
Using Xml Technology for Data Pipeline

Interactive Simulation

Sharath G S Nirmala S

4th sem, M.tech[SE] Associate Professor,

Dept of CSE, AMCEC Dept of CSE, AMCEC

Abstract:- Enhancing software that is efficient, flexible,

reusable and easy to work which is a hard task for simulation

developers. In this paper we propose the use of XML and its

related tools (e.g. JAXB, XQuery, XSLT, and Native XML

Database) for the implementation of a technology unified data

pipeline targeted to interactive simulation. We introduce a

technology-independent conceptual data model as the basis

for every simulation framework. We show that XML is a well

suited technology to be used in that context. We propose a

data modeling methodology that takes its roots from Model-

Driven Engineering (MDE). We would be showing a sample

implementation that uses XML for transmitting data over the

entire simulation loop.

1. INTRODUCTION

Nowadays, simulation is used extensively by scientists and

engineers for designing complex systems or for under-

standing intricate phenomena. Typically, “batch run

simulations” are exploited for extracting knowledge from

vir-tual experiments. Many batch run simulations lead to

wasted computation time because errors in simulations or

poor choice of simulation parameters are only discovered

after a run, something that could have been avoided should

interactive simulation be exploited. For being considered as

interactive, a simulation should take a reasonable amount

of time to execute, typically a few seconds to a few

minutes.

Interactive simulation can be seen as the process

of steering a simulation while it is executing. Many ap-

proaches have been proposed for steering simulations

interactive simula-tion is a 3-step process. Firstly, a model

of the simulation needs to be built in the Simulation

Modeling Module. This step consists of defining the actors

participating in the simulation, the properties of each actor

and the interactions between actors leading to the desired

behav-iors. The scope of this step depends on the

architecture of the simulator and on the level of detail

required for the models. In addition to the definition of the

actors and the interactions, a scenario includes the initial

values for the parameters of the actors and the scheduling

of “outside” events that will occur during the simulation

and whose effect may be, among other things, to modify

behaviors of the actors.

At the second step, the Simulation Execution

Module accepts the scenario and models that were designed

at the modeling stage. It is clear that the Execution Module

must be structured so as to understand both the models and

the scenario in order to execute the simulation properly and

to maintain a coherent internal state. Then, the Execution -

Module runs the simulation and updates its internal state

accordingly while taking into account the events scheduled

in the scenario. The “simulation state” is defined as the set

of variables and parameters describing the totality of a si-

mulation at a given time step. This simulation state, which

is available in a given data format, is sent periodically to

the Simulation Analysis Module. The latter module must

provide the user with interfaces that allow him to visualize

what is actually occurring in the simulation, and with tools

that allow him to perform different types of analyses on the

data such as statistical analysis or data mining. A major

difference between interactive simula-tion and batch run

simulation is that, for interactive simulation, the user

“closes the loop” by providing input to the models and to

the Execution Modulebased on his interpretation of the

results.

We propose a design methodology that facilitates

the implementation of user interaction with new and

existing simulators. The methodology, presented as a

conceptual framework that is a formal way of thinking of

the XML based conceptional model.

In this paper, we propose a design methodology

that facilitates the implementation of user interaction with

new and existing simulators. The methodology, presented

as a conceptual framework that is a formal way of thinking,

is generic and does not make any assumption on the

architecture of the simulator. The paper demonstrates that

the data pipeline must be designed carefully to ensure

successful implementation of interactive simulations. It

intro-duces a conceptual framework for this data pipeline,

which comprises a data model and a generic data flow.

2. CONCEPTUAL FRAMEWORK

This section presents a conceptual framework that sets up

the foundation of a methodology for facilitating interaction

with simulations. Figure 1 shows the key building blocks of

the conceptual framework. Large rectangular boxes rep-

resent storage units, whereas rounded boxes represent

processing units. Storage units encapsulate the state of data

at a particular stage in the conceptual framework, whereas

processing units transform input data and outputs the

results.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1

Fig 2: Technology independent conceptual framework

2.1 Data model of the conceptual framework

The first block of the conceptual framework (Figure 1) is

the simulation scenario, which contains the elements

described(e.g. actors, models, interactions, scheduled

events). The tools that are used for building the scenarios

may range from sophisticated GUIs to simple text file

editors. The “simulation scenario” box, exploded in Figure

1, illustrates the data model the scenario must comply. The

scenario “document,” which contains the data, is an

instance of a “document model.” On the other hand, the

“document” validates against a “schema,” a model defining

the document syntax. The schema itself is an instance of

the “schema model,” a meta-model defining the content of

a schema. Once the scenario document is built and

validated against its schema, it must be converted to a

format that is understandable by the simulator.

For that purpose, a “conversion engine” links the

si-mulation scenario and deserialized objects, which are in-

termediate storage elements, by performing appropriate

processing. The reason for feeding the simulator with

deserialized objects instead of the scenario as such is that

we want to keep the framework generic and independent of

the architecture of the simulator. This genericity constraint

has a direct impact on the technologiesthat need to be

selected for ensuring smooth integration of the deserialized

objects and the simulator. Therefore, the addition of the

interactiv-ity feature to a simulator should be transparent to

its inter-nal modules. It is worth noting that a single

scenario usu-ally generates several deserialized objects,

each being an instance of a “class.”

As shown at the bottom of Figure 1, we assume

that simulation entities exist in the internals of a simulator,

regardless of its architecture and implementation. The

simulator executes interactions between entities, which

generates data that must be serialized and converted back to

a format that a user understands in order to be available for

analysis.

The serializable objectsare data containers in

which the simulator writes the simulation state. They own

the same data model as deserialized objects. A conversion

engine translates serializable objects to simulation data,

which shares the same data model as the simulation

scenario.

2.2 Generic dataflow in the conceptual framework

Figure 2 shows a generic dataflow that is suitable for inter-

active simulation. The simulation modelingstep shows that

a user exploits a scenario editorto produce a scenario

document. This document is usually a computer file. The

elements contained in the scenario document are converted

to deserialized objects and affected to the simulation state.

The simulation engine performs calculations on elements

composing the simulation state and updates involved enti-

ties of the simulation state accordingly. Then, the simula-

tion state is copied to serializable objects.

We implemented a mechanism to meet the

interactive simulation requirements; serializable objects can

be saved to checkpoint files, which act as simulation state

containers that a user can modify and reload back to the

simulator. On the other hand, the developer of the

simulation modeling module of an interactive simulator

needs to interface existing code with deserialized and

serializable objects in order to load and save the simulation

state.

A user is able to control the flow of a simulation

with the simulation analysis step, which includes the

following modules:

• A data manager whose role is to communicate with the

simulation for retrieving simulation data into a stream, to

manage incoming data, and to process user interaction;

• A database that stores selected information in-coming

from the simulator data streams;

• A data stream query filter that selects, accord ing to the

user’s needs, information relevant to the simulation

analysis;

• A data analysis module that is exploited by the user for

exploring the simulation and acquiring knowledge of the

phenomenon under study.

In summary, we propose in this section a framework that

simulation practitioners should implement in order to

convert existing software to an interactive simulator. The

proposed framework allows the use of traditional

simulation methodologies such as batch simulation because

simulation data is stored in a database for later

consultation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2

3. XML AS A UNIFYING TECHNOLOGY

It is claimed that XML is a technology that is well adapted

for the implementation of the conceptual framework

described. It shows how the generic structure shown in

Figure 2 can actually exploit XML technol-ogy to

implement the conceptual framework. The suggested

XML-based implementation makes the assump-tion that

the simulator is implemented in object-oriented technology.

We aim towards a design methodology that could be used

by simulation practitioners to decrease the development

effort when building an interactive simulator from existing

software.

Originally, XML was developed as a subset of

SGML, intended for web applications. It now describes

data in several application areas such as semantic web,

mathemat-ics, biological simulations, and military decision

making. Some authors propose guidelines to follow, so that

researchers use XML technology only where it belongs.

Many tools exist in order to parse and validate

XML files, bind XML entities to objects of different

programming languages, store XML data in databases,

visualize XML documents and schemas, transform XML

documents and query XML files (Wikipedia 2008). An

advantage of XML over other data formats is its self-

description. XML describes its structure, field names and

values. The integra-tion of metadata in an XML stream is

also straightforward. The resulting plain text is human- and

machine-readable and fully portable on different system

architectures.

On the negative side, XML is verbose, which

results in a waste of bandwidth when transmitted over a

network. However, some binary XML formats compress

data, making it less redundant and more efficient for

processing. Al-so, every piece of data is a string,

eliminating the intrinsic data type support that is available

in most programming languages. For the conversion

between XML and common data types, the marshalling

operation transforms common data types (e.g. double, float,

integer) to XML strings, whereas the unmarshalling

operation transforms an XML string to common data types.

Nonetheless, these conversions require considerable

amount of processing time and need an XML schema that

defines the node types and structure of a given XML file.

3.1 Detailed XML data model

Despite the weaknesses identified above for XML, its

portability and simplicity make it an excellent choice for

developing the framework for interactive simulation. In

addition many tools for processing and handling XML data

are available and reduce the development time. It shows

how XML is exploited in the conceptual framework

described in Figure 1. More specifically, the scenario is

stored in an XML document. This document must conform

to a set of rules defined in a companion XML Schema. It

should be noted that a schema validates only the syntax of

an XML document, not the semantics. Therefore, a higher-

level mechanism must take care of maintaining the

coherence of the scenario.

XML node entities contained in a document are

un-marshalled to objects, which are instances of object-

oriented programming language classes (e.g. C++, Java,

C#), via XML data binding that refers to the process of

representing elements of a XML document as objects in

computer memory.

A simple mechanism transposes deserialized objects to

simulation entities objects. It is usually implemented by

copying class attributes to corresponding fields in simula-

tion entities objects. Then, the marshalling process,

included in the binding library, transforms objects back to

XML format. It should be noted that deserialized objects

and serializable objects do not necessarily share the same

data model. However, adopting the same model for both

concepts is recommended because of the resulting

uniformity in processing. The same remark applies for the

simulation scenario and the simulation data. Both can

embody the totality or a fragment of a global and unique

schema.

3.2 Design methodology

It highlights important characteristics emerging from the

use of XML as the basic building block of the data flow.

Boxes with a blue background represent the data modeling

methodology of the XML-based framework de-tailed at the

left of.

The first step in the methodology consists of

building a static UML simulation model. The UML model

should contain classes associated to every simulation

element. Each class should contain its attrib-utes, the set of

classes and attributes making what we call a simulation

state,that includes elements part of the initial scenario (e.g.

entities with their initial properties and links), as well as

others essential at runtime.

The second step in the data modeling

methodology is to generate an XML schema from the static

UML class di-agram. Tools exist that perform the

conversion from UML to XSD, which conforms to the

W3C XML schema syntax (Wikipedia 2008a). It shows the

schema resulting from the static UML diagram. It starts

with the definition of elements, each associated with a class

in the UML diagram. Then, every element is defined

according to the static view specifications. The XML

schema preserves the cardinality as well as types es-

tablished in the UML diagram. It is thus the model of sub-

sequent XML documents, such as initial scenarios or

checkpoint files. It is also the template for object classes

that constitute the data model inside the simulation

architecture.

The third and final step in the data modeling

method-ology is the binding of the XML schema to an

object-oriented programming language. This step consists

of generating a class associated to every element defined in

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3

the schema. Several existing software suites or libraries can

perform this binding task for various object-oriented pro-

gramming languages. The Java class that is produced by

the Java XML Binding (JAXB) compiler using the XML

schema presented in. It shows protected attributes that are

accessible via public get/set methods. The class also

contains several annotations that help the Java runtime

environment and compiler to perform object serialization

and deserialization.

3.3 XML-specific data pipeline

The data modeling methodology presented in the previous

section can be used for setting up a data pipeline. It starts

off with an XML document containing the user-defined

initial scenario (or a checkpointed simulation). Then, with

the XML binding library’s unmarshaller, XML elements

are automatically converted to objects that are instances of

XML bound classes. These intermediate storage elements

format depends on the chosen programming language.

Then, through native calls, simulation entities are filled

with data on which they will execute mathematical opera-

tions. Then, the XML binding library marshaller converts

these objects.

4. SAMPLE USE OF THE METHODOLOGY

The proposed methodology was applied successfully to the

implementation of an interactive simulator using existing

open-source software. The system is described below.

Figure 3. Sample XML Schema

4.1 Pythagoras as a simulator

Pythagoras is a free, open source, agent-based simulator

that models agent entities having behaviors as well as sev-

eral properties (e.g. life left, position, side color) and

evolving on a terrain having its own properties. This

software was part of Project Albert, which aimed at using

high performance computing in order to “understand

theunexpected” in a military context. Pythagoras employs

brute force computing in order to investigate the proposed

problems. It also includes a utility for batch simulation, but

does not offer facilities for interactive simulation steering.

Pythagoras is implemented in Java and already exploits

XML binding technology to load the scenario into its

kernel.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4

4.2 Applying the methodology

Pythagoras lacks several features that are needed to make it

interactive. Using Pythagorasoriginal source code and

through a thorough reverse engineering process, we im-

plemented various functionalities, in compliance. However,

since the simulator was already programmed, the approach

of reverse engi-neering from source code to UML, then

UML to XML schema, would have slowed down the

design process. Hence, the XML schema was edited by

adding essential elements for dumping a simulation state to

a file. The to XML in the form of streams or documents.

The check-point operation becomes trivial; it consists of

writing the entire simulation state to an XML document.

4.3 Lessons learned

The following lessons were drawn from the experience of

applying the proposed methodology with the Pythagoras

simulator as a test bed:

• Open source code facilitates the application of the

methodology. The more control a user has on software, the

easier it will be for him to modify existing functionalities

and add new ones. For the current demo, the learning curve

was steep. How-ever, reverse engineering tools help

developers to get a better hand on complex software

architec-tures.

• MDE generally applies if a model is already available. In

completing the current work, we did not use MDE, but

rather did modify the XML schema manually. It was easier

to do so because the advantage of using current software

engineer-ing tools over manual techniques was not clear.

Future work section discusses the use of auto-mated tools

for solving that problem.

• The use of standard data formats facilitates inte-

gration.Since XML was initially used by Py-thagoras as the

basic data format, the integration with the proposed

methodology was straightfor-ward. Other data formats

should provide serializa tion and deserialization methods in

order to allow for the proposed methodology to be

exploited suc-cessfully. Several data formats other than

XML exist that meet these requirements. However, XML

offers additional functionalities that other data formats are

lacking (e.g. data manipulation with XQuery and XSLT,

direct data binding, sim-ple visual representation).

• The compiled schema semantics during XML binding is

limited.The XML schema binding compiler that we used in

the current implementa-tion does not support relations

other than “aggre-gation” and “attribute” between

elements. Rela-tions such as “inheritance” were added

through the development of a compiler plug-in that offers a

richer semantic to be added to the data model.

• The methodology requires a minimal set of essen-tial

functionalities to be supported by the simulator.The only

essential feature that a simulator must implement is the

ability to checkpoint and resume simulations. Other

features ease the development of advanced interaction, but

are not mandatory.

5. FUTURE WORK AND CONCLUSION

We showed that the methodology presented in this paper

can be successfully applied for developing a specific appli-

cation. However, it can be improved in several ways. First,

the data modeling framework could be fully automated. In

fact, using a stereotype on appropriate classes, the UML

diagram could be converted to XSD, the XSD compiled to

source code and methods that copy data to/from objects

automatically generated. This process is relevant for a new

simulator design and one that was reversed engineered.

Also, we are currently designing and

implementing a generic visualization environment that will

allow its users to manipulate data in an immersive virtual

reality environment. We plan on integrating our entire data

pipeline, so that multiple simulation instances can be

visualized simul-taneously.

Finally, the transformation of Pythagoras from a

batch run type of simulator to an interactive simulator is the

beginning of a long term project. We plan on modifying

several additional simulators and experiment whether or

not users perform better in the understanding of a complex

sys-tem model using the interactive version.

REFERENCES

[1] Boyno, E. A. 2006. XML: What, What, Who and Where. ISECON.
[2] Atkinson, C., and T. Kuhne. 2003. Model-driven develop-ment: a

metamodeling foundation. Software, IEEE 20(5): 36-41

[3] Brooke, J. M., P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L.
Pinning, and A. R. Porter. 2003. Compu-tational Steering in

RealityGrid. UK e-Science All Hands Meeting: 2–4.

[4] Kent, S. 2002. Model Driven Engineering. Integratted Formal
Methods. Third International Conference, IFM: 15-18.

[5] McGrath, R. E. 2003. XML and Scientific File Formats. 2003 Seattle

Annual Meeting.
[6] IBM 2008. Rational Rose.Available via

<http://www.rational.com>[accessed June 23, 2008].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

5

