
Various Artificial Intelligence Techniques For Automated Melody Generation

Nikahat Kazi

Computer Engineering Department,

Thadomal Shahani Engineering College, Mumbai, India

Shalini Bhatia

Assistant Professor, Computer Engineering Department,

Thadomal Shahani Engineering College, Mumbai, India

Abstract

Music Composition involves different steps like

melody creation, adding variations, rhythm, basses,

etc. Out of these, melody generation is the basis of

the musical piece created. This paper discusses

generating novel pieces of monophonic melodies

using three different techniques, namely, Elman

Recurrent Neural Networks, a hybrid approach of

Genetic Algorithms with Neural Networks as fitness

evaluator and Genetic Algorithms with fitness

evaluation by musical rules.

Keywords: Melody generation, Elman recurrent

neural network, genetic algorithm, genetic algorithm

with neural network as fitness evaluator.

1. Introduction

Music is a broad field in its own. Composing

music is an art. It is a difficult task even for human

beings. When a music composer manually writes

music compositions, he has reason, the intention in

his music, as well as his creativity. Automating the

task of musical composition is an interesting

application. Since composing music requires human

intellect, the idea of using artificial intelligence to

achieve the same task comes into being.

The aim of this project is the generation of a new

“musical idea” which is a sequence of musical notes

forming a basis for composing music. The inputs to

the system are various melodies of various genres in

the Ringtone Text and Transfer Language (RTTTL)

format [1].

Two important areas in artificial intelligence have

been used to achieve this task, namely, neural

networks and genetic algorithms. There are three

basic approaches that have been used. In the first

approach, a neural network is trained to learn on the

collected music samples. Several such trained neural

networks are saved in the database. Later these

networks are used in composition mode to create new

melodies. In the second approach, one of the trained

neural networks is picked up from the database and is

used as a fitness evaluator in a genetic algorithm to

generate new musical pieces similar to the ones

learned by the neural network. The third method

makes use of a genetic algorithm with musical rules

as fitness evaluator.

The type of neural network that is used is an

Elman recurrent neural network [2]. Elman networks

are partially recurrent neural networks with an

additional layer apart from the input, output and

hidden layers called the context layer. The number of

neurons in the context layer is equal to the number of

hidden layer neurons. The feedback connections are

from the hidden layer to the context layer. Elman

recurrent networks can be used to learn temporal

patterns as they have some amount of memory

associated with them. The standard back-propagation

algorithm is used to train the network with some

modification to suit the Elman network used.

2. Background of Music Theory

Music theory is the study of how music works. It

examines the language and notation of music. A

simple set of definitions for musical terms are

discussed below.

A melody is composed of an array of pitch -

duration value pairs. A pitch comprises of two parts,

the note and octave. Notes are depicted by seven

letters of the English alphabet: A to G. A note, on its

own, does not mean anything. When a note is

combined with an octave, it becomes a pitch. An

octave is the interval between one musical pitch and

another with half or double its frequency. For e.g.

A4-440 Hz and A5-880Hz are two pitches, one

octave apart. An octave is an integer ranging from 0

1646

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70744

to 8 on a piano keyboard. A complete musical note

must also contain the duration value to be

meaningful. The duration of a musical note is the

length of time that a note is played. There are

different durations which categorize notes as whole

note, half note, quarter note, 8
th

 note, etc. The actual

durations of notes are seen when the tempo value of

the song is known, which gives how many 4
th

(quarter) note durations are in a minute [3].

3. Literature Review

Research that has been done so far in automating

music has been discussed in the sections below.

3.1. Music Generation using Neural

Networks

The use of neural networks in music learning and

composition has attracted researchers and many

approaches have been developed.

The neural network proposed by Todd had three

layers (context, hidden and output), as well as a set of

“plan” inputs. The plan units were held at a set value

for the full sequence, and were used to indicate to the

network which sequence was being trained.

Consequently, the network was required to learn each

training sequence with only the plan as a stimulus

[4].

The CONCERT architecture suggested by Mozer

consisted of four layers in a linear arrangement: a

current note layer, a context layer, a next-note-

distributed (NND) layer, and a next-note-local (NNL)

layer. The context layer used modifiable feedback

weights, and, during composition, the output of the

NNL layer was fed into the current note layer via a

note selector. Since the network had modifiable

backward connections, standard back-propagation

could not be used for training; a method called back-

propagation through time was employed instead [5].

3.2. Genetic Algorithms for Music

Generation

Genetic algorithms in algorithmic composition

have a short but interesting history, largely lying in

the school of style replication. John A. Biles utilized

genetic algorithms to generate jazz solos [6].

In [7], a genetic algorithm for making music

compositions is presented. Position based

representation of rhythm and relative representation

of pitches, based on measuring relation from starting

pitch, allow for a flexible and robust way for

encoding music compositions. This approach

includes a pre-defined rhythm applied to initial

population, giving good starting solutions. Modified

genetic operators enable significantly changing

scheduling of pitches and breaks, which can restore

good genetic material and prevent from premature

convergence in bad suboptimal solutions. Beside

main principles of the algorithm and methodology of

development, in this paper, some solutions are

presented in the musical score.

3.3. Music using a combination of Neural

Networks and Genetic Algorithms

The combination of GAs and neural networks is a

powerful tool for composing music. A hybrid method

that adopts BP neural network for evaluation of

emotions in music and genetic algorithm as an

appropriate method for nominating creativity is

presented in [8].

A music generation system using evolutionary

algorithms and recurrent neural networks as the

fitness evaluator is developed. The music generation

process is fully automatic and requires no human

interaction during the evolution phase [9].

4. Design

The design of the project, i.e. basically, the kind

of data, the neural network architecture, chromosome

structure, the genetic operators and the musical rules

used in the genetic algorithm are discussed in the

following sections.

4.1. Data Description

The input data to be processed is in the Ring Tone

Text and Transfer Language (RTTTL). RTTTL was

developed by Nokia to be used to transfer ringtones

to cell-phone by Nokia. The RTTTL format is a

string divided into three sections: name, default

value, and data. The name section consists of a string

describing the name of the ringtone. It can be no

longer than 10 characters, and cannot contain a colon

":" character. The default value section is a set of

values separated by commas, where each value

contains a key and a value separated by an =

character, which describes certain defaults which

should be adhered to during the execution of the

ringtone. Possible names are

d - duration

o - octave

b - beat, tempo

The data section consists of a set of character

strings separated by commas, where each string

1647

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70744

contains a duration, note, octave and optional dotting

(which increases the duration of the note by one

half).

Barbiegirl:d=4,o=5,b=125:8g#,8e,8g#,8c6,a,p,8f#,
8d#,8f#,8b,g#,8f#,8e,p,8e,8c#,f#,c#,p,8f#,8e,g#,f#

Figure 1. A melody in the Rtttl format

As an example, consider the melody in Figure 1. The

name of the melody is Barbiegirl, followed by the

default section which tells that the default duration of

the melody is 4(quarter note), the default octave is 5

and the tempo of the melody is 125 beats/minute.

Following the default section is the data section,

which is the sequence of musical notes of the

melody. The default values are used to fill in the

missing values in the data section. For example,

consider the first note in the melody, i.e., 8g#. It

means that the duration of the note is 8(8
th

 note), and

the note itself is g#, but there is no value for octave,

so the octave in this note, comes from the default

section, i.e. 5. So, this musical note is 8g#5.

Similarly, the default duration can also be used if it is

missing in a musical note in the data section [1].

A database of melodies in the RTTL format has

been created using three different genres, namely,

pop (10 melodies), hip-hop (10 melodies) and R&B

(10 melodies).

4.2. Input Pre-processing

To be able to train the neural network with the

melodies, they need to be converted to a format

which the neural network would understand. Each

input training vector to the network identifies the

duration, note and octave of the current musical note.

So, for that purpose, the input should be first

converted into a sequence of musical notes of this

form.

After each musical note appears in the required

form, the next step in this stage is to separate each

musical note into duration, note and octave. For

example, consider the musical note 16d#5.After

separating, duration=16, note=d#, octave=5.This

must be done for every musical note in the melody

sequence.

4.3. Neural Network Architecture

The neural network used for the project is an

Elman recurrent neural network in Fig. 2, with one

input layer consisting of 25 units, a hidden layer with

variable units, a context layer comprising of the same

number of units in the hidden layer to which output

from the hidden layer of the previous time step is fed,

and an output layer consisting of 25 units.

Figure 2. Elman Neural Network Architecture

The inputs to the network are duration, note and

octave of the current time step and the target outputs

are the duration, note and octave of the next musical

note in the melody sequence. So, at each step, the

neural network tries to predict the next musical note

in sequence.

The input layer is linear. So, the input vector

designed was binary of size 25 × 1.

The possible no. of durations are 7, the no. of notes

are 13 including rest note and there are 4 octaves

possible, which sums up to 24. To take into account

the dotted notes, an additional bit is used.

The first 7 bits represent the duration, next 13 bits the

note, the next 4 bits the octave and, the last bit is for

representing the dotted note.

A “1” means that particular note is active at the

current time step, otherwise the bit for the same is set

to a “0”.

1648

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70744

4.4. Chromosome Structure

Figure 3. Chromosome structure

Each individual consists of a chromosome and an

associated fitness value. The structure of the

chromosome for this project is shown in Figure 3 [9].

Each chromosome is an individual melody. The

chromosome consists of several genes. Each gene is a

musical note which further comprises of three parts,

duration, note and octave.

Considering the melody of Fig. 1, the first

musical note of the melody is 8g#5, which translates

into the first gene as duration=8, note=g# and

octave=5, the next note is 8e5 which translates into

the first gene as duration=8, note=e and octave=5, as

per Figure 3.

4.5. Genetic operators used

In the GA, at the end of a generation, the genetic

operators namely, selection, mutation and crossover,

work on a set of individuals forming the population.

Roulette wheel section was used as the selection

operator. In this scheme, the fitness level of a

chromosome is used to associate a probability of

selection with each individual chromosome. If 𝑓𝑖 is
the fitness of individual „i’ in the population, its

probability of being selected is 𝑝𝑖 =
𝑓𝑖

 𝑓𝑗
𝑁
𝑗=1

 , where

N is the number of individuals in the population.

Swap, scramble, inversion and replace were the

mutation operators used [9]. The swap mutation is

used to swap two randomly chosen musical genes.

Scramble operator shuffles the genes between 2

randomly chosen points. Inversion operator inverts a

chromosome between chosen points. Replace is used

to replace a randomly selected gene with a new,

randomly generated gene.

The operators used for crossover were one-point,

two-point and uniform crossover [9]. One point

crossover selects a random point, slices two different

genomes around this point, and creates children

genomes with those slices. Two point crossover does

the same thing by selecting two random points.

Uniform crossover does not limit the number of slice

points, distributing all genes from the parents to the

offspring uniformly randomly.

Further, the crossover probability was set to 0.7

and the mutation probability was set to 0.1. These

operators were then used according to the above

mentioned probabilities.

4.5. Musical Rules in the genetic algorithm

 The musical rules approach is a basic set of rules

that a composer must follow for making good

melodies. These were formed after discussions with

several musicologists. They are listed below.

1) Scale Rule

 This rule calculates if a given melody adheres to a

specific scale, for example C major (C D E F G A B).

The scale can be chosen by the user.

2) Adjacent Notes Rule

 It calculates and verifies whether the difference

between most adjacent notes (around 70%) is not

more than a step and whether leaps are limited to less

than 4 semitones.

3) Proportion between Rests and Notes

 It finds the proportion between the notes and rests

in a given melody. The proportion of notes/rests is set

as a parameter.

4) Repeating Notes Rule

 If a given melody has repeating notes or rests, it

must be observed that it does not exceed a threshold,

lest the melody may sound repetitive and boring. The

maximum number of repeating notes and/or rests can

be set as parameters.

5) Global Pitch Distribution Rule

 This rule validates if the lowest and highest pitch

of a given melody fall within the margins specified.

The margin is indicated as the number of semitones.

5. Algorithms Used

Various algorithms which are used as part of the

project implementation are discussed below.

5.1 . Steps in Input Pre-processing

This is the first step in the implementation.

Input

Melodies in the rtttl format.

Output

Melodies in the form of array of duration, note,

octave triplets

1649

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70744

Algorithm

For each melody in the training set

Do

1. Extract the musical notes sequence from the rtttl

format.

2. Split the sequence into individual musical notes

3. Separate each musical note into duration, note

and octave form.

End.

5.2. Algorithm for Training the Recurrent

Neural Network

The following standard back-propagation

algorithm was used to train the neural network.

Input

Melodies in the form of array of duration, note,

octave triplets

Output

Trained Neural Network with Final Weights and

Emax

Algorithm

1. Initialize the weights in the network (small

random values)

2. Do

For each example e in the training set

a. Compute O = neural-network-output

(network, e) //forward pass

b. Copy hidden layer output to context layer

c. Compute error (T - O) at the output units

[T = teacher output for e]

d. Compute delta_wh for all weights from

hidden layer to output layer // backward

pass

e. Compute delta_wi for all weights from

input layer to hidden layer // backward

pass continued

f. Update the weights in the network

 Until stopping criterion satisfied

3. Return the network [10].

5.3. Genetic Algorithm using Elman Neural

Network as Fitness Evaluator

The genetic algorithm combining a neural

network as applicable to the project has been

discussed below.

Input

Trained Neural Network with Final Weights and

Emax

Output

Composed melody as MIDI file

Algorithm

1. The initial population of melodies is created in

multiples of 2 for practical reasons, which is

created using a random sequence of musical

elements.

2. Generate the chromosomes to form the current

population of the current generation.

3. Evaluate the fitness of the various chromosomes

using a trained RNN. Each value pair is given to

the NN as input value, and the consequent pair is

used to compare to the output value and the

difference is calculated. The differences for all

pairs are accumulated to obtain a final error

value, which is used to calculate the fitness value

of the individual.

Mathematically, it is given by,

𝑓𝑗 = (

𝑚

𝑖=1

𝑡𝑖 − 𝑎𝑖) ; 𝑗 = 1,2,… ,𝑛

Where m is the total number of value pairs, ti is

the target value i.e. the next consecutive value

pair and ai is the actual value and n is the number

of individuals.

4. If any chromosome is fit enough, stop here and

output the chromosome as the melody of the

current generation else goto Step 5.

Here, compare each fj computed earlier with the

desired minimum fitness value Fmin.

 If fj < Fmin, save fitness value and the

corresponding individual.

Output melodies for all such saved fitnesses and

stop the Genetic Algorithm.

5. Perform Selection using roulette wheel selection.

6. Perform Mutation and Crossover.

7. Goto Step 2.

5.4. Genetic Algorithm using Musical Rules

as Fitness Evaluator

In this variant, the genetic algorithm uses musical

rules from music theory as a fitness function.

Input

Melodies with random musical notes sequence

Output

Composed melody as MIDI file

Algorithm

The genetic algorithm for melodies uses simple

musical rules from music theory. The fitness function

is composed of checking the validity of these rules as

to how the initial melodies differ from the ideal ones.

1. Create initial population of melodies. The initial

population is created using a random sequence of

musical elements.

2. Generate the chromosomes to form the current

population of the current generation.

1650

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70744

3. Evaluate the fitness of the various chromosomes

using musical rules. All rules calculate the

deviation between the generated melody and the

specified rules. A lower fitness value means less

deviation which means a better melody.

𝑓𝑗 = 𝑒𝑟𝑟𝑜𝑟𝐶𝑜𝑢𝑛𝑡𝑖

𝑚

𝑖=1

 ; 𝑗 = 1,2,… ,𝑛

Where m is the number of musical rules and n is

the number of individual chromosomes.

4. If any chromosome is fit enough, stop here and

output the chromosome as the melody of the

current generation else goto 5.

a. Compare each fj computed earlier with the

desired minimum fitness value Fmin.

b. If fj < Fmin, save fitness value and the

corresponding individual.

c. Output melodies for all such saved

fitnesses and stop the Genetic Algorithm.

5. Perform Selection using roulette wheel selection.

6. Perform Mutation and Crossover.

7. Goto Step 2.

6. Results and Discussion

The results obtained as part of the project have

been discussed including the neural network training,

genetic algorithm using neural network as fitness

evaluator and a genetic algorithm using musical rules

as fitness function.

6.1. Neural Network Training Results

An adaptive learning constant was used for

training whose values were varied between 0.01 and

1.0. Hidden layer neurons were kept variable. First,

training was performed on a single melody chosen

from the database of each genre. Next, training was

performed, taking 10 melodies from each genre. The

trained neural networks were then saved to the

database. After the training, these trained networks

were picked up from the database one by one, and

were run in composition mode [11] by feeding the

current output as input for the next time step. Thus,

based on the learned training set, a new melody was

composed each time by the neural network. A

summary of the results have been shown in Table 1.

Table 1. Summary of Neural Network Training

Results with Emax = 0.01 and hidden neurons =

90

Genre No. of

Songs

No. of

Steps

Accuracy

Pop 1 910 100%

Pop 10 505000 88%

Hip-Hop 1 1270 100%

Hip-Hop 10 399400 90%

R&B 1 1010 100%

R&B 10 78000 94%

Accuracy of prediction was measured according to

the formula given below:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜 .𝑜𝑓 𝑛𝑜𝑡𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 .𝑜𝑓 𝑛𝑜𝑡𝑒𝑠
 × 100

6.2. Results of Genetic Algorithm with

Neural Network

While the first generations produce completely

random series, more “music aware” results are

obtained in the next steps throughout the evolution

process. A summary of the GA evolution results is

given in Table 2.

Table 2. Summary of Genetic Algorithm (using

NN) results with population size 50 and stopping

fitness Fmin= 0.09

Genre No. of

Generations

Running Time

(seconds)

Pop 5754 5560

Hip-Hop 785 3321

R&B 264 1458

6.3. Results of Genetic Algorithm using

Musical Rules

The simple GA with musical rules produced

melodies with minor glitches. It was observed that

with increasing population size, the GA converged

faster. The results are summarized in Table 3.

1651

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70744

Table 3. Summary of Genetic Algorithm (using

musical rules) results with stopping fitness

Fmin=0

Population

Size

No. of

Generations

Running Time

(seconds)

10 5940 68

50 1044 63

100 173 19

7. Conclusion and Further Work

The melodies generated from Elman neural

network, when run in the composition mode, were

pleasant to hear. However, the training time was,

typically, a few hours.

The genetic algorithm used each of these trained

networks as fitness evaluators to generate melodies.

It generated melodies with a few minor glitches. The

running time was in minutes, but this approach

assumes that there are trained neural networks

available.

The algorithmic musical composition using

genetic algorithm produced melodies in quick time

(typically, few seconds to a few minutes), and these

melodies were pleasant. The only musical knowledge

imparted was the set of musical rules. The melodies

were simple, yet pleasant. Perhaps, adding a few

more musical rules would structure melodies more

appropriately.

As future work, this idea can be extended to

generating polyphonic melodies which have more

variations and sound like a more complete musical

piece.

References

[1] RTTTL Format [Online]. Available:

http://www.srtware.com/index.php?/ringtones/rtttlfor

mat.php

[2] Jeffrey L. Elman, “Finding Structure in Time”,

Cognitive Science: Vol.14, pp 179-211, 1990.

[3] Ricci Adams‟ musictheory.net [Online]. Available:

http://www.musictheory.net /lessons

[4] Todd, P. M. A. “Connectionist Approach to

Algorithmic Composition.” Computer Music Journal:

Vol.13, No. 4, 1989.

[5] Mozer, M. C., “Neural Network Music Composition

by Prediction: Exploring the benefits of

psychoacoustic constraints and multi-scale

processing.” Connection Science, 6(2-3), pp. 247 –

280, 1994.

[6] Biles, J.A., “GenJam: A genetic algorithm for

generating jazz solos”, In ICMC Proceedings 1994,

The Computer Music Association, 1994.

[7] Dragan MATIĆ, “A Genetic Algorithm for

Composing Music”, Yugoslav Journal of Operations

Research, Volume 20 (2010), No. 1, pp. 157-

177,2010.

[8] Minjun Jiang and Changle Zhou, “Automated

Composition System based on GA”, IEEE, pp. 380-

383, 2010.

[9] Ali Çağatay Yüksel, Mehmet Melih Karcı and A.

Şima Uyar, “Automatic Music Generation Using

Evolutionary Algorithms and Neural Networks”,

IEEE, pp. 354-358, 2011.

[10] Paul J. Werbos, “ The Roots of Backpropagation.

From Ordered Derivatives to Neural Networks and

Political Forecasting”, New York, NY: John Wiley &

Sons, Inc., 1994.

[11] Débora C. Corrêa, Alexandre L. M. Levada, José H.

Saito and João F. Mari, “Neural Network Based

Systems for Computer-Aided Musical Composition:

Supervised x Unsupervised Learning”, ACM,

SAC‟08, pp. 1738-1742, 2008.

1652

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70744

