
Various Approaches to Achieve Data

Compression
Guide – Prof. Swati Ringe, Fr. C. R. C. E. Bandra, University of Mumbai

Mr. Dylan Andrades
Department of Computer Engineering

Fr. Conceicao Rodrigues College of Engineering

University of Mumbai

Mumbai, India

Mr. Hardik Agrawal

Department of Computer Engineering

Fr. Conceicao Rodrigues College of Engineering

University of Mumbai

Mumbai, India

Abstract— With the ever increasing growth seen in the field

of computing, processing large sized files has become possible.

The network technologies which are bound by the constraints

involving the physical transfer medium have difficulties

transferring such large sized files. This research is aimed at

exploring various methods of data compression and

implementing those methods. These techniques also provide a

certain level of security to the compressed file. There are five

image-based approaches and one statistical approach. These

approaches usually convert any file into binary string, perform

the compression operation on the binary string and then convert

the binary string back to a file (compressed file). The reverse

procedure is followed at the decompression side.

Keywords— Data compression, image-based compression,

statistical redundancy removal

I. INTRODUCTION

Data compression algorithms [1], [2], [3] are designed to
reduce the size of data so that it requires less space for storage
and less bandwidth for transmission over communication
channels of limited bandwidth. An additional benefit of
compression is that it decreases the size of information to be
transmitted, hence minimizing the errors. It can be of two
types:

1. Lossless Data Compression, where the algorithm usually
exploit statistical redundancy to represent data more
concisely without losing information, so that the process
is reversible. Though generally used in compression of
text-based data, some lossless compression algorithms
[5], [6] and standards [4] are also popular for image
compression.

2. Lossy Data Compression, which is the converse of
Lossless Data Compression. In such schemes, some loss
of information is acceptable. Dropping non-essential
details from the data source can save storage space.

The basic principle of compression involves transforming
the data contained in a file into a format which requires lesser
storage space than the original form. For efficient compression
we need to implement an excellent data structure and an
efficient algorithm to compress and decompress the source

and compressed data respectively, thus optimizing the trade-
off between the size reduction and the computation time.

The techniques explained in this article has a different
touch to it. Various possibilities of converting a normal file to
image file and applying compression to those image files are
explored. Existing image compression algorithms have not
been used to compress those image files. The compression
algorithms are developed to provide lossless compression in
images.

 In this article, we introduce 6 different approaches to
achieve compression. The first 5 approaches are image-based
compression and the last approach is based on removing
statistical redundancy in data. The basic idea behind
compressing a file was to convert any file to its corresponding
binary, applying the compression technique on the binary file
and save the compressed binary as a compressed file. On the
decompression end, read the compressed file and express it as
binary, apply decompression algorithm on binary and convert
the decompressed binary to the original file.

II. APPROACH – 1

The idea behind this approach is to create multiple

matrices and fill it with the binary string obtained after

conversion of the file to binary. These matrices can be

represented as multiple images. This approach aims to

superimpose all those images obtained from all the matrices

and create one single image which will be very much smaller

in size.

While theoretically implementing this algorithm, it was

noted that adding bits in matrices was easy, but extracting the

same bits from addition was complicated.

Example 1. If 0+1+1 = 2, then how do you identify

whether 2 = 011 or 101 or 110

III. APPROACH – 2

In this approach, we divide the binary string in 24-bit
strings, which are later represented as a 24-bit integer. Now,
each 24-bit integer is used to represent an RGB color, where
bits 16-23 represent the red component, bits 8-15 represent the
green component and bits 0-7 represent the blue component.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030585

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

516

These 24-bit strings are converted as RGB color and stored
in a matrix. This matrix is then converted into a color image.

Example 2. The file used for testing is Vuze.exe which is
72008 bytes file. The following image was obtained after
compression.

Figure 1 - Vuze.exe compressed using Approach 2

This compressed image is 60061 bytes file. It can be seen
that the file was compressed up to 11947 bytes, which is about
16.59% compression. It was later noted that the approach did
not work for larger files. This was because the file size of the
image does not remain constant. The compression percent
decreases as the file size goes on increasing.

IV. APPROACH – 3

The problem in Approach 1 was that the extraction of bits

from the summation of bits was difficult. As a solution to that

problem, it was decided that we create a set of rules to extract

the bits from the summation.

In this approach, we define color schemes for 2 layers,

where each bit {0,1} is colored.

Example 3. Consider the binary string “00010011”. We

write it in a matrix form as:

Now, we define color scheme C1 for matrix M1 as

For matrix M2, we define color scheme C2 as a lighter

version of color scheme C1

When we combine color schemes C1 and C2, we get a new

color scheme C3 as follows

Combining the matrices M1 and M2 results in

This matrix is then converted to image.

At the decompression end, we subtract the obtained color

from color scheme C2

Since, the color goes out of range, it is not valid.

Hence, the decoded string will be 00, where both the colors

are matched in C1 and C2.

The main idea behind this approach was to compress a file

hierarchically, i.e. if the basic binary creates 16 matrices, then

two color schemes will convert 2 matrices into 1 matrix and

thus resulting in 8 matrices. This method will be followed till

we get 1 matrix in the end, which will result in one image of

very small size.
The problem with this approach was that maintaining and

storing all color schemes was tedious. Also, after a certain
level, the colors get exhausted after creating several schemes.

V. APPROACH – 4

In this approach, the binary file is split into S-bit string

each. Then we create a matrix of size M, where

We convert each S-bit binary string into an integer and

then we spread it in a color.

Example 4. Consider an S-bit integer as 36854.

Now, we can represent the S-bit number 36854 as a color

component (246, 143, 0). With the help of these colors, we

create an image.

At the decompression end,

All the S-bit numbers are converted to strings and

concatenated in proper order, giving us the original binary

string, which is then converted to original file.

In case, the color exceeds (256*256*256), then we create

multiple images, i.e. creating a new matrix.

Example 5. The file Vuze.exe of 72008 bytes was used to

test this approach.

Figure 2 - Vuze.exe

(a) compressed file – 1

(b) compressed file – 2

The compressed file 1 and 2 combined are 58219 bytes,

which shows a compression of about 19.15%. But it was later

noted that for larger files, the compression percent decreases.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030585

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

517

VI. APPROACH – 5

This approach is a slight modification to Approach 4. The

concept used in this approach is Java Advanced Imaging –

Multiband Images [7]. These multiband images follow

Portable Network Graphics (PNG) standard [4]. In a

multiband image, a single image contains multiple bands. So,

instead of having 3 separate images, we create 1 image with 3

bands, hoping it would reduce the file size.

But unfortunately, the file size doesn’t decrease much.

Although, it did help with reducing the number of files.

Example 6. Considering the same file used in Approach 4,

the following images were obtained.

Figure 3 - Vuze.exe

(a) compressed file – 1

(b) compressed file – 2

The compressed files 1 and 2 combined are of size 54993

bytes, which is 23.63% compression. Although, this holds

true that this algorithm works better than Approach 4, it does

not solve the problem of Approach 4. Approach 2, 4 and 5 all

compress files, but the compression percentage decreases as

the file size increases. It was later noticed that this was due to

the headers of the image files. Thus, the approach style was

migrated from image-based to statistic-based.

VII. APPROACH – 6

This approach is based on a property of ex-or and negation.

Ex-or operation is performed on consecutive bits of the

binary string. Whenever the result obtained is ‘1’, the next

position is stored. These positions hold the significance of

negating the bit on the decompressing end. The first bit, last

bit, total number of bits and the resultant bit along with the

list of positions are sent as a compressed file.

On the decompression end, ex-or operation is performed

between the last bit and the resultant bit and result is stored in

the second-last bit. Now, if the second-last bit is stored in

position list, then we negate the bit and store it as resultant

bit. Otherwise, the resultant bit is same as second-last bit.

Now, ex-or is performed between resultant bit and second-

last bit. This process is done till it reaches the first bit. The

result obtained is the track of all resultant bits.

Example 7. Consider an example where the data is

{0110110110}

TABLE I. APPROACH 6 – COMPRESSION METHOD

Positio

ns
1 2 3 4 5 6 7 8 9 10

 0 1 1 0 1 1 0 1 1 0

 1 1
3 0 0
 0 1
 1 1

6 0 0

 0 1

 1 1

9 0 0

 0

First Bit = Last Bit = 0

Resultant Bit = 0

Total Bits = 10

Positions = 3, 6, 9

At the decompressing end, the information above is used to

retrieve the original data back.

TABLE II. APPROACH 6 – DECOMPRESSION METHOD

1 2 3 4 5 6 7 8 9 10

0 1 0 0 1 0 0 1 0 0

0 1 1 0 1 1 0 1 1 0

While implementing, it was observed that the positions

need to be efficiently stored. Best case scenario is that no bits

ever change. But, that would mean that all the data bits are 0,

which is impossible. Worst case scenario is that if all the bits

get changed, sending all the bit positions would be expanding

the file rather than compressing it.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030585

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

518

VIII. STATISTICAL ANALYSIS

The following table provides the statistics and comparison of

all the approaches mentioned above.

TABLE III. ANALYSIS OF ALL THE APPROACHES

No. Disadvantages
Compression

Ratio

#1 Decompression could not be achieved NA

#2

 Compression Ratio is irregular.

 Technique is static.

 Padding of bits is necessary when binary

string is not a multiple of 24.

70.3 kB =
16.59 %

2.98 MB =

1.28 %

#3

 Compression Ratio irregular.

 Storing of colour schemes at sender
requires complex data structures.

 Requires high computation time.

 Color Scheme is limited to 256x256x256

colors.

 Sending the database of color scheme
stored in it to the receiver requires

separate management.

70.3 kB =

-20.07 %

2.98 MB =

computationa
lly expensive

#4

 Compression Ratio decreases with

increase in file size.

 This technique is very expensive
computationally.

 Extra padding needs to be added, which
is irregular and varies depending on the

distance between all the colours in the
matrix.

70.3 kB =

19.15 %
2.98 MB =

1.6 %

#5

 This technique was aimed at reducing the

number of extra images created due to

padding.

 The disadvantages of Approach 4 were
still observed.

 Anomalous compression ratio.

70.3 kB =

23.63 %
2.98 MB =

0.11 %

#6

 Sending positions in an efficient way is
complicated.

 More positions being changed means less
compression and vice-versa.

 Worst case scenario: If the last bit
changes, then the file doesn’t compress.

This case happens often.

70.3 kB = 0%

2.98 MB =
0%

IX. CONCLUSION

Each of the proposed approaches can be further researched

to develop full-fledged algorithms. Appropriate choice of

data structures for storing and managing the color schemes

for image-based approaches (1-5) has the potential to further

improve their performance and decrease the high

computational cost. Traditional compression algorithms can

also be used along with these approaches in implementation

of compression system to reduce the file size and thus help

reduce the compression time.

ACKNOWLEDGMENT

We would like to thank Fr. Conceicao Rodrigues College
of Engineering for providing the necessary resources. Our
special thanks to Mr. Aakash Tiwari and Mr. George Cherian
for help and support. We would also like to thank Mr. Sachin
Balan for helping us with our research. Lastly, we would like
to thank our parents for consistent emotional support.

REFERENCES

[1] M. Crochemore & W. Rytter, "Text Algorithms," (2010) Available:

http://monge.univ-mlv.fr/

[2] ‘Universal lossless data compression algorithms’ by Sebastian
Deorowicz ,Silesian University of Technology ,Faculty of Automatic

Control, Electronics and Computer Science, 2003

[3] ‘Introduction to Data Compression’ by Guy E. Blelloch, Computer
ScienceDepartment, Carnegie Mellon University, January, 2013

[4] "ISO/IEC 15948:2004 - Information technology -- Computer graphics

and image processing -- Portable Network Graphics (PNG): Functional

specification", www.iso.org.

[5] ‘Lossless Image Compression Based on Data Folding’ by Suresh

Yerva, Smita Nair, Krishnan Kutty
[6] Marcelo Weinberger, Gadiel Seroussi and Guilermo Sapiro, “The

LOCO-I Lossless Image Compression Algorithm: Principles and

Standardization into JPEG-LS,” Computer Systems Laboratory, HPL
Tech. Rep. 98-193, Nov 1998.

[7] “Programming in Java Advanced Imaging”, Release 1.0.1, Sun

Microsystems, Nov 1999.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030585

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

519

