Use of Vegetable Peel Waste for Biofertilizer Production

Shefali Singh

Department of Biosciences and ICEIR-3, Faculty of Science, Integral University, Kursi road, Lucknow, 226026, Uttar Pradesh, India Shifa Suhail

Department of Biosciences and ICEIR-3, Faculty of Science, Integral University, Kursi road, Lucknow, 226026, Uttar Pradesh, India Smita Rai

Department of Biosciences and ICEIR-3, Faculty of Science, Integral University, Kursi road, Lucknow, 226026, Uttar Pradesh, India

ReenaVishvakarma

Department of Bioengineering, Faculty of Science, Integral University, Kursi road, Lucknow, 226026, Uttar Pradesh, India Poonam Sharma

Department of Bioengineering, Faculty of Science, Integral University, Kursi road, Lucknow, 226026, Uttar Pradesh, India Swati Sharma

Department of Biosciences and ICEIR-3, Faculty of Science, Integral University, Kursi road, Lucknow, 226026, Uttar Pradesh, India sw_sh@rediffmail.com

Abstract

The fast-growing production of waste from agricultural activities and food processing operations especially concerning vegetable peels has created significant environmental concerns. The wastes from agricultural activities contain rich nutrient levels and bioactive materials which allow transformation into biofertilizers. This study aims to evaluate the effectiveness of using vegetable peel waste as an ingredient for biofertilizer production through enrichment culture methods. This study examines the specific peel varieties and microbial strains used in processing methods while measuring their effects on soil fertility and crop production. Utilizing peel waste according to circular economy principles helps push sustainable agriculture forward while reducing landfill waste and promoting environmental health.

Keywords:Biofertilizer, vegetable peel, sustainable agriculture, food waste management

I. INTRODUCTION

Population growth and changes in diet (UNISEF., 2021) serve as mainstays in the food supply, therefore worsening food and insecurity[1] these phenomena are threatening human life. The emergence of sustainable agriculture has sparked new interest in biologically-based substitutes for chemical fertilizers. Biofertilizerswill serve as one, as they contain beneficial microorganisms that will improve soil health and therefore allow plants to be more easily cultivated[2]. Additionally, the disposal of organic waste particularly from vegetable

peel waste is an environmental problem that address. important to Excessive disposable of organic waste from household, retailing, and food processing vehicles is observed through vegetable peels of bananas, potatoes, carrots, cucumbers, and other vegetables which can potentially impact land and water bodies, if not handled correctly[3]. These waste products could be direct targets of composting (using a with effective fermentation process microbial inoculants Trichoderma. Azotobacter, or Bacillus) to generate potentially biological fertilizers. rich Although there are benefits, microbial contamination and standardization of the process are some issues. However, with appropriate management and technological enhancement, vegetable peel biofertilizers are a feasible and sustainable alternative to modern agriculture and environmental issues.

II.COMPOSITION OF VEGETABLE PEELS

Vegetable peels, often considered as kitchen waste, are in fact a rich source of essential nutrients and bioactive compounds that contribute significantly to soil fertility and plant health when recycled or composted. Common peels such as those from banana, potato, carrot, onion, and tomato possess a valuable nutritional profile.

II.I.MACRONUTRIENTS

Vegetable peels are abundant in macronutrients like Nitrogen (N), Phosphorus (P), and Potassium (K)collectively known as NPK. These are critical for plant growth:

- Nitrogen aids in leaf and stem development.
- Phosphorus supports root growth and flowering.
- Potassium enhances overall plant vigor and disease resistance.

II.II.MICRONUTRIENTS

In addition to macronutrients, peels also contain trace elements such as Iron (Fe). Zinc (Zn), Manganese (Mn), Magnesium (Mg). These micronutrients play vital in enzymatic functions, roles chlorophyll synthesis, and metabolic processes in plants.

II.III.BIOACTIVE COMPOUNDS

Peels are rich in phenolic compounds and antioxidants, which have antimicrobial properties and contribute to the health of the soil microbiome. These compounds can enhance the soil's ability to support beneficial microbes and suppress pathogens.

II.IV.ORGANIC MATTER

High in organic matter, vegetable peels improve soil texture, water retention, and aeration. They provide a carbon source for soil microorganisms, thereby enhancing microbial activity, which is crucial for nutrient cycling and soil fertility.

III. BIOFERTILIZER PRODUCTION METHODS AND ROLE OF MICROBIAL INOCULANT

Biofertilizers are natural substances containing living microorganisms, alternative to chemical fertilizer, promotes to plant growth and yield.

III.I.SOLID-STATE COMPOSTING- It

is a biological process which converts organic wastes into useful compost. Vegetables peels are rich in carbon source (e.g., dry leaves) and also inoculated beneficial microbes such as *Trichodermahazianum* and *Bacillus subtilis* which promotes decomposition and nutrient release.

III.II.LIQUID FERMENTATION- Also called as submerged fermentation, It is a wet compost where vegetable peels are cut down in liquid media along with microorganisms.

III.III.VERMICOMPOSTING-

Incorporating earthworms (e.g., *Lumbricusterrestris*) that breakdown organic matter into nutrient rich compost.

Vegetable peels (e.g., tomato, potato, cucurbits etc.) uses as a waste make biofertilizer, microbial inoculants play an important role in converting the waste into rich nutrient components.

TABLE I: BIOFERTILIZER PRODUCTION
TECHNIQUES AND THE FUNCTIONAL ROLE
OF MICROBIAL INOCULANTS IN
SUSTAINABLE AGRICULTURE

Biofer tilizer Type	Prod uctio n Meth od	Microbi al Inocula nt Used	Role of Microb ial Inocul ant	Refe renc es
Nitrog	Sterili	Rhizobiu	Conver	[4]
en-	zed	m,	ts	
fixing	broth	Azotoba	atmosp	
Biofert	media	cter,	heric	
ilizers	ferme	Azospiril	nitroge	
	ntatio	lum,	n into a	

	n in biorea ctors	Anabaen a	plant- usable form (ammo nia)	
Phosph ate- solubil izing Biofert ilizers	For subm erged or solid-state ferme ntatio n utilizi ng rock phosp hate substrates	Bacillus, Pseudo monas, Aspergil lus	Conver ts insolub le phosph ates into soluble phosph ates for plant uptake	[5]
Potassi um- solubil izing Biofert ilizers	Utiliz ing mica or feldsp ar- based substr ates ferme ntatio n	Bacillus mucilagi nosus, Frateuri aauranti a	Activat es and release potassi um from soil minera ls	[6]
Mycor rhizal Biofert ilizers	Grow n in pot- based syste ms with	Glomus spp. (AM fungi)	Increas e nutrien t and water uptake by	[7]

		Ī	T	1
	host		formin	
	plants		g	
	or on		symbio	
	root		tic	
	organ		associa	
	cultur		tions	
	es		with	
			root	
			nodule	
			s	
Zinc-	Utilisi	Bacillus,	Transf	[8]
solubil	ng	Pseudo	orm	
izing	zinc	monas	insolub	
Biofert	oxide	spp.	le zinc	
ilizers	or		compo	
	zinc		unds to	
	carbo		soluble	
	nate		forms	
	as		accessi	
	substr		ble to	
	ates		plants	
	for			
	cultiv			
	ation			
Cyano	Grow	Nostoc,	Fixatio	[9]
bacteri	n in	Anabaen	n of	
al	open	a,	nitroge	
Biofert	tanks	Oscillat	n	
ilizers	or	oria	improv	
	racew		es soil	
	ay		texture,	
	ponds		and	
	under		add	
	the		organic	
	sunlig		matter	
	ht			
Compo	Enric	Consorti	Increas	[10]
st-	hment	a of	e	
based	of	benefici	decom	
Biofert	comp	al	positio	

ilizers	ost	bacteria	n,	
	with	and	nutrien	
	specif	fungi	t	
	ic		content	
	micro		, and	
	bial		microb	
	strain		ial	
	s		diversit	
			y of	
			compo	
			st	

IV. BENEFITS OF PEEL-BASED BIOFERTILIZERS

TABLE II: SUSTAINABLE BENEFITS OF UTILIZING PEEL-BASED BIOFERTILIZERS DERIVED FROM VEGETABLE AND FRUIT WASTE

Benefit	Description	Refer
Category		ences
Nutrient	Provides essential	[11]
Enrichment	macronutrients (N,	
	P, K) and	
	micronutrients (Fe,	
	Zn, Mn, Mg) for	
	plant growth.	
Soil Fertility	Enhances organic	[12]
Improvement	matter content,	
	improving soil	
	structure, aeration,	
	and water retention.	
Cost-	Utilizes kitchen and	[13]
Effective	agricultural waste,	
	reducing the cost of	
	chemical fertilizers.	
Eco-Friendly	Reduces waste	[14]
	disposal issues and	
	lowers	

	environmental	
	pollution.	
Stimulates	Supplies organic	
Microbial	substrates that	
Activity	promote the growth	
	of beneficial soil	
	microbes.	
Enhances	Improves seed	[15]
Plant Growth	germination, root	
	development, and	
	overall plant vigor.	
Pest and	Contains bioactive	[16]
Disease	compounds like	
Resistance	phenolics and	
	antioxidants that can	
	suppress pathogens.	
Sustainable	Encourages circular	[17]
Resource Use	economy practices	
	by recycling	
	biodegradable waste.	

V. SCIENTIFIC EVIDENCE AND CASE STUDIES

An increasing amount of scientific studies shows the evidence behind peel-based representing biofertilizers. more sustainable input in agriculture. Several studies have shown that vegetable peels, such as banana, potato, carrot, onion, and tomato peels, can be considered abundant sources of the most essential nutrients for plants macronutrients and as Khanyilefound micronutrients[18]. bananas and potato peel additions to the soil greatly impacted the nutrient status as well as microbial biomass in soils due to the high levels of potassium, phosphorus, and nitrogen peel biofertilizers[19]. Inaddition, Hidayatifound that seed extracts

of tomato and carrot peels enhanced germination rates and seedling growth of mung bean seeds[20]. The authors credited the improvements to bioactive compounds in the peels such as phenolics and antioxidants that increase the metabolic and hormonal activity of plants. Similarly, Chinnaduraiobserved the increase ofbeneficial microbial species (such as Azotobacter and Bacillus species) in composts containing onion and banana peels[21]. The study also determined that not only the peels enhance beneficial microbial species, but also produced organic acids and sugars that promote microbial growth for nutrient cycling processes in soils[22]. Field trials also showed significant evidence.

VI. CHALLENGES AND FUTURE PROSPECTS

Despite the astonishing benefits of peelderived biofertilizers, various limitations restrict their use. One of the most relevant issues is the lack of standardized processing protocols for peel types which lead to variability in nutrient content and efficacy. Additionally, raw peels can attract pests or create offensive odors, which diminishes the chance of sustainable use in large agricultural operations without proper management practices and sufficiently them. maturing or composting awareness of the scientific principles and evidence regarding the long- term benefits of biofertilizers and the marketing for plant health borne from organic waste is still low among farmers and agricultural resource professionals. Organic waste unregulated commodity which causes lack

of control options for quality and may reduce a commercial interest in the product as well as farmer faith in the product itself. Notwithstanding, the future value of peelderived biofertilizers is encouraging. The trend toward sustainability and interest in the valorization of waste is becoming a pathway to convert organic residues into value-added products. Advances microbial technologies and fermentation technology will offer optimizations to the efficacy of timing peel-derived biofertilizer applications as well as control on shelf-life of these products. Ultimately, research opportunities may be possible with peel formulations containing a specific microbial inoculum combination to address soil conditions and nutrient deficiencies that persist.

VII. CONCLUSION

The innovative approach of converting vegetable peel waste into biofertilizers provides a sustainable solution for managing organic waste. This method generates a cost-effective alternative to chemical fertilizers that boosts both soil health and plant growth. Implementing this practice supports both circular economy progress and sustainable farming methods especially in areas where resources are scarce.

Consent for publication

None declare

Conflict of interest

None declare

Acknowledgement

The authors would like to express my sincere gratitude and thanks to Integral University for providing DST- FIST (SR/FST/LS-1/2017/13(C) sponsored department of Biosciences and Integral University for providing research facilities.

References

- [1]. Vågsholm I, Arzoomand NS,

 Boqvist S: Food Security, Safety,
 and Sustainability—Getting the

 Trade-Offs Right. Front Sustain

 Food Syst 2020, 4.
- [2]. Chen J, Lü S, Zhang Z, Zhao X, Li X, Ning P, Liu M: Environmentally friendly fertilizers: A review of materials used and their effects on the environment. *Science of The Total Environment* 2018, 613–614:829–839.
- [3]. Haldar D, Shabbirahmed AM,
 Singhania RR, Chen C-W, Dong CD, Ponnusamy VK, Patel AK:
 Understanding the management of
 household food waste and its
 engineering for sustainable
 valorization- A state-of-the-art

- review. *Bioresource Technology* 2022, 358:127390.
- [4]. Suthar H, Hingurao K, Vaghashiya J,
 Parmar J: Fermentation: A Process
 for Biofertilizer Production. In

 Microorganisms for Green

 Revolution: Volume 1: Microbes for

 Sustainable Crop Production. Edited
 by Panpatte DG, Jhala YK, Vyas

 RV, Shelat HN. Springer; 2017:229–
 252.
- [5]. Bagga D, Chauhan S, Bhavanam A, G. N. N, Meena SS, Mohanty A: Recent Advancements in Fermentation Strategies for Mass Production and Formulation of Biofertilizers: Towards Waste Valorization. *J Soil Sci Plant Nutr* 2024, 24:5868–5897.
- [6]. Ghosh S, Banerjee ,Sonali, Prajapati
 ,Jyoti, Mukherjee ,Abhishek, and
 Bhattacharyya P: Appraisal of MicaBased Potassium Mobilizing

- Bacterial Biofertilizers:
 Revolutionizing Soil Fertility and
 Plant Growth Employing MultiMachine Learning Models.

 Communications in Soil Science and
 Plant Analysis [date unknown], 0:1–
 23.
- [7]. Wong WS, Zhong HT, Cross AT,
 Yong JWH: Plant Biostimulants in
 Vermicomposts. In *The Chemical*Biology of Plant Biostimulants. .

 John Wiley & Sons, Ltd; 2020:155–
 180.
- [8]. Sehrawat A, Sindhu SS: Zinc-Solubilizing Microorganisms:
 Contributions in Nutrient
 Availability and Implications for
 Crop Productivity in Sustainable
 Agriculture. In Plant Holobiome
 Engineering for Climate-Smart
 Agriculture. Edited by Sayyed RZ,
 Ilyas N. Springer Nature; 2024:183–213.

- [9]. Jose S: Cyanobacteria-microalgae consortia as bio- inoculants for enhancing soil fertility and plant growth. 2024,
- [10]. Sharma A, Kuthiala T, Thakur K,

 Thatai KS, Singh G, Kumar P, Arya

 SK: Kitchen waste: sustainable

 bioconversion to value-added

 product and economic challenges.

 Biomass Conv Bioref 2025,

 15:1749–1770.
- [11]. Abd-Elsalam KA, Hashim AF,
 Abdelkhalek TE, Hassan RK:
 Encapsulation of Soil Nutrients for
 Plant Growth and Development. In
 Biopolymeric Nanoparticles for
 Agricultural Applications. Edited by
 Abd-Elsalam KA, Hashim AF,
 Ahmed FK, Thomas S. Springer
 Nature Switzerland; 2024:145–174.
- [12]. Xing Y, Wang X, Mustafa A:

 Exploring the link between soil

 health and crop productivity.

- Ecotoxicology and Environmental Safety 2025, 289:117703.
- [13]. Sharma A, Kuthiala T, Thakur K,

 Thatai KS, Singh G, Kumar P, Arya

 SK: Kitchen waste: sustainable

 bioconversion to value-added

 product and economic challenges.

 Biomass Conv Bioref 2025,

 15:1749–1770.
- [14]. Kanagaraj J, Senthilvelan T, Panda RC, Kavitha S: Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: a comprehensive review. *Journal of Cleaner Production* 2015, 89:1–17.
- [15]. Riseh RS, Vazvani MG, Vatankhah M, Kennedy JF: Chitosan coating of seeds improves the germination and growth performance of plants: A Rreview. *International Journal of Biological Macromolecules* 2024, 278:134750.

- [16]. Khanday AH, Badroo IA, Wagay
 NA, Rafiq S: Role of Phenolic
 Compounds in Disease Resistance to
 Plants. In *Plant Phenolics in Biotic*Stress Management. Edited by Lone
 R, Khan S, Mohammed Al-Sadi A.
 Springer Nature; 2024:455–479.
- [17]. Islam NF, Gogoi B, Saikia R, Yousaf B, Narayan M, Sarma H:

 Encouraging circular economy and sustainable environmental practices by addressing waste management and biomass energy production.

 Regional Sustainability 2024, 5:100174.
- [18]. Howeidi MAR, Manea AI, Slomy

 AK: Effect of Bio-Fertilizer and

 Banana Peel Extract on the

 Vegetative Traits and Yield of Carrot

 Plants. *IOP Conf Ser: Earth Environ*Sci 2023, 1158:042035.
- [19]. Khanyile N, Dlamini N, Masenya A,

 Madlala NC, Shezi S: Preparation of

- Biofertilizers from Banana Peels:
 Their Impact on Soil and Crop
 Enhancement. *Agriculture* 2024,
 14:1894.
- [20]. Hidayati N: THE EFFECT OF

 BANANA PEEL LIQUID

 ORGANIC FERTILIZER (LOF)

 AND GROWING MEDIA ON

 PRODUCTION OF MUNG BEAN

 (Vigna radiata L.). 2025,
- [21]. Chinnadurai, d., udhayaraja, d., & ramya, a. (2024).Production of
 Inulinase by Bacillus sp –recycling
 of agro waste using Banana peel,
 Garlic and Corn cob. *APSR* 2024, 26.
- [22]. Kiruba N, J. M., & Saeid, A.
 (2022).An Insight into Microbial
 Inoculants for Bioconversion of
 Waste Biomass into Sustainable
 "Bio-Organic" Fertilizers: A
 Bibliometric Analysis and
 Systematic Literature Review.