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Abstract  
 

Music Composition involves different steps like 

melody creation, adding variations, rhythm, basses, 

etc. Out of these, melody generation is the basis of 

the musical piece created. This paper discusses 

generating novel pieces of monophonic melodies 

using three different techniques, namely, Elman 

Recurrent Neural Networks, a hybrid approach of 

Genetic Algorithms with Neural Networks as fitness 

evaluator and Genetic Algorithms with fitness 

evaluation by musical rules. 

 

Keywords: Melody generation, Elman recurrent 

neural network, genetic algorithm, genetic algorithm 

with neural network as fitness evaluator. 

 

1. Introduction  

 
Music is a broad field in its own. Composing 

music is an art. It is a difficult task even for human 

beings. When a music composer manually writes 

music compositions, he has reason, the intention in 

his music, as well as his creativity. Automating the 

task of musical composition is an interesting 

application. Since composing music requires human 

intellect, the idea of using artificial intelligence to 

achieve the same task comes into being. 

The aim of this project is the generation of a new 

“musical idea” which is a sequence of musical notes 

forming a basis for composing music. The inputs to 

the system are various melodies of various genres in 

the Ringtone Text and Transfer Language (RTTTL) 

format [1].  

Two important areas in artificial intelligence have 

been used to achieve this task, namely, neural 

networks and genetic algorithms. There are three 

basic approaches that have been used. In the first 

approach, a neural network is trained to learn on the 

collected music samples. Several such trained neural 

networks are saved in the database. Later these 

networks are used in composition mode to create new 

melodies. In the second approach, one of the trained 

neural networks is picked up from the database and is 

used as a fitness evaluator in a genetic algorithm to 

generate new musical pieces similar to the ones 

learned by the neural network. The third method 

makes use of a genetic algorithm with musical rules 

as fitness evaluator. 

The type of neural network that is used is an 

Elman recurrent neural network [2]. Elman networks 

are partially recurrent neural networks with an 

additional layer apart from the input, output and 

hidden layers called the context layer. The number of 

neurons in the context layer is equal to the number of 

hidden layer neurons. The feedback connections are 

from the hidden layer to the context layer. Elman 

recurrent networks can be used to learn temporal 

patterns as they have some amount of memory 

associated with them. The standard back-propagation 

algorithm is used to train the network with some 

modification to suit the Elman network used. 

 

2. Background of Music Theory 
 

Music theory is the study of how music works. It 

examines the language and notation of music. A 

simple set of definitions for musical terms are 

discussed below. 

A melody is composed of an array of pitch - 

duration value pairs. A pitch comprises of two parts, 

the note and octave. Notes are depicted by seven 

letters of the English alphabet: A to G. A note, on its 

own, does not mean anything. When a note is 

combined with an octave, it becomes a pitch. An 

octave is the interval between one musical pitch and 

another with half or double its frequency. For e.g. 

A4-440 Hz and A5-880Hz are two pitches, one 

octave apart. An octave is an integer ranging from 0 
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to 8 on a piano keyboard. A complete musical note 

must also contain the duration value to be 

meaningful. The duration of a musical note is the 

length of time that a note is played. There are 

different durations which categorize notes as whole 

note, half note, quarter note, 8
th

 note, etc. The actual 

durations of notes are seen when the tempo value of 

the song is known, which gives how many 4
th 

(quarter) note durations are in a minute [3]. 

 

3. Literature Review 
 

Research that has been done so far in automating 

music has been discussed in the sections below. 

 

3.1.  Music Generation using Neural  

Networks 

 
The use of neural networks in music learning and 

composition has attracted researchers and many 

approaches have been developed.  

The neural network proposed by Todd had three 

layers (context, hidden and output), as well as a set of 

“plan” inputs. The plan units were held at a set value 

for the full sequence, and were used to indicate to the 

network which sequence was being trained. 

Consequently, the network was required to learn each 

training sequence with only the plan as a stimulus 

[4]. 

The CONCERT architecture suggested by Mozer 

consisted of four layers in a linear arrangement: a 

current note layer, a context layer, a next-note-

distributed (NND) layer, and a next-note-local (NNL) 

layer. The context layer used modifiable feedback 

weights, and, during composition, the output of the 

NNL layer was fed into the current note layer via a 

note selector. Since the network had modifiable 

backward connections, standard back-propagation 

could not be used for training; a method called back-

propagation through time was employed instead [5]. 

 

3.2. Genetic Algorithms for Music 

Generation  

 
Genetic algorithms in algorithmic composition 

have a short but interesting history, largely lying in 

the school of style replication. John A. Biles utilized 

genetic algorithms to generate jazz solos [6]. 

In [7], a genetic algorithm for making music 

compositions is presented. Position based 

representation of rhythm and relative representation 

of pitches, based on measuring relation from starting 

pitch, allow for a flexible and robust way for 

encoding music compositions. This approach 

includes a pre-defined rhythm applied to initial 

population, giving good starting solutions. Modified 

genetic operators enable significantly changing 

scheduling of pitches and breaks, which can restore 

good genetic material and prevent from premature 

convergence in bad suboptimal solutions. Beside 

main principles of the algorithm and methodology of 

development, in this paper, some solutions are 

presented in the musical score.  

 

3.3. Music using a combination of Neural 

Networks and Genetic Algorithms  

 
The combination of GAs and neural networks is a 

powerful tool for composing music. A hybrid method 

that adopts BP neural network for evaluation of 

emotions in music and genetic algorithm as an 

appropriate method for nominating creativity is 

presented in [8].  

A music generation system using evolutionary 

algorithms and recurrent neural networks as the 

fitness evaluator is developed. The music generation 

process is fully automatic and requires no human 

interaction during the evolution phase [9].  

 

4. Design 
 

The design of the project, i.e. basically, the kind 

of data, the neural network architecture, chromosome 

structure, the genetic operators and the musical rules 

used in the genetic algorithm are discussed in the 

following sections. 

 

4.1. Data Description 
 

The input data to be processed is in the Ring Tone 

Text and Transfer Language (RTTTL). RTTTL was 

developed by Nokia to be used to transfer ringtones 

to cell-phone by Nokia. The RTTTL format is a 

string divided into three sections: name, default 

value, and data. The name section consists of a string 

describing the name of the ringtone. It can be no 

longer than 10 characters, and cannot contain a colon 

":" character. The default value section is a set of 

values separated by commas, where each value 

contains a key and a value separated by an = 

character, which describes certain defaults which 

should be adhered to during the execution of the 

ringtone. Possible names are 

d - duration 

o - octave 

b - beat, tempo 

The data section consists of a set of character 

strings separated by commas, where each string 
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contains a duration, note, octave and optional dotting 

(which increases the duration of the note by one 

half).  

 

Barbiegirl:d=4,o=5,b=125:8g#,8e,8g#,8c6,a,p,8f#, 
8d#,8f#,8b,g#,8f#,8e,p,8e,8c#,f#,c#,p,8f#,8e,g#,f#  
 

Figure 1. A melody in the Rtttl format 

 

As an example, consider the melody in Figure 1. The 

name of the melody is Barbiegirl, followed by the 

default section which tells that the default duration of 

the melody is 4(quarter note), the default octave is 5 

and the tempo of the melody is 125 beats/minute. 

Following the default section is the data section, 

which is the sequence of musical notes of the 

melody. The default values are used to fill in the 

missing values in the data section. For example, 

consider the first note in the melody, i.e., 8g#. It 

means that the duration of the note is 8(8
th

 note), and 

the note itself is g#, but there is no value for octave, 

so the octave in this note, comes from the default 

section, i.e. 5. So, this musical note is 8g#5. 

Similarly, the default duration can also be used if it is 

missing in a musical note in the data section [1]. 

A database of melodies in the RTTL format has 

been created using three different genres, namely, 

pop (10 melodies), hip-hop (10 melodies) and R&B 

(10 melodies). 

 

4.2. Input Pre-processing 

 
To be able to train the neural network with the 

melodies, they need to be converted to a format 

which the neural network would understand. Each 

input training vector to the network identifies the 

duration, note and octave of the current musical note. 

So, for that purpose, the input should be first 

converted into a sequence of musical notes of this 

form.  

After each musical note appears in the required 

form, the next step in this stage is to separate each 

musical note into duration, note and octave. For 

example, consider the musical note 16d#5.After 

separating, duration=16, note=d#, octave=5.This 

must be done for every musical note in the melody 

sequence. 

 

 

 

 

 

 

 

 

4.3. Neural Network Architecture 
 

The neural network used for the project is an 

Elman recurrent neural network in Fig. 2, with one 

input layer consisting of 25 units, a hidden layer with 

variable units, a context layer comprising of the same 

number of units in the hidden layer to which output 

from the hidden layer of the previous time step is fed, 

and an output layer consisting of 25 units. 

 
Figure 2. Elman Neural Network Architecture 

 

The inputs to the network are duration, note and 

octave of the current time step and the target outputs 

are the duration, note and octave of the next musical 

note in the melody sequence. So, at each step, the 

neural network tries to predict the next musical note 

in sequence. 

The input layer is linear. So, the input vector 

designed was binary of size 25 × 1. 

The possible no. of durations are 7, the no. of notes 

are 13 including rest note and there are 4 octaves 

possible, which sums up to 24. To take into account 

the dotted notes, an additional bit is used. 

The first 7 bits represent the duration, next 13 bits the 

note, the next 4 bits the octave and, the last bit is for 

representing the dotted note. 

A “1” means that particular note is active at the 

current time step, otherwise the bit for the same is set 

to a “0”. 
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4.4. Chromosome Structure 

 
 

Figure 3. Chromosome structure 

 
Each individual consists of a chromosome and an 

associated fitness value. The structure of the 

chromosome for this project is shown in Figure 3 [9]. 

Each chromosome is an individual melody. The 

chromosome consists of several genes. Each gene is a 

musical note which further comprises of three parts, 

duration, note and octave. 

Considering the melody of Fig. 1, the first 

musical note of the melody is 8g#5, which translates 

into the first gene as duration=8, note=g# and 

octave=5, the next note is 8e5 which translates into 

the first gene as duration=8, note=e and octave=5, as 

per Figure 3. 

 

4.5.  Genetic operators used 

 
In the GA, at the end of a generation, the genetic 

operators namely, selection, mutation and crossover, 

work on a set of individuals forming the population. 

Roulette wheel section was used as the selection 

operator. In this scheme, the fitness level of a 

chromosome is used to associate a probability of 

selection with each individual chromosome. If 𝑓𝑖   is 
the fitness of individual „i’ in the population, its 

probability of being selected is  𝑝𝑖 =  
𝑓𝑖

 𝑓𝑗
𝑁
𝑗=1

 , where 

N is the number of individuals in the population.  

Swap, scramble, inversion and replace were the 

mutation operators used [9]. The swap mutation is 

used to swap two randomly chosen musical genes. 

Scramble operator shuffles the genes between 2 

randomly chosen points. Inversion operator inverts a 

chromosome between chosen points. Replace is used 

to replace a randomly selected gene with a new, 

randomly generated gene.  

The operators used for crossover were one-point, 

two-point and uniform crossover [9]. One point 

crossover selects a random point, slices two different 

genomes around this point, and creates children 

genomes with those slices. Two point crossover does 

the same thing by selecting two random points. 

Uniform crossover does not limit the number of slice 

points, distributing all genes from the parents to the 

offspring uniformly randomly. 

Further, the crossover probability was set to 0.7 

and the mutation probability was set to 0.1. These 

operators were then used according to the above 

mentioned probabilities. 

 

4.5. Musical Rules in the genetic algorithm 
  

 The musical rules approach is a basic set of rules 

that a composer must follow for making good 

melodies. These were formed after discussions with 

several musicologists. They are listed below. 

 

1) Scale Rule 

 This rule calculates if a given melody adheres to a 

specific scale, for example C major (C D E F G A B). 

The scale can be chosen by the user. 

2)  Adjacent Notes Rule 

 It calculates and verifies whether the difference 

between most adjacent notes (around 70%) is not 

more than a step and whether leaps are limited to less 

than 4 semitones. 

3)  Proportion between Rests and Notes 

 It finds the proportion between the notes and rests 

in a given melody. The proportion of notes/rests is set 

as a parameter. 

4) Repeating Notes Rule 

 If a given melody has repeating notes or rests, it 

must be observed that it does not exceed a threshold, 

lest the melody may sound repetitive and boring. The 

maximum number of repeating notes and/or rests can 

be set as parameters.  

5)  Global Pitch Distribution Rule  

 This rule validates if the lowest and highest pitch 

of a given melody fall within the margins specified. 

The margin is indicated as the number of semitones.  

 

5. Algorithms Used 

 
Various algorithms which are used as part of the 

project implementation are discussed below. 

 

5.1 . Steps in Input Pre-processing 

 
This is the first step in the implementation. 

Input 

Melodies in the rtttl format. 

Output 

Melodies in the form of array of duration, note, 

octave triplets  
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Algorithm 

For each melody in the training set 

Do 

1. Extract the musical notes sequence from the rtttl 

format. 

2. Split the sequence into individual musical notes 

3. Separate each musical note into duration, note 

and octave form. 

End. 

 

5.2. Algorithm for Training the Recurrent 

Neural Network 

 
The following standard back-propagation 

algorithm was used to train the neural network. 

Input 

Melodies in the form of array of duration, note, 

octave triplets  

Output 

Trained Neural Network with Final Weights and 

Emax 

Algorithm 

1. Initialize the weights in the network (small 

random values) 

2. Do 

For each example e in the training set 

a. Compute O = neural-network-output 

(network, e)   //forward pass 

b. Copy hidden layer output to context layer 

c. Compute error (T - O) at the output units 

[T = teacher output for e] 

d. Compute delta_wh for all weights from 

hidden layer to output layer // backward 

pass 

e. Compute delta_wi for all weights from 

input layer to hidden layer // backward 

pass continued 

f. Update the weights in the network 

   Until stopping criterion satisfied 

3. Return the network [10]. 

 

5.3.  Genetic Algorithm using Elman Neural 

Network as Fitness Evaluator 

 
The genetic algorithm combining a neural 

network as applicable to the project has been 

discussed below. 

Input 

Trained Neural Network with Final Weights and 

Emax 

Output 

Composed melody as MIDI file 

 

 

Algorithm 

1. The initial population of melodies is created in 

multiples of 2 for practical reasons, which is 

created using a random sequence of musical 

elements. 

2. Generate the chromosomes to form the current 

population of the current generation. 

3. Evaluate the fitness of the various chromosomes 

using a trained RNN. Each value pair is given to 

the NN as input value, and the consequent pair is 

used to compare to the output value and the 

difference is calculated. The differences for all 

pairs are accumulated to obtain a final error 

value, which is used to calculate the fitness value 

of the individual. 

Mathematically, it is given by,  

𝑓𝑗 = (

𝑚

𝑖=1

𝑡𝑖 − 𝑎𝑖)   ; 𝑗 = 1,2,… ,𝑛 

Where m is the total number of value pairs, ti is 

the target value i.e. the next consecutive value 

pair and ai is the actual value and n is the number 

of individuals. 

4. If any chromosome is fit enough, stop here and 

output the chromosome as the melody of the 

current generation else goto Step 5. 

Here, compare each fj computed earlier with the 

desired minimum fitness value Fmin.  

 If fj < Fmin, save fitness value and the 

corresponding individual. 

Output melodies for all such saved fitnesses and 

stop the Genetic Algorithm. 

5. Perform Selection using roulette wheel selection. 

6. Perform Mutation and Crossover. 

7. Goto Step 2.  

 

5.4. Genetic Algorithm using Musical Rules 

as Fitness Evaluator 

 
In this variant, the genetic algorithm uses musical 

rules from music theory as a fitness function. 

Input 

Melodies with random musical notes sequence  

Output 

Composed melody as MIDI file 

Algorithm 

The genetic algorithm for melodies uses simple 

musical rules from music theory. The fitness function 

is composed of checking the validity of these rules as 

to how the initial melodies differ from the ideal ones. 

1. Create initial population of melodies. The initial 

population is created using a random sequence of 

musical elements. 

2. Generate the chromosomes to form the current 

population of the current generation. 
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3. Evaluate the fitness of the various chromosomes 

using musical rules. All rules calculate the 

deviation between the generated melody and the 

specified rules. A lower fitness value means less 

deviation which means a better melody.  

𝑓𝑗 = 𝑒𝑟𝑟𝑜𝑟𝐶𝑜𝑢𝑛𝑡𝑖

𝑚

𝑖=1

  ; 𝑗 = 1,2,… ,𝑛 

Where m is the number of musical rules and n is 

the number of individual chromosomes. 

4. If any chromosome is fit enough, stop here and 

output the chromosome as the melody of the 

current generation else goto 5. 

a. Compare each fj computed earlier with the 

desired minimum fitness value Fmin.  

b. If fj < Fmin, save fitness value and the 

corresponding individual. 

c. Output melodies for all such saved 

fitnesses and stop the Genetic Algorithm. 

5. Perform Selection using roulette wheel selection. 

6. Perform Mutation and Crossover. 

7. Goto Step 2.  

 

6. Results and Discussion 
 

The results obtained as part of the project have 

been discussed including the neural network training, 

genetic algorithm using neural network as fitness 

evaluator and a genetic algorithm using musical rules 

as fitness function. 

 

6.1. Neural Network Training Results 
 

An adaptive learning constant was used for 

training whose values were varied between 0.01 and 

1.0. Hidden layer neurons were kept variable. First, 

training was performed on a single melody chosen 

from the database of each genre. Next, training was 

performed, taking 10 melodies from each genre. The 

trained neural networks were then saved to the 

database. After the training, these trained networks 

were picked up from the database one by one, and 

were run in composition mode [11] by feeding the 

current output as input for the next time step. Thus, 

based on the learned training set, a new melody was 

composed each time by the neural network. A 

summary of the results have been shown in Table 1. 

 

 

 

 

 

 

Table 1. Summary of Neural Network Training 

Results with Emax = 0.01 and hidden neurons = 

90 

 

Genre No. of 

Songs 

No. of 

Steps 

Accuracy 

Pop 1 910 100% 

Pop 10 505000 88% 

Hip-Hop 1 1270 100% 

Hip-Hop 10 399400 90% 

R&B 1 1010 100% 

R&B 10 78000 94% 

 
Accuracy of prediction was measured according to 

the formula given below: 

                           

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜 .𝑜𝑓  𝑛𝑜𝑡𝑒𝑠  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙  𝑛𝑜 .𝑜𝑓  𝑛𝑜𝑡𝑒𝑠
 ×  100 

 

6.2. Results of Genetic Algorithm with 

Neural Network 

 
While the first generations produce completely 

random series, more “music aware” results are 

obtained in the next steps throughout the evolution 

process. A summary of the GA evolution results is 

given in Table 2. 

 

Table 2. Summary of Genetic Algorithm (using 

NN) results with population size 50 and stopping 

fitness Fmin= 0.09 

 

Genre No. of 

Generations 

Running Time 

(seconds) 

Pop 5754 5560 

Hip-Hop 785 3321 

R&B 264 1458 

 

6.3. Results of Genetic Algorithm using 

Musical Rules 
 

The simple GA with musical rules produced 

melodies with minor glitches. It was observed that 

with increasing population size, the GA converged 

faster. The results are summarized in Table 3. 
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Table 3. Summary of Genetic Algorithm (using 

musical rules) results with stopping fitness 

Fmin=0 

Population 

Size 

No. of 

Generations 

Running Time 

(seconds) 

10 5940 68 

50 1044 63 

100 173 19 

 

7. Conclusion and Further Work 
 

The melodies generated from Elman neural 

network, when run in the composition mode, were 

pleasant to hear. However, the training time was, 

typically, a few hours. 

The genetic algorithm used each of these trained 

networks as fitness evaluators to generate melodies. 

It generated melodies with a few minor glitches. The 

running time was in minutes, but this approach 

assumes that there are trained neural networks 

available. 

The algorithmic musical composition using 

genetic algorithm produced melodies in quick time 

(typically, few seconds to a few minutes), and these 

melodies were pleasant. The only musical knowledge 

imparted was the set of musical rules. The melodies 

were simple, yet pleasant. Perhaps, adding a few 

more musical rules would structure melodies more 

appropriately. 

As future work, this idea can be extended to 

generating polyphonic melodies which have more 

variations and sound like a more complete musical 

piece. 
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