Using Cloud Information Accountability (CI1A) framework for Storing
Personal Health Records in the Cloud

Bollamma C K*, Keerthana R M?, Radhika H S, Suhas S Bhat*, Sangeeta Uranakar

Department of Information Science and Engineering,City Engineering College, Doddakalsandra, Bangalore-560061
bollamma.ck@gmail.com® , keerthu.rm@gmail.com? , radhikahs18@gmail.com®, suhas111x@gmail.com*

Abstract

Personal health record (PHR) is an emerging patient-
centric model of health information exchange, but it is
often outsourced to be stored in remote servers, such as
cloud providers. However, there have been wide privacy
concerns as personal health information could be exposed
to those third party servers and to unauthorized parties. ,
which makes it necessary for each patient to encrypt her
PHR data before uploading to the cloud servers..Yet,
issues such as risks of privacy exposure and flexible
access have remained the most important challenges
toward achieving fine-grained, cryptographically
enforced data access control. Here, we propose a novel
patient-centric framework and a suite of mechanisms for
data access control to PHRs stored in semi-trusted
servers. To achieve security and accountability for PHRs,
we leverage a highly decentralized information
accountability framework to keep track of the actual
usage of the users’ PHR in the cloud. In particular, we
propose an object-centered approach that enables
enclosing our logging mechanism together with users’
data and policies. We use the JAR programmable
capabilities to both create a dynamic and traveling
object, and to ensure that any access to the PHR will
trigger authentication and automated logging local to the
JARs. To strengthen user’s control, we also provide
distributed auditing mechanisms. A high degree of patient
privacy is guaranteed. We provide extensive experimental
studies that demonstrate the efficiency and effectiveness
of the proposed approaches.

Index Terms—Personal health Cloud
computing, data privacy, Accountability.

records,

1.Introduction

In recent years, personal health record (PHR) has
emerged as a patient-centric model of health information
exchange. A PHR service allows a patient to create,
manage, and control her personal health data in one place
through the web, which has made the storage, retrieval,
and sharing of the information more efficient. Especially,
each patient is promised the full control of her medical
records and can share her health data with a wide range of
users, including healthcare providers, family members or
friends. Due to the high cost of building and maintaining
specialized data centers, many PHR services are
outsourced to or provided by third-party service
providers, for example, Microsoft HealthVault. While it is
exciting to have convenient PHR services, there are many
security and privacy risks which could impede its wide

adoption. The main concern is about whether the patients
could actually control the sharing of their sensitive
personal health information (PHI), especially when they
are stored on a third-party server which people may not
fully trust. On one hand, although there exist healthcare
regulations such as HIPAA which is recently amended to
incorporate business associates, cloud providers are
usually not covered entities. On the other hand, due to the
high value of the sensitive PHI, the third-party storage
servers are often the targets of various malicious
behaviors which may lead to exposure of the PHI. As a
famous incident, a Department of Veterans.

Affairs database containing sensitive PHI of 26.5 million
military veterans, including their social security numbers
and health problems was stolen by an employee who took
the data home without authorization. To ensure patient-
centric privacy control over their own PHRs, it is essential
to have data access control mechanisms that work with
semi-trusted servers. A feasible and promising approach
would be to encrypt the data before outsourcing.
Basically, the PHR owner herself should decide how to
encrypt her files and to allow which set of users to obtain
access to each file. A PHR file should only be available to
the users who are given the corresponding decryption key,
while remain confidential to the rest of users.

In this paper, we endeavor to study the patient centric,
secure sharing of PHRs stored on semi-trusted servers, In
order to protect the PHR stored on a semi-trusted server,
we propose a novel approach, Cloud Information
Accountability (CIA) framework, based on the notion of
information accountability. Unlike privacy protection
technologies which are built on the hide-it-or-lose-it
perspective, information accountability focuses on
keeping the data usage transparent and trackable. Our
proposed CIA framework provides end-to-end
accountability in a highly distributed fashion. One of the
main innovative features of the CIA framework lies in its
ability of maintaining lightweight and powerful
accountability that combines aspects of access control,
usage control and authentication. By means of the CIA,
data owners can track not only whether or not the service-
level agreements are being honored, but also enforce
access and usage control.

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

204

2. Framework for Patient-centric,
Secure and Scalable PHR sharing

In this section, we describe our novel patient-
centric secure data sharing framework for cloud-
based PHR system.

2.1 Problem Definition

We consider a PHR system where there are
multiple PHR owners and PHR users. The
proposed framework for patient-centric, secure and
scalable PHR sharing on semi-trusted storage under
multi-owner settings is shown in fig 1. The owners
refer to patients who have full control over their
own PHR data, i.e., they can create, manage and
delete it. There is a central server belonging to the

PHR service provider that stores all the owners’
PHRs. The users may come from various aspects;
for example, a friend, a caregiver or a researcher.
Users access the PHR documents through the
server in order to read or write to someone’s PHR,
and a user can simultaneously have access to
multiple owners’ data. Also some users will also
try to access the files beyond their privileges. For
example, a pharmacy may want to obtain the
prescriptions of patients for marketing and boosting
its profits. To do so, they may collude with the
server.

Personal domains Public domains
' © Health care : Insurance
Emergency department : s B (2)1. N domain domain
' hoaoass () CREEREE i
9] ‘ R Pty e sSaEs '\’ = : ?i‘zi "’L’l’ ':,‘;‘ ""’"
L d ! | .
I Public Public
;PHR Owners As Ads
| Wi I E o
I Encrypted PHR /,f' pLs! T | T |
(7) SRR 3) s - 5RO I S 0 A
| O IRLPS de | de
| / |b l | | : | | '
/ (1)@ | |
Ko : I AN
T LI RAE LS
o—(s)— T ' 5 f
Emergency Cloud server : '
staff — | : {Hospctal A :
(3) Obﬁnmm& (5): read data (Friend) ! physician, i{Insurance compan,
m pmldomm | n(s)‘dmm - i (PHR, current | MD. L '#;ctuarv ;
(3) Outsource encrypt 6 (7): provide read (;Ilnesses.) | Interal medicine): healt Insurance}:
by U iagnosis

(4): write data.

Fig.1 The proposed framework for PHR sharing on semi-trusted storage under multi-owner
settings

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings 205

297

Name, DoB, age,

sex, height Conditions Alergies

Medications /
SSN. > prescriptions

PHR

Examination Insurance info Sensitive Info
Physical exam Lab test HIV profie ...
pm oot Blood test Xeray Images

Fig. 2.The attribute hierarchy of files — leaf nodes is atomic file categories while internal nodes
are compound categories. Dark boxes are the categories that a PSD’s data reader has access to

2.1.2 Requirements

To achieve “patient-centric” PHR sharing, a core
requirement is that each patient can control who are
authorized to access to her own PHR documents.
Especially, user controlled read/write access and
revocation are the two core security objectives for
any electronic health record system. The security
and performance requirements are summarized as
follows:

Data confidentiality. Unauthorized users (including
the server) who do not possess enough attributes
satisfying the access policy or do not have proper
key access privileges should be prevented from
decrypting a PHR document, even under user
collusion. Fine-grained access control should be
enforced, meaning different users are authorized to
read different sets of documents. Owner should
come to know who is trying to access the data.
Write access control. We shall prevent the
unauthorized contributors to gain write-access to
owners’ PHRs, while the legitimate contributors
should access the server with accountability. The
data access policies should be flexible, i.e. dynamic
changes to the predefined policies shall be allowed,
and especially the PHRs should be accessible under
emergency scenarios.

Scalability, efficiency and usability. The PHR
system should support users from both the personal
domain and public domains. Since the set of users

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

from the public domain may be large in size and
unpredictable, the system should be highly
scalable, in terms of complexity in key
management, communication, computation and
storage. Additionally, the owners’ efforts in
managing users and keys should be minimized to
enjoy usability.

2.2 Overview of Our Framework

In this section, we present an overview of the
Cloud Information Accountability framework and
discuss how the CIA framework meets the design
requirements discussed in the previous section. The
Cloud Information Accountability framework
proposed in this work conducts automated logging
and distributed auditing of relevant access
performed by any entity, carried out at any point of
time at any cloud service provider. It has two major
components: logger and log harmonizer.

2.2.1 Major Components

There are two major components of the CIA, the
first being the logger, and the second being the log
harmonizer. The logger is the component which is
strongly coupled with the owners PHR, so that it is
downloaded when the data are accessed, and is
copied handles a particular instance or copy of the
owner’s data and is responsible for logging access
to that instance or copy. The log harmonizer forms

298

the central component which allows the owner
access to the log files. The logger is strongly
coupled with user’s data (either single or multiple
data items). Its main tasks include automatically
logging access to data items that it contains,
encrypting the log record using the public key of
the content owner, and periodically sending them
to the log harmonizer. It may also be configured to
ensure that access and usage control policies
associated with the data are honored. For example,
a data owner can specify that user X is only
allowed to view but not to modify the data. The
logger will control the data access even after it is
downloaded by user X. The logger requires only
minimal support from the server (e.g., a valid Java
virtual machine installed) in order to be deployed.
The tight coupling between data and logger, results
in a highly distributed logging system, therefore
meeting our first design requirement. Furthermore,
since the logger does not need to be installed on
any system or require any special support from the
server, it is not very intrusive in its actions, thus
satisfying our fifth requirement. Finally, the logger
is also responsible for generating the error
correction information for each log record and
send the same to the log harmonizer. The error
correction information combined with the
encryption and authentication mechanism provides

8. send merged
logs to the user

a robust and reliable recovery mechanism,
therefore meeting the third requirement. The log
harmonizer is responsible for auditing. Being the
trusted component, the log harmonizer generates
the master key. It holds on to the decryption key for
the IBE key pair, as it is responsible for decrypting
the logs. Alternatively, the decryption can be
carried out on the client end if the path between the
log harmonizer and the client is not trusted. In this
case, the harmonizer sends the key to the client in a
secure key exchange. It supports two auditing
strategies: push and pull. Under the push strategy,
the log file is pushed back to the data owner
periodically in an automated fashion. The pull
mode is an on-demand approach, whereby the log
file is obtained by the data owner as often as
requested. In case there exist multiple loggers for
the same set of data items, the log harmonizer will
merge log records from them before sending back
to the data owner. The log harmonizer is also
responsible for handling log file corruption. In
addition, the log harmonizer can itself carry out
logging in addition to auditing. Separating the
logging and auditing functions improves the
performance. The logger and the log harmonizer
are both implemented as lightweight and portable
JAR files. The JAR file implementation provides
automatic logging functions.

14

7. error
correcting
information|
dump log |:

JAR
Generation

v

Certificate
Authority

J

Cloud Service

L/ v__2. JAR Access
w/ JAR
3. Authentication
Encrypted reguest
Logging 4. Authentication
: response
L 4
Properties file

Fig 3: Overall CIA framework combining data, users, loggers and harmonize

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

299

207

The overall CIA framework, combining data, users, logger
and harmonizer is sketched in Fig. 3. At the beginning,
each owner of the PHR creates a pair of public and private
keys based on Identity-Based Encryption (step 1 in Fig. 3).
This IBE scheme is a Weil-pairing-based IBE scheme,
which protects us

against one of the most prevalent attacks to our
architecture. Using the generated key, the owner will create
a logger component which is a JAR file, to store its data
items. The JAR file includes a set of simple access control
rules specifying whether and how the cloud servers and
possibly other users are authorized to access the content
itself. Then, he sends the JAR file to the cloud service
provider that he subscribes to. To authenticate the CSP to
the JAR (steps 3-5 in Fig. 3), we use OpenSSLbased
certificates, wherein a trusted certificate authority certifies
the CSP. In the event that the access is requested by a user,
we employ SAML-based authentication, wherein a trusted
identity provider issues certificates verifying the user’s
identity based on his username. Once the authentication
succeeds, the service provider (or the user) will be allowed
to access the data enclosed in the JAR. Depending on the
configuration settings defined at the time of creation, the
JAR will provide usage control associated with logging, or
will provide only logging functionality. As for the logging,
each time there is an access to the data, the JAR will
automatically generate a log record encrypt it using the
public key distributed by the data owner, and store it along
with the data (step 6 in Fig. 3). The encryption of the log
file prevents unauthorized changes to the file by attackers.
The data owner could opt to reuse the same key pair for all
JARs or create different key pairs for separate JARs. Using
separate keys can enhance the security without introducing
any overhead except in the initialization phase. In addition,
some error correction information will be sent to the log
harmonizer to handle possible log file corruption (step 7 in
Fig.3. To ensure trustworthiness of the logs, each record is
signed by the entity accessing the content. Further,
individual records are hashed together to create a chain
structure, able to quickly detect possible errors or missing
records. The encrypted log files can later be decrypted and
their integrity verified. They can be accessed by the data
owner or other authorized stakeholders at any time for
auditing purposes with the aid of the log harmonizer (step 8
in Fig. 3). Note that our work is different from traditional
logging methods which use encryption to protect log files.
With only encryption, their logging mechanisms are neither
automatic nor distributed. They require the data to stay
within the boundaries of the centralized system for the
logging to be possible, which is however not suitable in the
cloud.

The main goal of our framework is to provide secure
patient-centric PHR access, accountability and efficient key
management at the same time. The key idea is to divide the
system into multiple security domains (namely, public
domains (PUDs) and personal domains (PSDs)) according
to the different users’ data access requirements. The PUDs
consist of users who make access based on their
professional roles, such as doctors, nurses and medical
researchers. In practice, a PUD can be mapped to an
independent sector in the society, such as the health care,

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

government or insurance sector. For each PSD, its users are
personally associated with a data owner (such as family
members or close friends), and they make accesses to
PHRs based on access rights assigned by the owner.

4 Result analyses

4.1 Security analysis

In this section, we analyze the security of the proposed
PHR sharing solution. First we show it achieves data
confidentiality (i.e., preventing unauthorized read
accesses), by proving the enhanced IBE algorithm.
Accountability is achieved through the logger and log
harmonizer components. In addition, our framework
achieves forward secrecy and security of write access
control.

4.2 Performance analysis

First, we evaluate the scalability and efficiency of our
solution in terms of storage, communication and
computation costs. We compare with previous schemes in
terms of cipher text size, user secret key size, and public
key/information size. Our analysis is based on the worst
case where each user may potentially access part of every
owners’ data. In the experiments, we first examine the time
taken to create a log file and then measure the overhead in
the system. With respect to time, the overhead can occur at
three points: during the authentication, during encryption
of a log record, and during the merging of the logs. Also,
with respect to storage overhead, we notice that our
architecture is very lightweight, in that the only data to be
stored are given by the actual files and the associated logs.
Further, JAR act as a compressor of the files that it handles.
In particular, multiple files can be handled by the same
logger component. To this extent, we investigate whether a
single logger component, used to handle more than one
file, results in storage overhead.

5 Conclusion

In this paper, we have proposed a novel framework of
secure sharing of personal health records in cloud
computing. Considering partially trustworthy cloud
servers, we argue that to fully realize the patient-centric
concept, patients shall have complete control of their own
privacy through encrypting their PHR files to allow fine-
grained access. The framework addresses the unique
challenges brought by multiple PHR owners and users, in
that we greatly reduce the complexity of key management
while enhance the privacy guarantees compared with
previous works. We utilize IBE to encrypt the PHR data, so
that patients can allow access not only by personal users,
but also various users from public domains with different
professional roles, qualifications and affiliations.
Furthermore, through implementation and simulation, we
show that our solution is both scalable and efficient.

300

208

References

[1] Smitha Sundareswaran, Anna C. Squicciarini, Member, IEEE,
and Dan Lin “Ensuring Distributed Accountability for Data
Sharing in the Cloud” |EEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING VOL.9 NO.4
YEAR 2012

[2] Scalable and Secure Sharing of Personal Health Records in
Cloud Computing using

Attribute-based Encryption Ming Li Member, IEEE, Shucheng
Yu, Member, IEEE, Yao Zheng, Student Member, IEEE, Kui Ren,
Senior Member, IEEE, and Wenjing Lou, Senior Member, IEEE
[3] M. Li, S. Yu, K. Ren, and W. Lou, “Securing personal health
records in cloud computing: Patient-centric and fine-grained data
access control in multi-owner settings,” in SecureComm’10, Sept.
2010, pp. 89-106

[4] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private
keyword search over.

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

301
209

