
Validating the CPU usage statistics provided by Linux KVM hypervisor.
Roopa Govind , Mamatha T

Dept. of Computer Science and Engineering,Cambridge Institute of Technology, Bangalore, India

Abstract

The x86 based virtualization technologies has been

an important innovation that has fuelled the

realization of cloud computing using commodity

hardware. Resource usage statistics of the virtual

machines is one of the important factors for the

cloud providers to help them take critical and

valuable decisions varying from resource

provisioning to QoS requirements, identifying

bottlenecks in the system and performance profiling

of VMs. Hence it is important to ensure that the

resource usage information provided by the

hypervisor, in our case, Linux KVM, is accurate and

reliable. In this work we have come up with a

technique to validate the CPU usage statistics

provided by Linux KVM hypervisor for the running

virtual machines is indeed reliable and accurate.

Keywords—CPU statistics, Monitoring, CPU workloads,

Virtual machine monitors, System performance,

Libvirt, KVM hypervisor.

I. INTRODUCTION

 Most of the production environments, today,

have workloads that are either memory intensive, I/O

intensive or CPU intensive. Above this, the workload

also exhibits dynamic behavior which results in

underutilized resources. Some of the study

undertaken reveals that the resource utilization could

be as low as 15%, which doesn't justify the ROI that

enterprises spend towards IT. In such situations, to

improve resource utilization, many enterprises are

shifting towards cloud computing solutions where

elastic resources can be availed on a pay-by-use

mode.

 Virtualization is a key enabler in these cloud

based solutions where multiple workloads are

consolidated on a single machine. On such

virtualized servers, physical hardware is shared

among multiple virtual machines by a layer called

hypervisor or virtual machine monitor (VMM).

Workloads in turn, are hosted in the virtual machines

and access the underlying shared hardware through

hypervisor. Virtualization helps provide isolation,

security, encapsulation in such shared environments

as well as ensures better utilization of server

resources.

 Many virtual machine monitors have

emerged in such a scenario, varying from VMware

ESX to Linux KVM hypervisor. In recent years, to

make development of virtual machine monitors easy,

hardware vendors like AMD and Intel have added

virtualization extensions to x86 processors & as well

as memory (EPT from Intel and RVI from AMD)

which were initially difficult to virtualize[1].

 The Kernel based Virtual Machine (KVM)

is a relatively new VMM which utilizes these

hardware extensions and has found its way in Linux

kernel. It is a full virtualization solution, which

requires no changes in guest operating system [2].

While virtualization provides a simple mechanism to

share resources by isolating the application’s

software environment, most of the applications incur

some kind of virtualization overhead. This overhead

varies depending upon the type of application, type of

virtualization and virtual machine monitor used.

Particularly, for I/O applications, the overhead of

CPU used by VMM on behalf of VMs is considerable

and affects performance characteristics of

applications [3][4].

 To account for such overhead, it is necessary

to monitor resources used by the hypervisor on behalf

of the VM. Most of the resource monitoring tools

available in the market today will depend largely on

the hypervisor to provide an accurate and reliable

resource usage statistics. In Linux KVM, the VM-

specific CPU usage is mainly provided through

Cgroups accounting. In this paper, we present a

method for validating the CPU resource statistics

provided by Linux KVM hypervisor is indeed

accurate and reliable.

The rest of the paper is organized as follows. Section

II describes the KVM architecture with a focus on

how the Guest VMs utilize the underlying hardware

provided by KVM. Section III describes the existing

method to obtain CPU statistics of a VM from the

KVM hypervisor and how to interpret the statistics to

make critical and valuable decisions varying from

resource provisioning to QoS requirements. Section

IV describes the technique

2511

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

to validate the reliability and accuracy of the CPU statistics provided by KVM hypervisor and section V presents the

analysis made during the validation phase. Finally, Section VI concludes by discussing the actions taken based on

the observation made during the validation phase.

II KVM ARCHITECTURE

 KVM is a more recent hypervisor which embeds virtualization capabilities in Linux kernel using x86

hardware virtualization extensions [2][7]. It is a full virtualization solution, where Guests are run unmodified in

VMs. It consists of two modules, namely, kvm.ko and an architecture dependent kvm-amd.ko or kvm-intel.ko

module. Under KVM, each VM is spawned as a regular linux process named KVM and scheduled by the default

linux scheduler. For KVM the hardware has to support three processor modes, namely user, kernel and guest mode.

The guest mode is added to support hardware assisted virtualization. The virtual machine executes in this guest

mode which in turn has user and kernel mode in itself [5][6].

 For using shared I/O hardware, these VMs interact with QEMU emulator in host user space which provides

emulated I/O devices for virtual machines. For instance, in the case of network related applications, QEMU provides

emulated Network Interface Card (NIC) to VMs and interacts with tun-tap device on the other side. The tap device

is connected to physical NIC through a software bridge.

 Fig 1 shows the typical KVM architecture

III OBTAINING & INTERPRETING THE DOMAIN CPU STATISTICS FROM KVM HYPERVISOR

 Libvirt is a hypervisor-independent virtualization API that is able to interact with the virtualization

capabilities of a range of operating systems. Domain CPU statistics from KVM hypervisor can be obtained through

libvirt, the management API layer of Linux KVM. Virsh is a command line interface tool for managing guests and

the hypervisor. The virsh tool is built on the libvirt management API and operates as an alternative to the xml tool

and the graphical guest Manager (virt-manager). The CPU statistics for a running VM can be obtained using the

virsh cpu-stats command, which displays the per-CPU and total statistics about the domain's CPUs

2512

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

[roopa@064904 ~]$ virsh list --all

 Id Name State

--

 1 ubuntu-openstack running

To get the current domain CPU stats for this running VM, ―Ubuntu-Openstack‖, we can run the cpu-stats

command as follows:

[roopa@064904 ~]$ virsh cpu-stats ubuntu-openstack

CPU0:

 cpu_time 2.935644229 seconds

CPU1:

 cpu_time 0.656418975 seconds

CPU2:

 cpu_time 0.504604680 seconds

CPU3:

 cpu_time 0.435697162 seconds

Total:

 cpu_time 4.532365046 seconds

 user_time 0.210000000 seconds

 system_time 0.610000000 seconds

The above output shows the per-CPU and total statistics about the domain's CPUs. As we can see above, there are

4 physical CPU's on the host and the time this VM has run on each CPU is displayed in seconds. The Total stat

shows the total time the VM has run on all the available physical CPU's and the user_time corresponds to the time

the VM has run in "User Mode" (running applications) & system_time corresponds to the time it has run in "Root

mode & Guest mode" (running kernel code).

The main aim of this paper is to demonstrate a technique to validate the accuracy and the reliability of this CPU

statistics provided by KVM.

IV TECHNIQUE TO VALIDATE THE CPU STATISTICS PROVIDED BY KVM HYPERVISOR

The proposed technique developed to validate the reliability and accuracy of the CPU statistics is by increasing the

CPU time of the VM by running a CPU intensive application in User Mode inside the VM and analyse the statistics

generated as a result of the CPU load. To ensure that our approach is accurate and precise, the test environment was

setup using the following steps.

1. Run only 1 VM on the host.

2. Number of VCPUs in VM is equal to the number of host CPUs and each VCPU of the VM is pinned to the host

CPU.

The virsh vcpuinfo command shows this information.

[roopa@06490 ~]$virsh vcpuinfo ubuntu-openstack

 VCPU: 0

 CPU: 0

 State: running

 CPU time: 5.1s

 CPU Affinity: y---

VCPU: 1

CPU: 1

State: running

CPU time: 5.9s

CPU Affinity: -y--

2513

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 VCPU: 2

 CPU: 2

 State: running

 CPU time: 3.5s

 CPU Affinity: --y-

 VCPU: 3

 CPU: 3

 State: running

 CPU time: 3.2s

 CPU Affinity: ---y

3. Increase the CPU shares of the Libvirt Cgroup using Control Groups mechanism.

4. Increase the CPU scheduler prioritization for the guest under investigation.

The Libvirt API, and the virsh command line tool provide mechanisms to set tunables on guests. For the QEMU

drivers in Libvirt, the virsh schedinfo command provides access to CPU scheduler prioritization for a guest. The

―cpu_shares‖ value is a relative priorization. All guests start out with a cpu_shares of 1024. If you double its

―cpu_shares‖ value, it will get twice the CPU time as compared to other guests. This is applied to the guest as a

whole, regardless of how many virtual CPUs it has.

[roopa@064904 ~]$ sudo virsh schedinfo --set cpu_shares=4096 ubuntu-openstack

 Scheduler : posix

 cpu_shares : 4096

 vcpu_period : 100000

 vcpu_quota : -1

Steps 1-4 is an approach to ensure that the VM under investigation will utilize the host CPU's in accordance with

the CPU load that is generated inside the VM. To be more precise we are expected to see in SAR output, the ―guest

%" time on the host will increase in accordance with the CPU load inside the VM.

5. Gather the VM CPU statistics without running a CPU load inside the VM. This is taken to have a baseline to

compare with during our analysis.

6. Generate a 75% CPU load inside the VM for 3 mins and subsequently generate a 90% load inside the VM for

another 3 mins using an open-source cpu-load generator tool.

7. After the CPU load is generated, gather the VM CPU statistics for further analysis.

V ANALYSIS OF STATISTICS OBTAINED

We start the process of analysis by first gathering the VM CPU

statistics before generating the CPU load by using the virsh cpu-stats

command as follows:

[roopa@064904 ~]$ virsh cpu-stats ubuntu-openstack

CPU0:

 cpu_time 9.587765257 seconds

CPU1:

 cpu_time 7.645363434 seconds

2514

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

CPU2:

 cpu_time 7.583843416 seconds

CPU3:

 cpu_time 8.768952257 seconds

Total:

 cpu_time 33.585924364 seconds

 user_time 1.570000000 seconds

 system_time 4.100000000 seconds

We then generate the workloads with the running VM and observe the CPU usage on the Guest as well as the Host

using the SAR tool [8]. The graph below shows the CPU usage inside the VM before and after generating the CPU

load. The graph shows that we generated a CPU load of 75% for 3 mins and 90% for 3 mins, where the "User Time"

shot up to above 75% and 90% subsequently. During this time "System Time" was almost 0% & Idle Time is below

10%.

On the host, during this time, the CPU utilization of the VM matched up to the load we generated inside the VM.

Following is the CPU statistics taken after generating a CPU load of 75% for 3 mins and 90% for subsequent 3 mins

inside the VM.

[roopa@064904 ~]$ virsh cpu-stats ubuntu-openstack

CPU0:

 cpu_time 324.015818392 seconds

CPU1:

 cpu_time 324.397892025 seconds

2515

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

CPU2:

 cpu_time 338.334924222 seconds

CPU3:

 cpu_time 329.628496451 seconds

Total:

 cpu_time 1316.377131090 seconds

 user_time 12.520000000 seconds

 system_time 79.510000000 seconds

From the statistics above the observation is that the user_time provided by KVM hypervisor is less than the

system_time which does not correlate with the CPU utilization of the VM. Also the user_time + system_time is way

too less than the total cpu_time provided by KVM hypervisor. Thus we have identified that the CPU usage

information provided by Linux KVM is not accurate.

VI CONCLUSION AND FUTURE WORK

The domain CPU statistics for a VM provided by KVM hypervisor is not accurate and reliable. The issue is

reported to Linux Kernel community and this bug is currently under investigation.

https://bugzilla.kernel.org/show_bug.cgi?id=55061

In this work we validate the CPU usage statistics provided by the Linux KVM hypervisor.

This research can be extended to validating the usage of other resources by VM’s such as memory, Network and

storage.
VII References

[1] G. J. Popek and R. P. Goldberg, ―Formal requirements for virtualizable third generation architectures,‖ Commun. ACM, vol.

17, no. 7, pp.412–421, Jul. 1974. [Online]. Available: http://doi.acm.org/10.1145/361011.361073

[2] (2012) Main page-kvm. [Online]. Available: http://www.linux-kvm.

org/page/Main Page

[3] J. Lakshmi, ―System virtualization in the multi-core era, a qos perspective,‖ Dissertation, Supercomputer Education and

Research Centre, Indian Institute of Science, Bangalore, 2010.

[4] M. Dhingra, J. Lakshmi, and S. Nandy, ―Resource usage monitoring in clouds,‖ in Grid Computing (GRID), 2012

ACM/IEEE 13th InternationalConference on, sept. 2012, pp. 184 –191.

[5] S. Zeng and Q. Hao, ―Network i/o path analysis in the kernel-based virtual machine environment through tracing,‖ in

Information Science and Engineering (ICISE), 2009 1st International Conference on, dec.2009, pp. 2658 –2661.

[6] J. Zhang, K. Chen, B. Zuo, R. Ma, Y. Dong, and H. Guan, ―Performance analysis towards a kvm-based embedded real-time

virtualization architecture,‖ in Computer Sciences and Convergence Information Technology(ICCIT), 2010 5th International

Conference on, 30 2010-dec. 22010, pp. 421 –426.

[7] A. Kivity, ―kvm: the Linux virtual machine monitor,‖ in OLS ’07: The 2007 Ottawa Linux Symposium, Jul. 2007, pp. 225–

230

[8]System Monitoring With sar And ksar http://www.howtoforge.com/system-monitoring-with-sar-and-ksar

2516

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

