

Using Cloud Information Accountability (CIA) framework for Storing

Personal Health Records in the Cloud

Bollamma C K
1
 , Keerthana R M

2
, Radhika H S

3
, Suhas S Bhat

4
, Sangeeta Uranakar

5

Department of Information Science and Engineering,City Engineering College, Doddakalsandra, Bangalore-560061

bollamma.ck@gmail.com1 , keerthu.rm@gmail.com2 , radhikahs18@gmail.com3, suhas111x@gmail.com4

Abstract

 Personal health record (PHR) is an emerging patient-

centric model of health information exchange, but it is

often outsourced to be stored in remote servers, such as

cloud providers. However, there have been wide privacy

concerns as personal health information could be exposed

to those third party servers and to unauthorized parties. ,

which makes it necessary for each patient to encrypt her

PHR data before uploading to the cloud servers..Yet,

issues such as risks of privacy exposure and flexible

access have remained the most important challenges

toward achieving fine-grained, cryptographically

enforced data access control. Here, we propose a novel

patient-centric framework and a suite of mechanisms for

data access control to PHRs stored in semi-trusted

servers. To achieve security and accountability for PHRs,

we leverage a highly decentralized information

accountability framework to keep track of the actual

usage of the users’ PHR in the cloud. In particular, we

propose an object-centered approach that enables

enclosing our logging mechanism together with users’

data and policies. We use the JAR programmable

capabilities to both create a dynamic and traveling

object, and to ensure that any access to the PHR will

trigger authentication and automated logging local to the

JARs. To strengthen user’s control, we also provide

distributed auditing mechanisms. A high degree of patient

privacy is guaranteed. We provide extensive experimental

studies that demonstrate the efficiency and effectiveness

of the proposed approaches.

Index Terms—Personal health records, Cloud

computing, data privacy, Accountability.

1.Introduction

In recent years, personal health record (PHR) has

emerged as a patient-centric model of health information

exchange. A PHR service allows a patient to create,

manage, and control her personal health data in one place

through the web, which has made the storage, retrieval,

and sharing of the information more efficient. Especially,

each patient is promised the full control of her medical

records and can share her health data with a wide range of

users, including healthcare providers, family members or

friends. Due to the high cost of building and maintaining

specialized data centers, many PHR services are

outsourced to or provided by third-party service

providers, for example, Microsoft HealthVault. While it is

exciting to have convenient PHR services, there are many

security and privacy risks which could impede its wide

adoption. The main concern is about whether the patients

could actually control the sharing of their sensitive

personal health information (PHI), especially when they

are stored on a third-party server which people may not

fully trust. On one hand, although there exist healthcare

regulations such as HIPAA which is recently amended to

incorporate business associates, cloud providers are

usually not covered entities. On the other hand, due to the

high value of the sensitive PHI, the third-party storage

servers are often the targets of various malicious

behaviors which may lead to exposure of the PHI. As a

famous incident, a Department of Veterans.

Affairs database containing sensitive PHI of 26.5 million

military veterans, including their social security numbers

and health problems was stolen by an employee who took

the data home without authorization. To ensure patient-

centric privacy control over their own PHRs, it is essential

to have data access control mechanisms that work with

semi-trusted servers. A feasible and promising approach

would be to encrypt the data before outsourcing.

Basically, the PHR owner herself should decide how to

encrypt her files and to allow which set of users to obtain

access to each file. A PHR file should only be available to

the users who are given the corresponding decryption key,

while remain confidential to the rest of users.

In this paper, we endeavor to study the patient centric,

secure sharing of PHRs stored on semi-trusted servers, In

order to protect the PHR stored on a semi-trusted server,

we propose a novel approach, Cloud Information

Accountability (CIA) framework, based on the notion of

information accountability. Unlike privacy protection

technologies which are built on the hide-it-or-lose-it

perspective, information accountability focuses on

keeping the data usage transparent and trackable. Our

proposed CIA framework provides end-to-end

accountability in a highly distributed fashion. One of the

main innovative features of the CIA framework lies in its

ability of maintaining lightweight and powerful

accountability that combines aspects of access control,

usage control and authentication. By means of the CIA,

data owners can track not only whether or not the service-

level agreements are being honored, but also enforce

access and usage control.

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

204

297

2. Framework for Patient-centric,

Secure and Scalable PHR sharing

In this section, we describe our novel patient-

centric secure data sharing framework for cloud-

based PHR system.

2.1 Problem Definition
We consider a PHR system where there are

multiple PHR owners and PHR users. The

proposed framework for patient-centric, secure and

scalable PHR sharing on semi-trusted storage under

multi-owner settings is shown in fig 1. The owners

refer to patients who have full control over their

own PHR data, i.e., they can create, manage and

delete it. There is a central server belonging to the

PHR service provider that stores all the owners’

PHRs. The users may come from various aspects;

for example, a friend, a caregiver or a researcher.

Users access the PHR documents through the

server in order to read or write to someone’s PHR,

and a user can simultaneously have access to

multiple owners’ data. Also some users will also

try to access the files beyond their privileges. For

example, a pharmacy may want to obtain the

prescriptions of patients for marketing and boosting

its profits. To do so, they may collude with the

server.

Fig.1 The proposed framework for PHR sharing on semi-trusted storage under multi-owner
settings

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

205

298

Fig. 2.The attribute hierarchy of files – leaf nodes is atomic file categories while internal nodes

are compound categories. Dark boxes are the categories that a PSD’s data reader has access to

2.1.2 Requirements

To achieve ―patient-centric‖ PHR sharing, a core

requirement is that each patient can control who are

authorized to access to her own PHR documents.

Especially, user controlled read/write access and

revocation are the two core security objectives for

any electronic health record system. The security

and performance requirements are summarized as

follows:

Data confidentiality. Unauthorized users (including

the server) who do not possess enough attributes

satisfying the access policy or do not have proper

key access privileges should be prevented from

decrypting a PHR document, even under user

collusion. Fine-grained access control should be

enforced, meaning different users are authorized to

read different sets of documents. Owner should

come to know who is trying to access the data.

Write access control. We shall prevent the

unauthorized contributors to gain write-access to

owners’ PHRs, while the legitimate contributors

should access the server with accountability. The

data access policies should be flexible, i.e. dynamic

changes to the predefined policies shall be allowed,

and especially the PHRs should be accessible under

emergency scenarios.

Scalability, efficiency and usability. The PHR

system should support users from both the personal

domain and public domains. Since the set of users

from the public domain may be large in size and

unpredictable, the system should be highly

scalable, in terms of complexity in key

management, communication, computation and

storage. Additionally, the owners’ efforts in

managing users and keys should be minimized to

enjoy usability.

2.2 Overview of Our Framework

In this section, we present an overview of the

Cloud Information Accountability framework and

discuss how the CIA framework meets the design

requirements discussed in the previous section. The

Cloud Information Accountability framework

proposed in this work conducts automated logging

and distributed auditing of relevant access

performed by any entity, carried out at any point of

time at any cloud service provider. It has two major

components: logger and log harmonizer.

2.2.1 Major Components

There are two major components of the CIA, the

first being the logger, and the second being the log

harmonizer. The logger is the component which is

strongly coupled with the owners PHR, so that it is

downloaded when the data are accessed, and is

copied handles a particular instance or copy of the

owner’s data and is responsible for logging access

to that instance or copy. The log harmonizer forms

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

206

299

the central component which allows the owner

access to the log files. The logger is strongly

coupled with user’s data (either single or multiple

data items). Its main tasks include automatically

logging access to data items that it contains,

encrypting the log record using the public key of

the content owner, and periodically sending them

to the log harmonizer. It may also be configured to

ensure that access and usage control policies

associated with the data are honored. For example,

a data owner can specify that user X is only

allowed to view but not to modify the data. The

logger will control the data access even after it is

downloaded by user X. The logger requires only

minimal support from the server (e.g., a valid Java

virtual machine installed) in order to be deployed.

The tight coupling between data and logger, results

in a highly distributed logging system, therefore

meeting our first design requirement. Furthermore,

since the logger does not need to be installed on

any system or require any special support from the

server, it is not very intrusive in its actions, thus

satisfying our fifth requirement. Finally, the logger

is also responsible for generating the error

correction information for each log record and

send the same to the log harmonizer. The error

correction information combined with the

encryption and authentication mechanism provides

a robust and reliable recovery mechanism,

therefore meeting the third requirement. The log

harmonizer is responsible for auditing. Being the

trusted component, the log harmonizer generates

the master key. It holds on to the decryption key for

the IBE key pair, as it is responsible for decrypting

the logs. Alternatively, the decryption can be

carried out on the client end if the path between the

log harmonizer and the client is not trusted. In this

case, the harmonizer sends the key to the client in a

secure key exchange. It supports two auditing

strategies: push and pull. Under the push strategy,

the log file is pushed back to the data owner

periodically in an automated fashion. The pull

mode is an on-demand approach, whereby the log

file is obtained by the data owner as often as

requested. In case there exist multiple loggers for

the same set of data items, the log harmonizer will

merge log records from them before sending back

to the data owner. The log harmonizer is also

responsible for handling log file corruption. In

addition, the log harmonizer can itself carry out

logging in addition to auditing. Separating the

logging and auditing functions improves the

performance. The logger and the log harmonizer

are both implemented as lightweight and portable

JAR files. The JAR file implementation provides

automatic logging functions.

Fig 3: Overall CIA framework combining data, users, loggers and harmonize

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

207

300

The overall CIA framework, combining data, users, logger

and harmonizer is sketched in Fig. 3. At the beginning,

each owner of the PHR creates a pair of public and private

keys based on Identity-Based Encryption (step 1 in Fig. 3).

This IBE scheme is a Weil-pairing-based IBE scheme,

which protects us

against one of the most prevalent attacks to our

architecture. Using the generated key, the owner will create

a logger component which is a JAR file, to store its data

items. The JAR file includes a set of simple access control

rules specifying whether and how the cloud servers and

possibly other users are authorized to access the content

itself. Then, he sends the JAR file to the cloud service

provider that he subscribes to. To authenticate the CSP to

the JAR (steps 3-5 in Fig. 3), we use OpenSSLbased

certificates, wherein a trusted certificate authority certifies

the CSP. In the event that the access is requested by a user,

we employ SAML-based authentication, wherein a trusted

identity provider issues certificates verifying the user’s

identity based on his username. Once the authentication

succeeds, the service provider (or the user) will be allowed

to access the data enclosed in the JAR. Depending on the

configuration settings defined at the time of creation, the

JAR will provide usage control associated with logging, or

will provide only logging functionality. As for the logging,

each time there is an access to the data, the JAR will

automatically generate a log record encrypt it using the

public key distributed by the data owner, and store it along

with the data (step 6 in Fig. 3). The encryption of the log

file prevents unauthorized changes to the file by attackers.

The data owner could opt to reuse the same key pair for all

JARs or create different key pairs for separate JARs. Using

separate keys can enhance the security without introducing

any overhead except in the initialization phase. In addition,

some error correction information will be sent to the log

harmonizer to handle possible log file corruption (step 7 in

Fig.3. To ensure trustworthiness of the logs, each record is

signed by the entity accessing the content. Further,

individual records are hashed together to create a chain

structure, able to quickly detect possible errors or missing

records. The encrypted log files can later be decrypted and

their integrity verified. They can be accessed by the data

owner or other authorized stakeholders at any time for

auditing purposes with the aid of the log harmonizer (step 8

in Fig. 3). Note that our work is different from traditional

logging methods which use encryption to protect log files.

With only encryption, their logging mechanisms are neither

automatic nor distributed. They require the data to stay

within the boundaries of the centralized system for the

logging to be possible, which is however not suitable in the

cloud.

The main goal of our framework is to provide secure

patient-centric PHR access, accountability and efficient key

management at the same time. The key idea is to divide the

system into multiple security domains (namely, public

domains (PUDs) and personal domains (PSDs)) according

to the different users’ data access requirements. The PUDs

consist of users who make access based on their

professional roles, such as doctors, nurses and medical

researchers. In practice, a PUD can be mapped to an

independent sector in the society, such as the health care,

government or insurance sector. For each PSD, its users are

personally associated with a data owner (such as family

members or close friends), and they make accesses to

PHRs based on access rights assigned by the owner.

4 Result analyses

4.1 Security analysis

In this section, we analyze the security of the proposed

PHR sharing solution. First we show it achieves data

confidentiality (i.e., preventing unauthorized read

accesses), by proving the enhanced IBE algorithm.

Accountability is achieved through the logger and log

harmonizer components. In addition, our framework

achieves forward secrecy and security of write access

control.

4.2 Performance analysis

First, we evaluate the scalability and efficiency of our

solution in terms of storage, communication and

computation costs. We compare with previous schemes in

terms of cipher text size, user secret key size, and public

key/information size. Our analysis is based on the worst

case where each user may potentially access part of every

owners’ data. In the experiments, we first examine the time

taken to create a log file and then measure the overhead in

the system. With respect to time, the overhead can occur at

three points: during the authentication, during encryption

of a log record, and during the merging of the logs. Also,

with respect to storage overhead, we notice that our

architecture is very lightweight, in that the only data to be

stored are given by the actual files and the associated logs.

Further, JAR act as a compressor of the files that it handles.

In particular, multiple files can be handled by the same

logger component. To this extent, we investigate whether a

single logger component, used to handle more than one

file, results in storage overhead.

5 Conclusion

In this paper, we have proposed a novel framework of

secure sharing of personal health records in cloud

computing. Considering partially trustworthy cloud

servers, we argue that to fully realize the patient-centric

concept, patients shall have complete control of their own

privacy through encrypting their PHR files to allow fine-

grained access. The framework addresses the unique

challenges brought by multiple PHR owners and users, in

that we greatly reduce the complexity of key management

while enhance the privacy guarantees compared with

previous works. We utilize IBE to encrypt the PHR data, so

that patients can allow access not only by personal users,

but also various users from public domains with different

professional roles, qualifications and affiliations.

Furthermore, through implementation and simulation, we

show that our solution is both scalable and efficient.

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

208

301

References

[1] Smitha Sundareswaran, Anna C. Squicciarini, Member, IEEE,

and Dan Lin “Ensuring Distributed Accountability for Data

Sharing in the Cloud” IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING VOL.9 NO.4

YEAR 2012

[2] Scalable and Secure Sharing of Personal Health Records in

Cloud Computing using

Attribute-based Encryption Ming Li Member, IEEE, Shucheng

Yu, Member, IEEE, Yao Zheng, Student Member, IEEE, Kui Ren,

Senior Member, IEEE, and Wenjing Lou, Senior Member, IEEE

[3] M. Li, S. Yu, K. Ren, and W. Lou, ―Securing personal health

records in cloud computing: Patient-centric and fine-grained data

access control in multi-owner settings,‖ in SecureComm’10, Sept.

2010, pp. 89–106

[4] M. Li, S. Yu, N. Cao, and W. Lou, ―Authorized private

keyword search over.

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

209

