
VHDL Implementation of 20-Bit RISC and DSP

Operations in FPGA

M. Sethu, M.E. Digital Signal Processing

 Dept. of ECE,
 GKMCET,

 Chennai –

600 063, Tamilnadu, India.

Abstract - The Reduced Instruction Set Computer (RISC) is a

smaller instruction set used widely in the microprocessors and

microcontrollers. By this RISC core is designed to perform

some arithmetic operation and perform some DSP operations

such as Discrete Cosine Transform (DCT), Inverse Discrete

Cosine Tranasform (IDCT) and Fast Fourier Transform (FFT).

The design of a Reduced Instruction Set Computer (RISC) and

the Digital Signal Processor (DSP) system described using

VHDL and is implemented in a Field Programmable Logic

Array (FPGA). This 20 bit processor system has high general

purpose register (GPR) orthogonality and communicates to

peripheral devices via a serial bus.

Keywords - Arithmetic Logic Unit (ALU), Central Processing Unit

(CPU), Control Unit (CU), Field Programmable Logic Array

(FPGA), General Purpose Register (GPR), Instruction Register

(IR), Program Counter (PC), Reduced Instruction Set Computer

(RISC), Register Set (RS), Multiply and accumulates (MACs),

Very Large Instruction Word (VLIW).

I. INTRODUCTION

Reduced Instruction Set Computer (RISC) is a type of

microprocessor architecture that utilizes a small, highly-

optimized set of instructions, rather than a more specialized

set of instructions often found in other types of architectures.

RISC statergy based on the insight that simplified

instructions can provide higher performance if this simplicity

enables much faster execution of each instruction. It use

fewer instructions with simple constructs, therefore they can

be executed much faster within the CPU without having to

use memory as often. [2]

Currently, RISC has three major IP suppliers - ARM,

MIPS & PowerPC. Each has its own characteristics and

flexibility. PowerPC is a standard RISC architecture

developed by the IBM, Motorola and Apple alliance known

as AIM.

RISC can be described as a philosophy with three basic

levels:

 All instruction will be executed in single cycle.

 Memory will only be accessed via load and store

instruction.

 All execution units will be hardwired with no

micro coding.

The RISC provides higher performance in computing

because of little need of the external fetches, which take

significant amount of processor time and also because of

hard-wired instruction implementation.

Main features of a RISC processor are –

 Load/Store design

 Few addressing modes

 Fixed instruction size

 Few instruction formats

 Few operand sizes

 Better compilation

 Many instruction that access memory directly

 Variable length instruction encoding

 Pipelining can be implemented easily.[5]

II. RISC ARCHITECTURE

The Architecture of RISC system is shown in Fig. 1. It

includes Decoder, fetch machine, Arithmetic and logic

machine, and register set.

RISC consists of: This system can be separated into

several states as shown in Figure 1. Each state describes the

current operation or process being performed by the CPU and

is described in a VHDL module. This system is the hardware

within a computer system which carries out the instructions

of a computer program by performing the basic arithmetical,

logical, and input/output operations of the system.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100076

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

35

Fig. 1 RISC Architecture

Register Set (RS): In this information is encoded, stored,

and retrieved. The RS of this system contains the following

registers:

 IR - holds the current instruction.

 PC - holds the address of the next instruction.

 Load - holds data loaded from memory.

 Store - holds data being stored to memory.

 SR - when an operation involves two operands, the

status signals are updated. The SR can also the used

as an operand in arithmetic and logical operations.

 GPR[x] -up to 64 GPRs can be used in this

architecture.

All GPRs and the SR can be used in any operation

except for the load and store instructions. Only GPR can be

used for loading and storing.

Instruction Fetch Machine: This machine fetches an

instruction from external memory, and upon completion of

the instruction fetch cycle this machine signals the decoder to

decode the instruction. This machine utilizes a 3-bit up

counter with an active low reset. The CPU changes states and

begins to decode the instruction.

Decoder: Upon completion of the instruction fetch cycle, the

instruction is decoded. The decoder reads bit 3 down to 0 of

the IR, decides which of the sixteen operations the CPU

needs to performs, and signals one of the next states to begin

its operation.

Move Machine: The move machine controls all register

movement. The most basic of these movements is the

movement of data from one GPR to another GPR. On

completion of the movement of data, a new instruction is

fetched.

Arithmetic Logic Unit: The ALU performs arithmetic and

logical operations on data. The data is taken from two GPRs

and is moved to the ALU. The result is stored in a GPR. For

operations that involve one operand, a GPR can be specified

to store the result. The ALU supports two’s complement data.

Figure 2 shows Spartan-3 FPGAs, The Spartan-3 family

architecture consists of five fundamental programmable

functional elements:

 Configurable Logic Blocks (CLBs) contain RAM-based

Look-Up Tables (LUTs) to implement logic and

storage elements that can be used as flip-flops or

latches. CLBs can be programmed to perform a wide

variety of logical functions as well as to store data.

 Input / Output Blocks (IOBs) control the flow of data

between the I/O pins and the internal logic of the

device. Each IOB supports bidirectional data flow

plus3-state operation. Twenty-six different signal

standards, including eight high-performance

differential standard. Double Data-Rate (DDR)

registers are included. The Digitally Controlled

Impedance (DCI) feature provides automatic on-chip

terminations, simplifying board designs.

 Block RAM provides data storage in the form of 18-

Kbit dual-port blocks.

 Digital Clock Manager (DCM) blocks provide self-

calibrating, fully digital solutions for distributing,

delaying, multiplying, dividing, and phase shifting

clock signals.

Figure 2 Spartan – 3 FPGA

III. INSTRUCTION SETS FOR RISC PROCESSOR

An instruction set, or instruction set architecture (ISA),

is the part of the computer architecture related to

programming, including the native data types, instructions,

registers, addressing modes, memory architecture, interrupt

and exception handling, and external I/O. The instruction set

describes an abstract version of a processor.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100076

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

36

 Table 1 shows the instruction set for RISC processor.

TABLE I INSTRUCTION SETS

Instruction Opcode Operation performed

OR 0000 OR operation of two registers

AND 0001 AND operation of two registers

NAND 0010 NAND operation of two registers

NOR 0011 NOR operation of two registers

XOR 0100 XOR operation of two registers

XNOR 0101 XNOR operation of two registers

ADD 0110 ADD operation of two registers

SUBTRACT 0111
SUBTRACT operation of two

registers

NOT 1000 NOT operation

INCREMENT 1001 Increment the value by 1

DECREMENT 1010 Decrement the value by 1

DCT 1011 Perform DCT Operation

DFT 1100 Perform DFT Operation

FFT 1101 Perform FFT Operation

IV. INSTRUCTION FORMAT

The RISC machine fetches an instruction from the

memory. Each instruction decodes by internal decoder and

the value of each instruction is 20 bits. In those 0 to 3 bits is

the opcode which decide the operation to be performed.

TABLE II INSTRUCTION FORMAT for INPUT

 R[y] R[x] OPCODE

19 12 11 4 3 0

Table no 2 shown the instruction format (input) for RISC

processor. [5]

The instruction format for output is shown in Table no 3.

TABLEIII INSTRUCTION FORMAT for OUTPUT

 OUTPUT

7 0

V. OPERATIONS

A) Discrete Fourier Transform

It is a kind of Discrete Transform which is used in

Fourier analysis. It transforms one function into another,

which is called the frequency domain representation, or

simply the DFT, of the original function. The formula for

DFT [2] is

𝑋𝑘 = 𝑥𝑛𝑒
−

𝑖2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0 (𝑘 = 0,1, … . 𝑁 − 1)

B) Fast Fourier Transform

Fig. 3 Montium Butterfly Mapping

Fig. 3 demonstrates the efficiency of the hardware

architecture [11]. FFT is an efficient algorithm or fast way to

compute a DFT. Radix-2 Decimation-in-time (DIT) Fast

Fourier Transform (FFT) is dividing the DFT in to two

portions. Using a complex multiplier operation in

combination with the flexibility of the Montiumdatapath, it is

possible to implement an FFT/IFFT butterfly in a single

clock cycle using only 4 arithmetic logic units (ALUs).

C) Discrete Cosine Transform

A Discrete Cosine Transform (DCT) expresses a

sequence of finitely many data points in terms of a sum of

cosine functions oscillating at different frequencies. The N-

point 1-D DCT is defined as

C u , C v =

1

 2
 for u, v = 0

1 otherwise

F u, v

=
2

N
C u C v f x, y cos

 2x + 1 uπ

2N

N−1

v=0

 cos
 2x + 1 vπ

2N

N−1

u=0

Fig. 4 Butterfly Diagram

Computing the transform directly from the N x N input

numbers

 Derive fast DCT algorithms from the signal

flow graph (like FFT)

 Based on 1-D DCT

 Larger flow graph

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100076

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

37

 Global routing

 More temporal storage

 Larger data path

The Figure 4 shows the implementation of the 2-D DCT

Butterfly diagram. [7]

D) Ripple Carry Adder

The multiple full adders are used with the carry ins and

carry outs chained together then this is called a ripple carry

adder because the cout value of the carry bit ripples from one

bit to the next. The block diagram of 8-bit Ripple Carry

Adder is shown here below in Fig. 4.

Fig. 5 Ripple Carry Adder

It is possible to create a logical circuit using several full

adders to add multiple bit numbers. Each full adder inputs a

Cin, which is the Cout of the previous adder. This kind of

adder is a Ripple Carry Adder, since each carry bit “ripples”

to the next full adder. [14]

E) Carry Save Adder

The Straight forward way of adding together m numbers

is to add the first two, then add that sum to the next, and so

on. This requires a total of m-1 additions, for a total gate

delay of O (m log n). 0

Fig. 6 Ripple Carry Adder

The basis block for 4-bit carry save adder is shown in

figure 6. Carry – Save adders are based on the idea that a full

adder really has three inputs and produces two outputs. [14]

VI. SIMULATIONANDRESULT

All the instructions is simulated correctly and the results

are shown in Table no. 4. The simulation result and

synthesized using Xilinx ISE version 13.2. The Simulation

results is shown in Figures. The Fig. 6 shows the Simulation

Result for all opcodes.

TABLEIV RESULT

Operation
Input

Output
X Y Opcode

AND 11011011 00111011 0000 00011011

OR 11011011 00111011 0001 11111011

NAND 11011011 00111011 0010 11100100

NOR 11011011 00111011 0011 00000100

XOR 11011011 00111011 0100 11100000

XNOR 10100000 000000000 0101 11111001

ADD 00000110 00000000 0110 00000110

SUBTRACT 00000111 00000000 0111 11111010

NOT 00000101 00000000 1000 11111010

INCREMENT 00000001 00000001 1001 00000110

DECREMENT 00000000 00000000 1010 00000101

DCT 01011101 00000000 1011 00000011

FFT 00110000 00000000 1101 00000001

The value of input X is 11011011 and input Y is

00111011; the instruction for 0000 is AND, for AND

operation output result is 000110011.

The value of input X is 11011011 and input Y is

00111011; the instruction for 0001 is OR, for OR operation

output result is 11111011.

The value of input X is 11011011 and input Y is

00111011; the instruction for 0100 is XOR, for OR operation

output result is 11100000.

Fig. 6 Simulation result for all opcodes

Fig. 7 Simulation result for FFT

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100076

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

38

The value of input X is 00000110 and input Y is

00000000; the instruction for 0110 is ADD, for ADD

operation the instruction is X+Y and the output result is

00000110.

The FFT operation is performed by using the Fig. 3 is

performed and the simulation result is shown in fig. 7.

Fig. 8 Simulation result for Carry Save Adder

Fig. 9 Simulation result for Ripple Carry Adder

The Carry Save Adder and Ripple Carry Adder

operations are performed by using the Fig. 5 and 6

respectively. The simulations result is as shown in fig 8 and

9 respectively. The simulated output using the Spartran 3

FPGA is as shown in figure 10.

Fig. 10: Simulated output using FPGA Kit.

 VII. CONCLUSION

 Thus the simulation and result of this 20-bit RISC

processor provides the various features including arithmetic

operations and the DSP operations. This design is used in

various areas such as android phones. The processor has

been designed for

executing the instructions of 14 operations

in total. The design implemented can be easily implemented

using VHDL and simulated with the Xilinx. The value of

output and input bit is easily upgraded by increasing the

memory of the processor and can be implemented with

higher bit values. This RISC processor executes all the

instructions in one clock cycle, including jumps, returns from

subroutines and external accesses.

 ACKNOWLEDGMENT

 It gives me immense pleasure to thank the anonymous

reviewers for their constructive comments and suggestions.

 REFERENCES

 [1]

Amit Kumar Singh Tomar, Prof. Rita Jain, “Implementation of RISC

System in FPGA”, IJETAE, ISSN 2250-2459, Vol 2, Issue 9,

September 2012.

 [2]

Ryszard Gal, Adam Golda, MaciejiFrankiewicz, Andrezej Kos, “FPGA

Implementation of 8-bit RISC Microcontroller for Embedded System”

 MIXDES, 323-328, 2011.

 [3]

LI Xiao-feng, Chen Long, Wang Shihu, “The Implementation of High-

speed FFT Processor based on FPGA”, IEEE, 978-1-4244-7956-6/10,

2010.

 [4]

AsmitaHaveliya, “Design and

Simulation of 32-Point FFT Using

Radix-2 Algorithm for FPGA Implementation”, IEEE, 978-0-7695-
4640-7/12, 2012.

 [5]

Luker, Jarrod D., Prasad, Vinod B, “RISC System Design I FPGA”,

MWSCAS 2001, vol. 2, pp 532-536, 2001.

 [6]

M. Vijaya Kumar, M. Vidhya, G. Sriramulu,

“Design and VLSI

Implementation of A Radix-4 64 –

Point FFT Processor”, IJRCCT,

ISSN 2278-5841, Vol 1, Issue 7, December 2012.

 [7]

Prof. Shao-Yi Chien, Information Theory and Coding Technique.

 [8]

Deepak Kumar, K. Anusudha, “RISC SYSTEM DESIGN IN XILINX”,

IJAREEIE, Vol .2, Issue 4, April 2013.

 [9]

SagarBhavsar, AkhilRao, AbhishekSen, Rohan Joshi, “A 16-bit MIPS

Based Instruction Set Architecture for RISC Processor”, IJSRP, Vol. 3,

Issue 4, April 2013.

 [10]

Anjana R, Krual Gandhi, “VHDL Implementation of a MIPS RISC

Processor”, IJARCSSE, Vol. 2, Issue 8, August 2012.

 [11]

http://www.recoresystems.com/products/montium-

reconfigurable-dsp-ip.
 [12]

Sneha N. Kherde, MeghanaHasamnis, “Efficient Design and

Implementation of FFT”, International Journal of Engineering Science

and Technology (IJEST), ISSN: 0975-5462 NCICT Special Issue Feb
2011.

 [13]

J. G. Proakis and D. G. Manolakis, “ Introduction to Digital Signal

Processing”, New York: Macmillan, 1988.

 [14]

R. Uma, VLSI Design, Sri Krishna Publication.

 [15]

Anuruddh Sharma, MujtiAwad,”A 16-BIT RISC PROCESSOR FOR

COMPUTER HARDWARE INTRODUCTION”, IRACST, ISSN:
2250-3498, Vol.2, No. 3, June 2012.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100076

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

39

