
Vehicle Routing Problem Solver

Sourabh Kulkarni

Department of Electrical and Computer Engineering

Stevens Institute of Technology

Hoboken, NJ, USA

Abstract— Vehicle Routing problem is a problem which most

of the postal service companies face every day. There are a

number of addresses to which deliveries have to be made in a day

and in a given amount of time. So, the main concern of the

company is to save on time as well as on fuel. Hence, I developed

an algorithm which can find the shortest path(s) out of the total

number of addresses the delivery van has to travel and display it

on google map using Google APIs in real-time. This algorithm

first extracts the details out of google maps and computes the

shortest path covering all the addresses and taking into account

the maximum weight a vehicle can carry and plots it on the google

map using libraries in python.

Keywords— Routing, Google APIs, Google Maps, Libraries,

Python.

I. INTRODUCTION

Vehicle Routing problem is often classified as the classic VRP.

Most of the postal service companies are generally hit by this

problem and there is hardly a proper solution to fix this

problem. The first algorithm invented to address this problem

was by Clark et al. [1] in 1997. We build our algorithm keeping

this as our base. For this, we need to have a good command

over python.

The first approach was the basic savings algorithm. It was

invented by Clark et. Al. [1]. The problem is to determine the

allocation of the customers among routes, the sequence in

which the customers shall be visited on a route, and which

vehicle that shall cover a route. The objective is to find a

solution which minimizes the total transportation costs.

The Second approach was the CVRP [2] approach. The

concept of this algorithm is to hybridize the CW with

tournament and roulette wheel selections to determine a new

and efficient algorithm. The objective is to find the feasible

solutions (or routes) to minimize travelling distances and

number of routes.

Ribas et. al. [3] proposed the Vehicle Routing Problem with

Time Windows is a particular case of the classical Vehicle

Routing Problem in which the demands of each customer

should be met within an established time window. Due to the

combinatorial complexity of the problem its resolution by pure

exact methods is, in many cases, computationally impractical.

This fact motivates the development of heuristic algorithms,

which are usually faster but do not guarantee the best solution

for the problem. This work proposes a hybrid algorithm that

combines the metaheuristic Iterated Local Search, the Variable

Neighborhood Descent procedure and an exact Set Partitioning

model. This is a high complexity algorithm.

We also need to look at the algorithm proposed by Gilbert

Laporte [4]. This algorithm follows three steps i.e : (i) direct

tree search methods; (ii) dynamic programming, and (iii)

integer linear programming. But by this algorithm, the

complexity increases.

Masum et. al. [5] proposed the complex combinatorial

optimization problem that belongs to the NP-complete class.

Due to the nature of the problem it is not possible to use exact

methods for large instances of the VRP. Genetic algorithms

provide a search technique used in computing to find true or

approximate solution to optimization and search problems.

However, we used some heuristic in addition during crossover

or mutation for tuning the system to obtain better result.

In this paper, we build upon the savings algorithm invented by

Clark and Wright. It is a simple approach and can be easily

implemented. The complexity of our algorithm is low and

hence we can compete this with the several existing algorithms

and obtain at par or more better results. Moreover, we also

provide this with a Google map interface and hence can be

used for navigation in the delivery van.

II. ALGORITHM

Our algorithm is the simple algorithm based upon the Clark

and wright’s Savings algorithm. We extract the Details from

google maps with the google API and use the extracted data to

get our distance matrix. From this matrix we calculate the

shortest path by applying the savings algorithm and then plot

this on the google maps.

For simplicity purpose, we did it on Linux. We need to install

all the necessary packages and libraries which will be in turn

needed to extracted data. The code also serves the purpose of

calculating the traffic on that path at a particular time of the

day.

The postal service company has number of addresses to cover

in a day. The first step is to put all these addresses in a file

which we will use as our database. Our code in python extracts

all the addresses from the file. Then by using the google API

key we extract all the required information eg. Distances

between all the addresses, time required by the vehicle

between all the addresses, traffic in the respective area etc.

This algorithm is a heuristic algorithm. This method does,

often yield a relatively good solution. That is, a solution which

deviates little from the optimal solution. We need to

understand the savings concept before proceeding. The basic

savings concept expresses the cost savings obtained by joining

two routes into one route as illustrated in figure 1, where point

0 represents the depot.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120216

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 226

In this figure, customers i and j are visited on separate routes.
An alternative solution to this is to visit the two customers on
the same route, for example in the sequence i-j as illustrated in
figure 1(b). Because the transportation costs are given, the
savings that result from driving the route in figure 1(b) instead
of the two routes in figure 1(a) can be calculated. Denoting the
transportation cost between two given points i and j by cij , the
total transportation cost Da in figure 1(a) is:

The transportation cost Db in figure 1(b) is:

By combining the two routes we can find the savings:

It is attractive with respect to cost if we have a relatively larger
value of Sij.

In our approach, we consider 5 customers. We will be using
cities instead of the exact address as the demonstration would
be easier. The following diagram represents the cities which
have to be covered.

 





  





The diagram represents the cities and the distance between each

on them. H is Hoboken, N is New York, NB is North Bergen, J

is Jersey City, S is Secaucus. We consider our depot to be at

Hoboken. We intend to first find the transportation cost

between all the 5 destinations. The transportation costs between

all pairs of points are shown in the following table, where 0

represents the depot (the costs are symmetric, and for that

reason only the upper half of the table is filled in)

Table I: Costs between all pair of points [1]

In this algorithm, we also assume that the vehicle has certain
maximum capacity. Assuming the capacity is 100 units. Now
we take into consideration, how much units of load each
customer wants to send.

 Customer Quantity

1 37

2 35

3 30

4 25

5 32

Table II: Quantity per Customer [1]

The savings value are calculated based on these values. We
only consider the upper triangular values of the matrix as the
matrix is symmetric.

Once we are done with calculating this, we have the pairs of
points. We then sort them in descending order. And from that
we find the shortest path(s). The type of algorithm used is the
sequential savings algorithm.

In the example customers 1 of 5 are considered first. They can
be assigned to the same route since their joint demand for 69
units does not exceed the vehicle capacity. Now we establish
the connection 1-5, and thereby points 1 and 5 will be neighbors
on a route in the final solution. Next, we consider customers 1
and 2. If customers 1 and 2 should be neighbors on a route, this
would require the customer sequence 2-1-5 or 5-1-2 on a route,
because we have established already that 1 and 5 must be
visited in immediate succession on the same route. The total
demand (104) on this route would exceed the vehicle capacity
(100).

Therefore, customers 1 and 2 are not connected. If points 2 and
4, which is the next pair in the list, were connected at this stage,
we would be building more than one route (1-5 and 2-4). Since
this algorithm is limited to making only one route at a time, we
disregard the point pair 2 and 4.

The combination of the next pair of points, 4 and 5, results in
the route 1-5-4 with a total demand of 94. This combination is
feasible, and we establish the connection between 4 and 5 as a
part of the solution. We can add no more points due to capacity
restriction. Hence the route formed is 0-1-5-4-0. The max load
on the vehicle is 98 and the other route which covers the
remaining addresses will be 0-2-3-0. The load will be 89.

Fig. 1. Savings Algorithm [1]

….(1)

….(2)

….(3)

Fig. 2. Algorithm Schema

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120216

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 227

III. EXPERIMENTAL RESULTS

I wrote a code in python and implemented the above written

algorithm. The code first extracts the details of the addresses

and the distances between them. Then it calculates the shortest

path by taking the savings and the cost into consideration.

The paths are displayed on the google maps. To do this we

need to first install gmplot library in python. This helps us to

open google maps in a new tab on the web browser and exports

your results to the maps. Hence the results are plotted and this

makes the driver of the vehicle, easy to navigate.

The yellow line represents the path for the above-mentioned
cities. We may also increase the number of addresses. It is easy
to find shortest route when the number of addresses are small
but when the number increases, there are a huge number of
permutations and combinations.

I tried it with more number of addresses.

Now we need to find out the path(s) keeping in mind, the cost

savings and demand.

I tried to display the paths on the Ubuntu terminal for a better
understanding. Though they can be directly displayed on
Google maps.

Fig. 3. Result for the above example

Table III: Calculated Savings

Fig. 4. Extracting the details from google maps By giving multiple

addresses as input

Fig. 5. Possible shortest paths

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120216

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 228

IV. CONCLUSION

From this we can conclude that we have been successful in

computing the shortest path for the given number of addresses.

This can reduce the complexity to a great extent. The future

scope is to implement this in form of an application on well-

known platforms like android and iOS so that it can be used in

real-time by Postal service companies. More over the

complexity of this algorithm is low and hence is easy to

implement.

V. ACKNOWLEDGEMENT

I would like to thank Professor Mukundan Iyenger from

Department of Electrical and Computer engineering at Stevens

Institute of Technology for his guidance and support.

VI. REFERENCES

[1] Clarke & Wright's Savings Algorithm Jens Lysgaard (translated by

Michael M. Sørensen) Department of Management Science and

Logistics The Aarhus School of Business Fuglesangs Allé 4 DK-8210
Aarhus V.

[2] Tantikorn Pichpibu and Ruengsak Kawtummachai, “An improved

Clarke and Wright savings algorithm for the capacitated vehicle routing
problem”

[3] Sabir RIBAS a , Anand SUBRAMANIAN a , Igor Machado COELHO

, Luiz Satoru OCHI a , Marcone Jamilson Freitas SOUZA “A hybrid
algorithm for the Vehicle Routing Problem with Time Windows”

[4] Gilbert Laporte, “The Vehicle Routing Problem: An overview of exact

and approximate algorithms“, Centre de Recherche sur les Transports,
Canada H3C 3J7 Universit~ de Montreal, C.P. 6128 Station A, Montreal,

[5] Abdul Kadar Muhammad Masum, Mohammad Shahjalal, Md. Faisal

Faruque, and Md. Iqbal Hasan Sarker4, “Solving the Vehicle Routing
Problem using Genetic Algorithm (IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 2, No. 7, 2011

Fig. 6. Final Result This is the final result which takes into account all the

possible paths which we have calculated and displays

them on the map for navigation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120216

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 229

