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Abstract: 

The design and implementation of a 

Variable-Voltage Variable-Frequency (VVVF) 

Controller based on Sinusoidal Pulse Width 

Modulation (SPWM) Technique for a 1 and / or 

3 Phase Induction Motor using VHDL. Variable-

Voltage Variable-Frequency (VVVF) technique 

is used extensively in the industry as it provides 

the accuracy required at minimal cost. Voltage/ 

frequency (v/f) controlled motors fall under the 

category of Variable Voltage Variable Frequency 

(VVVF) drives. To maintain maximum torque 

for a given working condition, the flux in the 

machine must be maintained constant. The ratio 

of Voltage to frequency must be held constant. 

For Variable Voltage Variabe Frequency 

(VVVF) drives, there is a need to control the 

fundamental voltage of the inverter if its 

frequency (and therefore the frequency of the 

induction motor), need to be varied. To vary the 

fundamental component of the inverter, the 

Modulation Index of the carrier signal has to be 

changed. The speed at rated supply frequency is 

normally used as the base speed. At frequencies 

below the base speed, the supply magnitude 

needs to be reduced so as to maintain a constant 

Volt/Hertz. The VHDL based controller is used 

to generate SPWM pulses based on the 

frequency input, that are used to control the 

inverter. The VVVF output of the inverter can be 

used as supply to a three phase induction motor 

and thereby speed of the motor can be controlled. 
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I. Introduction 

 The Motor Control industry is a strong 

aggressive sector. Each industry to remain 

competitive, must reduce costs but also has to 

answer to power consumption  reduction and 

EMI radiation reduction issues imposed by 

governments and power plant lobbies. The 

results of these constraining factors are the need 

of enhanced algorithms. PSoc technology allows 

achieving both, a high level of performance as 

well as a system cost reduction. The AC 

induction motor is the workhorse of industrial 

and residential motor applications due to its 

simple construction and durability. These motors 

have no brushes to wear out or magnets to add to 

the cost. The rotor assembly is a simple steel 

cage. ACIM’s are designed to operate at a 

constant input voltage and frequency; we can 

effectively control an ACIM in an close loop 

speed application if the frequency of the motor 

input voltage is varied. If the motor is not 

mechanically overloaded, the motor will operate 

at a speed that is roughly proportional to the 

input frequency. As you decrease the frequency 

of the drive voltage, you also need to decrease 

the amplitude by a proportional amount. 

Otherwise, the motor will consume excessive 

current at low input frequencies. This control 

method is called “Volts-Hertz control”. In 

practice, a custom Volts-Hertz profile is 

developed that ensures the motor operates 

correctly at any speed setting. This profile can 

take the form of a look-up table or can be 

calculated during run time. Often, a slope 

variable is used in the application that defines a 

linear relationship between drive frequency and 

voltage at any operating point. The Volts-Hertz 

control method can be used in conjunction with 

speed and current sensors to operate the motor in 

a closed loop fashion. The part is targeted toward 

applications in both industrial and home 

appliance industries, such as washing machines, 

compressors, air conditioning units, pumps & 

industrial drives. Controlling the speed of 

induction motors has ever since been an 

important topic of research. The control 

methodologies have evolved from 

electromechanical switching to high speed digital 

controllers using DSP and FPGA [1]. Of late, 

Pulse-Width Modulation techniques have been 

the subject of intensive research; as PWM 

controlled power electronic devices find 

increasing applications in many new industrial 

processes involving more stringent performance 

specifications [2]. This is particularly true in case 

of high performance drive systems, 

uninterruptible power supply and programmable 

AC power sources. Since PWM inverters play an 
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important role in each of these applications, the 

whole system is dependent on the algorithm 

controlling the PWM inverter [3]. In recent 

years, Field Programmable Gate Arrays have 

drawn much attention due to its short design 

cycle, low cost and high flexibility in terms of 

programmability. The Field Programmable Gate 

Arrays (FPGAs) offer significant advantages 

over microprocessors and DSPs for high 

performance, low volume applications, 

particularly for applications that can exploit 

customized bit-widths and massive instruction-

level parallelism. The innovative development of 

FPGAs whose configuration could be re-

programmed an unlimited number of times 

spurred the invention of a new field in which 

many different hardware algorithms could 

execute, in turn, on single device, just as many 

different software algorithms can run on a 

conventional processor [4]. When comparing the 

dynamic performance, control capabilities and 

concurrency in PWM controlled Power 

Converters, FPGA based digital techniques are 

better than DSPs [4] [5]. The FPGA controller 

produces the SPWM pulses which are at a 

voltage of 3.3V. The voltage shifting from 3.3V 

to 12V requires a voltage-level shifting circuit. 

The voltage level shifted pulses will be fed to the 

three phase inverter to convert the DC supply to 

a three phase supply which is in turn fed to the 

induction motor. The variation in the duty cycle 

and the number of SPWM pulses determines the 

amplitude and frequency of the inverter. This can 

be achieved by varying either the amplitude or 

frequency of the carrier signal (triangular wave).  

II. PWM Technique 

 A model for the controller was designed 

using VHDL. The VHDL code developed to 

generate a three phase sinusoidal pulse width 

modulated signal is divided into seven entities, 

namely: Interface Module, Oscillator, Addition 

of 120
0
, Amplitude Module, PWM Module, Top 

Level Module and Clock Divider Module. The 

inputs to the program as a whole are an 8 bit 

multiplexed data signal, a 2 bit selection signal 

and an enable signal. The outputs are three pulse 

width modulated sinusoidal signals; each signal 

being phase shifted 120
0
 with respect to the 

previous signal in a cyclic manner. The block 

diagram of the system is shown is shown in 

figure 1. 

 
Figure 1: Block Diagram 

A. Interface module 

The purpose of this entity is to interface the 

FPGA with the inputs. The input to the FPGA is 

an 8 bit multiplexed data signal, a 2 bit selection 

signal and an enable signal. The data signal is 

demultiplexed with the help of the selection 

signal when the enable signal is high. The 

following rules are used to demultiplex the data 

signal: If the selection signal is ’00’, the data 

lines represent amplitude. If the selection signal 

is ’01’, the data lines represent frequency. If the 

selection signal is ’10’, the data lines represent 

the 8 lower bits of the phase. If the selection 

signal is ’11’, the data lines represent the 2 

higher bits of the phase. Clearly, signals ’10’ and 

’11’ can be used to set an initial phase value. If 

the enable signal is low, the frequency and 

amplitude values remain the same until enable is 

made high again. The entity has another input, a 

10 bit phasein. When enable is low, the phase 

output is the same as phasein. Thus, the outputs 
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of this entity are: Frequency (8 bits), Amplitude 

(8 bits) and Phase (10 bits). 

 

B. Amplitude lookup table 

This entity is used to calculate the value 

of modulation index from the value of frequency 

input to the FPGA. It generates a Modulation 

Index of 1 for frequencies of 50 Hz and above. 

For frequencies below 50 Hz, it varies linearly. 

The modulation index is a value between 0 and 

1, and hence can be represented by cos(φ). This 

is done to reduce the FPGA resources used by 

changing a multiplication to an addition. This is 

described in detail in the Amplitude Module. The 

output of the look-up table is an 8 bit value 

which represents ’φ’. 

 

C. Oscillator 

This entity is used to generate phase 

values increasing from 0◦ to 360◦, and then reset 

back to zero, resulting in a shape resembling a 

sawtooth with a minimum value of 0◦ and 

maximum value of 360◦. The entity takes the 

frequency, initial phase and a clock as inputs. 

The whole entity is basically a D-flip flop. The 

value of phase is initialised to a given value 

using the data signal and selection signals ’10’ 

and ’11’, or to zero by default. The Phase value 

here is 10 bits wide with ’0000000000’ 

representing 0◦ and ’1111111111’ representing 

360◦. The 8 bit frequency value determines the 

phase increment that is the value of phase is 

incremented by the frequency value every clock 

cycle. When the phase value reaches 360◦, it is 

reset to zero, thus effectively producing a 

sawtooth. Clearly, if the value of frequency input 

is larger, the phase value reaches 360◦ faster and 

thus produces a saw tooth of higher frequency. 

Note that the adder here adds an eight bit 

frequency value to a 10 bit phase value. Thus, 

the output of this entity is a ten bit phase value 

which increases and decreases in the shape of a 

sawtooth. It has to be noted that the clock signal 

for the oscillator should have a frequency 1/512 

times that of the frequency of clock signal used 

in the counter-comparator, since the counter 

counts from 0 to 511 for each pulse of the PWM 

output. 

 

D. Addition of 120◦ 

This entity takes a ten bit phase value as 

input, increments it by 120◦ (i.e. ’0101010101’). 

The output is also a ten bit phase value. Thus 

when a phase value, say P1, is incremented by 

120◦ once to get P2 and then P2 is incremented 

by 120◦ to get P3; three values of phase are 

obtained that can be arranged in a cyclic manner 

resembling that of a three phase system. 

 

 
Figure 2:  Amplitude Module 

 

E. Amplitude module 

This entity is used to calculate the value 

of the sine of the phase taking into account the 

value of the amplitude input. It takes as inputs 10 

bit phase, 8 bit amplitude and a clock signal, and 

gives an 8 bit value as output. The value of 

Acos(θ), should be calculated where ’A’ is the 

amplitude and ’θ’ is the phase. The value of the 

cosine can be computed using a cosine lookup 

table. However, using a multiplier to multiply the 

value of amplitude would use too much of the 

FPGA’s resources. Thus an alternate method is 

suggested. The amplitude is coded as an angle 

from zero to 90◦, where ’00000000’ represents 

zero and ’11111111’ represents 90◦. The cosine 

of this angle can be used to represent amplitude. 

Thus cos(φ)*cos(θ) has to be computed, where φ 

is the amplitude angle. Using simple 

trigonometric transformations, this becomes 

[cos(θ+φ) + cos(θ-φ)]/2, and thus avoiding the 

need to use a multiplier. The schematic of the 

amplitude module is shown in figure 2. The 

lookup table is generated for cos(θ) where θ is 

the ten bit phase value converted to an angle. 127 

represent decimal 1, and is added so that all 

resulting values are positive. For example, if the 

phase value is ’0101010101’ (ie. 120◦) the output 

of the lookup table is 63, ie. ’00111111’, when 

the actual value of cosine is -0.5. The lookup 

table utilises eight most significant bits of the 

phase to give an eight bit cosine output. Only 

half of the phase values (from 0 to 127) need to 

have entries in the table because of the symmetry 

of the cosine curve. The lookup table has to be 

used six times, two times for each phase. In an 

ordinary case, the lookup table would be 

instantiated six times, resulting in the 

unnecessary use of excess resources. The lookup 

table has to be instantiated only once for the 

most efficient code. This is done in the following 

way. A counter counting from 0 to 11 is made. 

When the value of the counter is 0, the value of 

(A+Θ) for the first phase is taken as input for the 
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table. When it is 1, the output of the table is 

taken as cos(A+Θ). When it is 2, the value of (A- 

Θ) for the first phase is taken as input for the 

table. When it is 3, the output of the table is 

taken as cos(A-Θ).  

 

 
 

Figure 3 : Waveforms 

F. PWM module 

This entity is a counter-comparator pair used to 

generate the sinusoidal PWM output from a 

cosine input given by the Amplitude Module. 

Normally, the counter would count from 0 to 255 

for an 8 bit input, but here, to have both half 

wave and quarter wave symmetry, the counter 

counts from zero to 512. Such symmetry greatly 

reduces inverter harmonics. The comparator 

outputs low if the value of the count is between 

(256-input) and (256+input), and high otherwise, 

thus resulting in both half wave and quarter wave 

symmetry. This entity also generates the clock 

for the oscillator which clearly has to have a 

frequency 1/512 times the clock used for the 

counter comparator pair. From the three SPWM 

signals, six gate driving pulses have to be 

generated. The pulses for one of the branches of 

the inverter have to be phase shifted by 180◦ and 

those for two adjacent branches have to be phase 

shifted 120◦. Thus, to generate the two out of-

phase pulses from a single pulse, the following 

steps are done: 1. Zero crossing is detected, 2. 

the pulses representing the positive half cycle of 

the Sinusoid form the first pulse are generated. 3. 

The pulses representing the negative half cycle 

are inverted to form the second pulse are 

generated. 4. The process is repeated for the 

other two phases. The final pulses generated for 

two the IGBTs in any one of the branches will be 

as shown in figure 3. 

 
 

Figure 4:  Top Module with Entities 

G. Top level module 
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This is the top-level entity in which 

copies of all the other entities are instantiated. In 

other words, this is the entity that takes the 

inputs to the FPGA, viz. The 8 bit data signal, 

the two bit selection signal, the enable signal and 

the clock, and gives the three PWM sinusoids as 

outputs, using instances of each of the above 

mentioned entities shown in figure 4. 

 

III. Results and Conclusion 

The open loop control scheme for a three phase 

inverter is implemented using VHDL. The 

versatility in VHDL programming makes the 

designer to implement an efficient controller in 

it. The most important factor in support of using 

FPGA based designs is that it can be started from 

scratch and the design can be improved along the 

way by continuously testing and improving the 

code. Furthermore, using a digital controller 

make the system less susceptible to noise, 

temperature and other environmental factors. 

More significantly, the controller size and 

complexity is considerably reduced. The 

reconfigurable feature of FPGAs makes it more 

flexible. In conclusion, the VVVF controller is 

successfully implemented using FPGA and the 

experimental results show that the controller 

enables the inverter to produce a proper supply 

voltage which is fed to drive the three phase 

induction motor. 
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