the IGBTs in any one of the branches will be

as shown in figure 3.

Figure 4: Top Module with Entities

G. Top level module

71

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70043

Vol. 2 Issue 7, July - 2013

This is the top-level entity in which

copies of all the other entities are instantiated. In

other words, this is the entity that takes the

inputs to the FPGA, viz. The 8 bit data signal,

the two bit selection signal, the enable signal and

the clock, and gives the three PWM sinusoids as

outputs, using instances of each of the above

mentioned entities shown in figure 4.

III. Results and Conclusion

The open loop control scheme for a three phase

inverter is implemented using VHDL. The

versatility in VHDL programming makes the

designer to implement an efficient controller in

it. The most important factor in support of using

FPGA based designs is that it can be started from

scratch and the design can be improved along the

way by continuously testing and improving the

code. Furthermore, using a digital controller

make the system less susceptible to noise,

temperature and other environmental factors.

More significantly, the controller size and

complexity is considerably reduced. The

reconfigurable feature of FPGAs makes it more

flexible. In conclusion, the VVVF controller is

successfully implemented using FPGA and the

experimental results show that the controller

enables the inverter to produce a proper supply

voltage which is fed to drive the three phase

induction motor.

References

[1] R.Nandhakumar, S. Jeevananthan P.

Dananjayan, Design and

Implementation of an FPGA-Based

High Performance ASIC for Open Loop

PWM Inverter, IICPE, 2006, pp.349-

354.

[2] Arulmozhiyal, R. Baskaran, K.

Devarajan, N. Kanagaraj, Space Vector

Pulse Width Modulation Based

Induction Motor Speed Control Using

FPGA, ICETET, 16-18 Dec 2009, pp.

242-247.

[3] Nitish Patel, Udaya Madawala, A Bit

stream based scalar control of an

Induction Motor, IECON, 2008, pp.

1071-1076.

[4] A. Fratta, G. Griffero, and S. Nieddu

(2004), Comparative analysis among

DSP and FPGA-based control

capabilities in PWM power converters

in Proceedings of the 30th Annual

Conference of the IEEE Industrial

Electronics Society (IECON .04).

Novemeber: 257.262.

[5] A De Castro, A., P. Zumel, O. Garcia,

T. Riesgo, and J. Uceda (2003),

Concurrent and simple digital

controller of an AC/DC converter with

power factor correction based on an

FPGA,IEEE Transactions on Power

Electronics. 18(1 Part2): 334343.

 [6] Thida Win, Nang Sabai, and Hnin

Nandar Maung, Analysis of Variable

Frequency Three Phase Induction

Motor Drive , World Academy of

Science, Engineering and Technology

42 2008.

[7] Silver Ott, Indrek Roasto, Dmitri

Vinnikov, Comparison of pulse width

modulation methods for a quasi

impedance source inverter, 10th

International Symposium „Topical

Problems in the Field of Electrical and

Power Engineering“ Pärnu, Estonia,

January 10-15, 2011

72

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70043

Vol. 2 Issue 7, July - 2013

