Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

Using Xml Technology for Data Pipeline
Interactive Simulation

Sharath G S
4™ sem, M.tech[SE]
Dept of CSE, AMCEC

Abstract:- Enhancing software that is efficient, flexible,
reusable and easy to work which is a hard task for simulation
developers. In this paper we propose the use of XML and its
related tools (e.g. JAXB, XQuery, XSLT, and Native XML
Database) for the implementation of a technology unified data
pipeline targeted to interactive simulation. We introduce a
technology-independent conceptual data model as the basis
for every simulation framework. We show that XML is a well
suited technology to be used in that context. We propose a
data modeling methodology that takes its roots from Model-
Driven Engineering (MDE). We would be showing a sample
implementation that uses XML for transmitting data over the
entire simulation loop.

1. INTRODUCTION

Nowadays, simulation is used extensively by scientists and
engineers for designing complex systems or for under-
standing intricate phenomena. Typically, “batch run
simulations” are exploited for extracting knowledge from
vir-tual experiments. Many batch run simulations lead to
wasted computation time because errors in simulations or
poor choice of simulation parameters are only discovered
after a run, something that could have been avoided should
interactive simulation be exploited. For being considered as
interactive, a simulation should take a reasonable amount
of time to execute, typically a few seconds to a few
minutes.

Interactive simulation can be seen as the process
of steering a simulation while it is executing. Many ap-
proaches have been proposed for steering simulations
interactive simula-tion is a 3-step process. Firstly, a model
of the simulation needs to be built in the Simulation
Modeling Module. This step consists of defining the actors
participating in the simulation, the properties of each actor
and the interactions between actors leading to the desired
behav-iors. The scope of this step depends on the
architecture of the simulator and on the level of detail
required for the models. In addition to the definition of the
actors and the interactions, a scenario includes the initial
values for the parameters of the actors and the scheduling
of “outside” events that will occur during the simulation
and whose effect may be, among other things, to modify
behaviors of the actors.

At the second step, the Simulation Execution
Module accepts the scenario and models that were designed
at the modeling stage. It is clear that the Execution Module
must be structured so as to understand both the models and

Nirmala S
Associate Professor,
Dept of CSE, AMCEC

the scenario in order to execute the simulation properly and
to maintain a coherent internal state. Then, the Execution -
Module runs the simulation and updates its internal state
accordingly while taking into account the events scheduled
in the scenario. The “simulation state” is defined as the set
of variables and parameters describing the totality of a si-
mulation at a given time step. This simulation state, which
is available in a given data format, is sent periodically to
the Simulation Analysis Module. The latter module must
provide the user with interfaces that allow him to visualize
what is actually occurring in the simulation, and with tools
that allow him to perform different types of analyses on the
data such as statistical analysis or data mining. A major
difference between interactive simula-tion and batch run
simulation is that, for interactive simulation, the user
“closes the loop” by providing input to the models and to
the Execution Modulebased on his interpretation of the
results.

We propose a design methodology that facilitates
the implementation of user interaction with new and
existing simulators. The methodology, presented as a
conceptual framework that is a formal way of thinking of
the XML based conceptional model.

In this paper, we propose a design methodology
that facilitates the implementation of user interaction with
new and existing simulators. The methodology, presented
as a conceptual framework that is a formal way of thinking,
is generic and does not make any assumption on the
architecture of the simulator. The paper demonstrates that
the data pipeline must be designed carefully to ensure
successful implementation of interactive simulations. It
intro-duces a conceptual framework for this data pipeline,
which comprises a data model and a generic data flow.

2. CONCEPTUAL FRAMEWORK

This section presents a conceptual framework that sets up
the foundation of a methodology for facilitating interaction
with simulations. Figure 1 shows the key building blocks of
the conceptual framework. Large rectangular boxes rep-
resent storage units, whereas rounded boxes represent
processing units. Storage units encapsulate the state of data
at a particular stage in the conceptual framework, whereas
processing units transform input data and outputs the
results.

Volume 3, | ssue 19

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

Simulation scenario

Simulation data

Schema le Document Schema le Docurment
model model model model
Y) Y & &
Schema Document Schema < 1 Document
Conversion Conversion
engine engine
Deserialized objects Serializable objects

Class Class
modal ¥ 1 Class modal ¥ 1 Class
' & Y Y
Object | Object | .
model ¢ Ohject model ¥ Ohject
Simulator

Class modelOf nstanceOf | Simulation
model Class enity

Fig 2: Technology independent conceptual framework
2.1 Data model of the conceptual framework

The first block of the conceptual framework (Figure 1) is
the simulation scenario, which contains the elements
described(e.g. actors, models, interactions, scheduled
events). The tools that are used for building the scenarios
may range from sophisticated GUIs to simple text file
editors. The “simulation scenario” box, exploded in Figure
1, illustrates the data model the scenario must comply. The
scenario “document,” which contains the data, is an
instance of a “document model.” On the other hand, the
“document” validates against a “schema,” a model defining
the document syntax. The schema itself is an instance of
the “schema model,” a meta-model defining the content of
a schema. Once the scenario document is built and
validated against its schema, it must be converted to a
format that is understandable by the simulator.

For that purpose, a “conversion engine” links the
si-mulation scenario and deserialized objects, which are in-
termediate storage elements, by performing appropriate
processing. The reason for feeding the simulator with
deserialized objects instead of the scenario as such is that
we want to keep the framework generic and independent of
the architecture of the simulator. This genericity constraint
has a direct impact on the technologiesthat need to be
selected for ensuring smooth integration of the deserialized
objects and the simulator. Therefore, the addition of the
interactiv-ity feature to a simulator should be transparent to
its inter-nal modules. It is worth noting that a single
scenario usu-ally generates several deserialized objects,
each being an instance of a “class.”

As shown at the bottom of Figure 1, we assume
that simulation entities exist in the internals of a simulator,
regardless of its architecture and implementation. The
simulator executes interactions between entities, which

generates data that must be serialized and converted back to
a format that a user understands in order to be available for
analysis.

The serializable objectsare data containers in
which the simulator writes the simulation state. They own
the same data model as deserialized objects. A conversion
engine translates serializable objects to simulation data,
which shares the same data model as the simulation
scenario.

2.2 Generic dataflow in the conceptual framework

Figure 2 shows a generic dataflow that is suitable for inter-
active simulation. The simulation modelingstep shows that
a user exploits a scenario editorto produce a scenario
document. This document is usually a computer file. The
elements contained in the scenario document are converted
to deserialized objects and affected to the simulation state.
The simulation engine performs calculations on elements
composing the simulation state and updates involved enti-
ties of the simulation state accordingly. Then, the simula-
tion state is copied to serializable objects.

We implemented a mechanism to meet the
interactive simulation requirements; serializable objects can
be saved to checkpoint files, which act as simulation state
containers that a user can modify and reload back to the
simulator. On the other hand, the developer of the
simulation modeling module of an interactive simulator
needs to interface existing code with deserialized and
serializable objects in order to load and save the simulation
state.

A user is able to control the flow of a simulation
with the simulation analysis step, which includes the
following modules:

» A data manager whose role is to communicate with the
simulation for retrieving simulation data into a stream, to
manage incoming data, and to process user interaction;

» A database that stores selected information in-coming
from the simulator data streams;

+ A data stream query filter that selects, accord ing to the
user’s needs, information relevant to the simulation
analysis;

A data analysis module that is exploited by the user for
exploring the simulation and acquiring knowledge of the
phenomenon under study.

In summary, we propose in this section a framework that
simulation practitioners should implement in order to
convert existing software to an interactive simulator. The
proposed framework allows the use of traditional
simulation methodologies such as batch simulation because
simulation data is stored in a database for later
consultation.

Volume 3, | ssue 19

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

3. XML AS A UNIFYING TECHNOLOGY

It is claimed that XML is a technology that is well adapted
for the implementation of the conceptual framework
described. It shows how the generic structure shown in
Figure 2 can actually exploit XML technol-ogy to
implement the conceptual framework. The suggested
XML-based implementation makes the assump-tion that
the simulator is implemented in object-oriented technology.
We aim towards a design methodology that could be used
by simulation practitioners to decrease the development
effort when building an interactive simulator from existing
software.

Originally, XML was developed as a subset of
SGML, intended for web applications. It now describes
data in several application areas such as semantic web,
mathemat-ics, biological simulations, and military decision
making. Some authors propose guidelines to follow, so that
researchers use XML technology only where it belongs.

Many tools exist in order to parse and validate
XML files, bind XML entities to objects of different
programming languages, store XML data in databases,
visualize XML documents and schemas, transform XML
documents and query XML files (Wikipedia 2008). An
advantage of XML over other data formats is its self-
description. XML describes its structure, field names and
values. The integra-tion of metadata in an XML stream is
also straightforward. The resulting plain text is human- and
machine-readable and fully portable on different system
architectures.

On the negative side, XML is verbose, which
results in a waste of bandwidth when transmitted over a
network. However, some binary XML formats compress
data, making it less redundant and more efficient for
processing. Al-so, every piece of data is a string,
eliminating the intrinsic data type support that is available
in most programming languages. For the conversion
between XML and common data types, the marshalling
operation transforms common data types (e.g. double, float,
integer) to XML strings, whereas the unmarshalling
operation transforms an XML string to common data types.
Nonetheless, these conversions require considerable
amount of processing time and need an XML schema that
defines the node types and structure of a given XML file.

3.1 Detailed XML data model

Despite the weaknesses identified above for XML, its
portability and simplicity make it an excellent choice for
developing the framework for interactive simulation. In
addition many tools for processing and handling XML data
are available and reduce the development time. It shows
how XML is exploited in the conceptual framework
described in Figure 1. More specifically, the scenario is
stored in an XML document. This document must conform
to a set of rules defined in a companion XML Schema. It
should be noted that a schema validates only the syntax of
an XML document, not the semantics. Therefore, a higher-

level mechanism must take care of maintaining the
coherence of the scenario.

XML node entities contained in a document are
un-marshalled to objects, which are instances of object-
oriented programming language classes (e.g. C++, Java,
C#), via XML data binding that refers to the process of
representing elements of a XML document as objects in
computer memory.

A simple mechanism transposes deserialized objects to
simulation entities objects. It is usually implemented by
copying class attributes to corresponding fields in simula-
tion entities objects. Then, the marshalling process,
included in the binding library, transforms objects back to
XML format. It should be noted that deserialized objects
and serializable objects do not necessarily share the same
data model. However, adopting the same model for both
concepts is recommended because of the resulting
uniformity in processing. The same remark applies for the
simulation scenario and the simulation data. Both can
embody the totality or a fragment of a global and unique
schema.

3.2 Design methodology

It highlights important characteristics emerging from the
use of XML as the basic building block of the data flow.
Boxes with a blue background represent the data modeling
methodology of the XML-based framework de-tailed at the
left of.

The first step in the methodology consists of
building a static UML simulation model. The UML model
should contain classes associated to every simulation
element. Each class should contain its attrib-utes, the set of
classes and attributes making what we call a simulation
state,that includes elements part of the initial scenario (e.g.
entities with their initial properties and links), as well as
others essential at runtime.

The second step in the data modeling
methodology is to generate an XML schema from the static
UML class di-agram. Tools exist that perform the
conversion from UML to XSD, which conforms to the
W3C XML schema syntax (Wikipedia 2008a). It shows the
schema resulting from the static UML diagram. It starts
with the definition of elements, each associated with a class
in the UML diagram. Then, every element is defined
according to the static view specifications. The XML
schema preserves the cardinality as well as types es-
tablished in the UML diagram. It is thus the model of sub-
sequent XML documents, such as initial scenarios or
checkpoint files. It is also the template for object classes
that constitute the data model inside the simulation
architecture.

The third and final step in the data modeling
method-ology is the binding of the XML schema to an
object-oriented programming language. This step consists
of generating a class associated to every element defined in

Volume 3, | ssue 19

Published by, www.ijert.org 3

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

the schema. Several existing software suites or libraries can
perform this binding task for various object-oriented pro-
gramming languages. The Java class that is produced by
the Java XML Binding (JAXB) compiler using the XML
schema presented in. It shows protected attributes that are
accessible via public get/set methods. The class also
contains several annotations that help the Java runtime
environment and compiler to perform object serialization
and deserialization.

3.3 XML-specific data pipeline

The data modeling methodology presented in the previous
section can be used for setting up a data pipeline. It starts
off with an XML document containing the user-defined
initial scenario (or a checkpointed simulation). Then, with
the XML binding library’s unmarshaller, XML elements
are automatically converted to objects that are instances of
XML bound classes. These intermediate storage elements
format depends on the chosen programming language.
Then, through native calls, simulation entities are filled
with data on which they will execute mathematical opera-
tions. Then, the XML binding library marshaller converts
these objects.

4. SAMPLE USE OF THE METHODOLOGY

The proposed methodology was applied successfully to the
implementation of an interactive simulator using existing
open-source software. The system is described below.

Figure 3. Sample XML Schema
4.1 Pythagoras as a simulator

Pythagoras is a free, open source, agent-based simulator
that models agent entities having behaviors as well as sev-
eral properties (e.g. life left, position, side color) and
evolving on a terrain having its own properties. This
software was part of Project Albert, which aimed at using
high performance computing in order to “understand
theunexpected” in a military context. Pythagoras employs
brute force computing in order to investigate the proposed
problems. It also includes a utility for batch simulation, but
does not offer facilities for interactive simulation steering.
Pythagoras is implemented in Java and already exploits
XML binding technology to load the scenario into its
kernel.

Volume 3, | ssue 19

Published by, www.ijert.org 4

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

4.2 Applying the methodology

Pythagoras lacks several features that are needed to make it
interactive. Using Pythagorasoriginal source code and
through a thorough reverse engineering process, we im-
plemented various functionalities, in compliance. However,
since the simulator was already programmed, the approach
of reverse engi-neering from source code to UML, then
UML to XML schema, would have slowed down the
design process. Hence, the XML schema was edited by
adding essential elements for dumping a simulation state to
a file. The to XML in the form of streams or documents.
The check-point operation becomes trivial; it consists of
writing the entire simulation state to an XML document.

4.3 Lessons learned

The following lessons were drawn from the experience of
applying the proposed methodology with the Pythagoras
simulator as a test bed:

* Open source code facilitates the application of the
methodology. The more control a user has on software, the
easier it will be for him to modify existing functionalities
and add new ones. For the current demo, the learning curve
was steep. How-ever, reverse engineering tools help
developers to get a better hand on complex software
architec-tures.

* MDE generally applies if a model is already available. In
completing the current work, we did not use MDE, but
rather did modify the XML schema manually. It was easier
to do so because the advantage of using current software
engineer-ing tools over manual techniques was not clear.
Future work section discusses the use of auto-mated tools
for solving that problem.

e The use of standard data formats facilitates inte-
gration.Since XML was initially used by Py-thagoras as the
basic data format, the integration with the proposed
methodology was straightfor-ward. Other data formats
should provide serializa tion and deserialization methods in
order to allow for the proposed methodology to be
exploited suc-cessfully. Several data formats other than
XML exist that meet these requirements. However, XML
offers additional functionalities that other data formats are
lacking (e.g. data manipulation with XQuery and XSLT,
direct data binding, sim-ple visual representation).

* The compiled schema semantics during XML binding is
limited. The XML schema binding compiler that we used in
the current implementa-tion does not support relations
other than ‘“aggre-gation” and “attribute” between
elements. Rela-tions such as “inheritance” were added
through the development of a compiler plug-in that offers a
richer semantic to be added to the data model.

* The methodology requires a minimal set of essen-tial
functionalities to be supported by the simulator.The only
essential feature that a simulator must implement is the
ability to checkpoint and resume simulations. Other

features ease the development of advanced interaction, but
are not mandatory.

5. FUTURE WORK AND CONCLUSION

We showed that the methodology presented in this paper
can be successfully applied for developing a specific appli-
cation. However, it can be improved in several ways. First,
the data modeling framework could be fully automated. In
fact, using a stereotype on appropriate classes, the UML
diagram could be converted to XSD, the XSD compiled to
source code and methods that copy data to/from objects
automatically generated. This process is relevant for a new
simulator design and one that was reversed engineered.

Also, we are currently designing and
implementing a generic visualization environment that will
allow its users to manipulate data in an immersive virtual
reality environment. We plan on integrating our entire data
pipeline, so that multiple simulation instances can be
visualized simul-taneously.

Finally, the transformation of Pythagoras from a
batch run type of simulator to an interactive simulator is the
beginning of a long term project. We plan on modifying
several additional simulators and experiment whether or
not users perform better in the understanding of a complex
sys-tem model using the interactive version.

REFERENCES

[1] Boyno, E. A. 2006. XML: What, What, Who and Where. ISECON.

[2] Atkinson, C., and T. Kuhne. 2003. Model-driven develop-ment: a
metamodeling foundation. Software, IEEE 20(5): 36-41

[3] Brooke, J. M., P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L.
Pinning, and A. R. Porter. 2003. Compu-tational Steering in
RealityGrid. UK e-Science All Hands Meeting: 2-4.

[4] Kent, S. 2002. Model Driven Engineering. Integratted Formal
Methods. Third International Conference, IFM: 15-18.

[5] McGrath, R. E. 2003. XML and Scientific File Formats. 2003 Seattle
Annual Meeting.

[6] IBM 2008. Rational Rose.Available via
<http://wwwv.rational.com>[accessed June 23, 2008].

Volume 3, | ssue 19

Published by, www.ijert.org 5

