
 Use of Genetic Algorithms in Rigorous

University Timetabling

1
 Chikwiriro Hilton,

2
Chaka Pharaoh,

3
Mavhemwa Prudence M ,

4
Ndumiyana David

Computer Science Department

Bindura University of Science Education, Zimbabwe

Bindura, Zimbabwe

Abstract—The timetable problem is a class of computationally

NP-complete decision problems; this means that no polynomial-

time algorithm or method of solving it is in a reasonable amount

of time is known. Manual courses timetabling is a complex

administrative and time consuming task for the timetablers in the

faculty, it is sometimes impossible to produce totally feasible

solution given considering the tightness of the timetable

constraints. The research seeks to assess user perception on

automated course timetabling system which use multi-phase

genetic algorithm, in solving their respective departments’ course

timetable problems. This research explores case studies of others

institutions timetabling/scheduling problem as well as other

approaches of scheduling and optimisation problems which are

linked to the timetable problem. A course timetable system was

designed and implemented using the multi-phase genetic

algorithm and knowledge about the timetable constraints was

incorporated into the genetic operators, fitness function and in

the repair strategy.

Keywords—Course class, Fitness function, hard constraints:

Multi-phase, Scheduling, Soft Constraints, Timetabling

I. INTRODUCTION

Sometimes, the words timetable and schedule are loosely
used as if were synonymous, but, there can be certain
distinctions between these terms observed in the literature
[1][2]. A timetable shows when particular events are to take
place. For example a class timetable shows when particular
events are to take place and in such a way try satisfying as
nearly as possible a set of desirable objectives. A schedule will
normally include times at which activities are to take place,
statements as to which resources will be assigned where and
work plans for individual personnel or machines. It is in such
a way as to minimise the total cost of some set of the resources
used. The margin between the two words may be somehow
trivial as in their broadest sense they solve practical problems
relating to the allocation, subject to constraints, of resources to
objects being placed in space-time, using or developing
whatever tools may be appropriate. According to [20], a
timetable is an optimum allocation of activities, actions or
events to a set of objects in space-time matrix to satisfy a set
of desirable constraints. A typical constraint is a restriction
that activities which are using the same resource such as a
room, machine and an operator can not overlap in time. This is
because a resource maybe of a certain capacity, restricting the
number of activities which can use it at the same time.

The nature of the timetable problem may vary from one

university to another and for the past years researches have

been conducted to consider an approach suitable for the
institutions‟ problem context. For instance, the Purdue
University, in Indiana for course timetabling problem of Fall
2004 Semester [7] and [8] had different demand from that of
the institution under study. Their lecture times are usually one
hour and at most one hour thirty minutes per week and
lectures extend from day time to evening classes this increases
their timetable slots to accommodated many lectures, also
each department owns several home rooms which are not
heavily interleaved. All these differences reflect that although
Purdue offers a wide range of degree programs and enroll
students in several folds compared to Bindura University; their
academic resources demand is not tightly restrictive.

This research study is an investigation on university course

timetabling problem and an attempt to give an optimal
approach for the Bindura University of Science Education
(BUSE), faculty of science timetabling problem.

II. THE TIMETABLING/ SCHEDULING PROBLEM

Timetabling is a widely studied area and many potentially
useful algorithms have been developed for solving the
university course timetabling problem, as evidenced by
several surveys[15][21]. The major differences between many
of the timetable problems studied and their real life counter
parts are the additional complexity imposed by course
structures, the variety of constraints considered and the
distributed responsibility for information needed to solve such
problems at an institution level.

A. CASE STUDY 1: PURDUE UNIVERSITY COURSE

TIMETABLE PROBLEM

The university is located in West Lafayette, Indiana. In the
institution, a timetable for large lecture classes was
constructed by a central scheduling office in order to balance
the requirements of many departments offering large classes
that serve students from across the university. Smaller classes,
usually focused on students in a single discipline, were
timetabled by “schedule deputies” in the individual
departments. Such a complex timetabling process, included
subsequent student registration, took a rather longtime.

The data set in consideration is for the Fall 2004 Semester

[7] and [8] and the case study in consideration is a real-life
large scale problem that includes features of over-constrained
as well as optimisation problems. The goal was to timetable
about 830 classes, forming almost 1800 meetings, having a

2382

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

high density of interaction that were required to fit within 50
lecture rooms with capacities up to 474 students. Room
availability was a major constraint for Purdue. Overall
utilization of the time available in rooms exceeded 78%;
moreover, it was around 94% for the four largest rooms.
About 90,000 courses requested by almost 30,000 students
were also to be considered. 8.4% of class pairs had at least one
student enrolment in common.

To minimize potential time conflicts, Purdue had

historically subscribed to a set of standard meeting patterns.
With few exceptions, 1 hour * 3 day per week classes met on
Monday, Wednesday and Friday at the half hour (7:30, 8:30,
9:30, ...) one and half hours each two days per week classes
met on Tuesday and Thursday during set time blocks. Two or
three hours per day each week, classes were also expected to
fit within specific blocks. Generally, all meetings of the class
were to be taught in the same location. Such meeting patterns
were of interest to the problem solution as they allowed easier
changes between classes having the same or similar meeting
patterns.

Another aspect of the timetabling problem that was to be

considered was the need to perform student sectioning. Most
of the classes in the large lecture problem (about 75%)
corresponded to single-section courses. Here there was exact
information about all students who wished to attend a specific
class. The remaining courses were divided into multiple
sections. In this case, it was necessary to divide the students
enrolled in each course into sections that would constitute the
classes.

B. The proposed algorithm: Iterative Forward Search

The proposed algorithm was based on ideas of local search
methods [18]. However, in contrast to classical local search
techniques, it operates over feasible, though not necessarily
complete solutions. In such a solution, some variables can be
left unassigned. Still all hard constraints on assigned variables
must be satisfied. Similarly to backtracking based algorithms,
this means that there are no violations of hard constraints.

The framework based on the IFS algorithm was written in

Java and was also extendable to be used for solving lecture
timetabling problems as well as for other constraint-based
problems. In order to present the general purpose of this
algorithm, it is described for solving general finite constraint
satisfaction and optimisation problems.

C. Analysis of IFS algorithm

During each step, a variable A is initially selected.
Typically an unassigned variable is chosen like in
backtracking-based search. An assigned variable may be
selected when all variables are assigned, but the solution
found so far is not good enough for example, when there are
still many violations of soft constraints.

Once a variable A is selected, a value a from its domain

DA is chosen for assignment. Even if the best value is
selected, its assignment to the selected variable may cause
some hard conflicts with already assigned variables. Such
conflicting assignments are removed from the solution and

become unassigned. Finally, the selected value is assigned to
the selected variable.

The algorithm attempts to move from one (partial) feasible

solution to another via repetitive assignment of a selected
value a to a selected variable A. During this search, the
feasibility of all hard constraints in each iteration step is
enforced by unassigning the conflicting assignments ᶯ
(computed by function conflicts). The search is terminated
when the requested solution is found or when there is a
timeout expressed, for example, as a maximal number of
iterations or available time being reached. The best solution
found is then returned.

D. CASE STUDY 2: UNIVERSITY KEBANGSAAN

MALAYSIA (UKM) EXAMINATION TIMETABLE

PROBLEM

Schedulers at the UKM were chief decision makers who
applied the examination assignment procedure, based on their
experience with a little guidance from a computer application
programmed to aid timetable clash avoidance. By then, they
did not consider students sitting two/three consecutive exams
in a day instead they only took into account that exams are
spread evenly and fairly throughout the timetable. In trying to
achieve this, the size/complexity of the problem made it
unrealistic therefore, they became only concerned with the
constraint of not assigning a student to sit for more than one
exam in a given timeslot. Even this seemingly easy procedure
usually could take the manual schedulers more than two
weeks. After circulating the exam timetable to students, the
schedulers would invariably receive many complaints from
students and lecturers. When students complained about
sitting three consecutive exams in a day they were scheduled,
a new timeslot would be added on a Saturday and the middle
exam is scheduled to this new timeslot with an emphasis on
making as few adjustments to the rest of the timetable as
possible. This incurred extra overhead costs.

The following was the approach and experience incurred

in solving the examination timetabling problem for Semester
one of the year 2006 at UKM. The dataset (UKM06-1) was
preprocessed based on the supplied data which contained 818
exams, 14,047students, 75,857 enrollments, 42 timeslots and
15 exam days this excluded weekends. The UKM06-1 dataset
was held in four text files: UKM06-1.stu, UKM06-1.slt,
UKM06-1.rom and UKM06-1.isl, which represented student
enrollment, slot, room and isolated exams definition,
respectively.

The dataset had three weeks examination period. Each

week having five exam days Monday to Friday and each day
having three timeslots morning, afternoon and evening, except
Fridays which had two timeslots morning and evening
only.Due to the complexity, the problem was partitioned into
two sub problems. That is, it assigned exams to timeslots the
same as the capacitated examination timetabling problem and
the room assignment problem.

Before assigning exams to timeslots the supplied data

required some pre-processing. Firstly, solved anomalies in the
data set such as removal of courses with no exams and
combined exams that have to be scheduled together into a

2383

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

single exam. The output of the first stage will be used as input
to subsequent stages.

E. The proposed heuristic procedure for the examination

timetabling problem

The solution to the UKM examination timetable problem
presented a heuristic procedure which was called Greedy
Least Saturation Degree (G-LSD). It used the term “greedy”
because the heuristic attempted to assign each exam to the best
timeslot which satisfied all the hard constraints. There was
need to randomly assign exams to timeslots when the exam
has no conflict with the exams that had already been
scheduled. While assigning exams to timeslots, it also ensured
that all hard constraints were satisfied, this was possible
through an adaptation of the least saturation degree heuristic
for classical graph colouring problem.

F. Analysis of the G-LSD heuristic procedure

In the initialisation step, all exams in B were reset. That is,
the number of available timeslots for each exam were set to
the maximum available slot and the exam‟s status changed to
unscheduled and was copied into the unscheduled exam set
B′={E1‟,E2′….,EN′}. The heuristic first arranged the
unscheduled exams in B′ in non-decreasing order of the
number of available timeslots, then in non-increasing order of
the number of conflicts they have with other exams (in B) and,
finally, by non-increasing order of the number of student
enrollments. The then heuristic chooses the first exam in B′,
Ei′ and assigns it to the best timeslot and subject to the total
number of students assigned to the timeslot that did not exceed
the maximum seat capacity. However, when all slots were
available for Ei′, that is the exam had no conflict with the
exams that had already been scheduled, the heuristic randomly
chose a timeslot for Ei′. The idea was to allocate the best
timeslot for Ei′, so as to obtain different solution for each run.
While assigning exams to timeslots, there was also a need to
ensure a clash free schedule and larger exam (student
enrollment > = 400) were assigned to earlier timeslots the first
two weeks if it were possible. This was done based on
discussions with UKM registry officers as they usually
assigned larger exams to earlier timeslots in order to give
longer time for marking larger exams.

After assigning exam Ei′ to the timeslot, the algorithm

would update the appropriate exam details such as timeslot
index, number of available timeslots. In B, reduce the number
of available timeslots for exams in B′ accordingly. Then
eliminate Ei′ from B′ and repeated step 2.1 to 2.6 until all the
exams were scheduled, or until Ei′ could not be assigned to
any available timeslot. If this occurs, the algorithm stops the
process and start again (steps 1 to 3). After assigning all
exams to timeslots, it would verify that all hard constraints are
satisfied. If the solution is feasible, the process ends.

In many cases, the algorithm produced solutions indicating

no students sitting for three consecutive exams in a day.
However, the solution was bound to be rejected (infeasible) if
there were students sitting three consecutive exams in a day.
Since this was a constructive heuristic, it would stop the
process when it obtains a feasible solution. The algorithm
could extend this procedure to produce many feasible

solutions and return the best solution found by repeating step 1
to 3 for a given number of iterations.

III. GENETIC ALGORITHMS

Unlike most methods of combinatorial optimisation, GAs
did not initially have an underlying mathematical model. As
such, they were limited to demonstrating a number of famous
mathematical problems such as the travelling sales person
problem and the k-armed bandit problem before tackling more
practical issues [9]. By 1989 when David E Goldberg released
the seminal “GAs in search, optimisation and machine
learning”, the field had begun the brightest phase of its career
that of being applicable to real world problems [9].

In today‟s GA application, typical problems can be

phrased so as to require the minimising or maximising of
some function. In particular, where this function is dependent
upon a great many variables, such that more conventional
methods are out of their depth, evolutionary methods become
attractive [10]. Particularly noteworthy applications of GAs
include the solving of pipe network optimisation problems
[11] transportation problems [12] conformational analysis of
DNA [9] image processing and machine learning [13] and of
course, scheduling problems [14][13].

GAs are advancing by containing less of a close metaphor

with natural evolution instead they are becoming more
conforming only to that essence of evolution which allows
them to function. For example, data structures are replacing
binary numbers as the most common form of representing
genetic material. In modern GAs, chromosomes are rarely
fully encoded [9].

The algorithm was developed by Professor John Holland at

the University of Michigan in the 1960s. The GA is a
probabilistic search algorithms that iteratively transforms a set
(a population) of mathematical objects typically fixed-length
binary character strings, each with an associated fitness value,
into a new population of offspring objects using the Darwinian
principle of natural selection. The GA belong to the larger
class of evolutionary algorithms, essentially, they are a
method of searching problems for a solution by means of
simulated evolution. The algorithm uses the biological
principles of selection, crossover and mutation to perform a
search in often complex and big search spaces and it attempts
to find global solutions, while avoiding local optimal solutions
[15].

The processes loosely based on natural genetic operators
which are repeatedly applied to a population of binary strings
representing potential solutions. Over the time, the number of
above-average individual‟s increases and highly-fit building
blocks are combined from several fit individuals to find good
solutions to the problem at hand. In the process, a population
of candidate solutions referred to as phenotype which is
involved in an optimisation problem is evolved towards better
solutions. Each candidate solution has a set of properties
referred to as chromosomes or genotype which can be altered
through the evolution process in search of a fit solution.

The evolution starts from a population of randomly

generated individuals and occurs throughout the next
generations. In each generation, the fitness of every individual

2384

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

in the population is evaluated, fit individuals are stochastically
selected from the current population and each individual‟s
genome is modified or recombined to form a new pattern. The
GA pseudo-code is shown below.

The genetic algorithm (GA) pseudo-code
Choose initial population
 Evaluate each individual’s fitness
 Determine population’s average fitness
 Repeat { Select best-ranking individuals to reproduce
 Mate pairs at random
 Apply crossover operator
 Apply mutation operator
 Evaluate each individual’s fitness
 Determine population’s average fitness
Until terminating condition (until at least one individual

has the desired fitness or enough generations have passed)

IV. RESEARCH METHODOLOGY

A. SYSTEM DESIGNS

The system design describes technical details of the used
solution approach and its implementation. There was need to
design a course timetable system for the BUSE, faculty of
science to address the problem mentioned in chapter one.
Figure 1 below is a screen-shot showing the layout which was
used as a guide in the design of the multi-phase GA timetable
system.

Figure 1: A timetable system design screen-shot

B. MULTI-PHASE GA DESIGN FRAMEWORK

Multi-phase concept was used to break down the
timetabling problem into manageable chunks which were
assumed easier to work with. The algorithm could then be
applied to solve the reduced problem in separate distinct
phases.

By nature no standard GA can take constraints into
account [17], but According to Dowsland (2000),
incorporation knowledge about the constraints into GA
operators, the algorithm, can exploit the power of the
algorithm and could be used for solving constraint satisfaction

problems. This research study adopted the concept used by
[19], which proposed a multi-stage operation-based GA in
dealing with the flexible job scheduling problem.

At a high conceptual level the algorithm combines two

methods, one, a direct and the other and indirect GA constraint
handling. The timetabling process was broken into logically
distinct phases, as the name multi-phase GA suggests.

Direct constraint handling: leaves the timetable object
variables as they are to „adapt‟ and the GA to enforce them.
This implies that violating them is not reflected in the fitness
function, but in the solution generation completeness.

Indirect constraint handling: circumvents the problem of
satisfying constraints by incorporating them in the fitness
function (f) such that the f optimally implies that the
constraints are satisfied through the use of GA to find an
optimal solution.

The aforementioned modification was for the purpose of

splitting the process into four phases which were conveniently
categorised as phases one (1), two (2), three (3) and four (4).
The breakdown allowed the algorithmic design and
implementation of a solution for a complex problem to be of a
manageable size at each time instance.

NB: Note that direct and indirect constraint handling

methods were both used to solve the course scheduling in
separate phases.

Before assigning a course to timeslots the supplied data

required some pre-processing. Firstly, by solving anomalies in
the data set such as removal of classes without defined
lecturers, associated students or with incorrect instantiation
from the input.

V. IMPLEMENTATION

The multi-phase GA timetable system was developed
using Microsoft Visual C++ integrated development
environment. The course scheduling system is a desktop
application program which executes on a Microsoft Windows
platform.

Visual C++is an object oriented programming language
supporting object oriented principles and paradigms
(encapsulation, inheritance and polymorphism).

The timetable system design was through interweaving
different loosely coupled C++ classes, following software
engineering principles to keep fewer dependencies that is
loose coupling between modules. This enabled easy design
modifications of the source code. Figure 2 below is a diagram
showing the GA schedule system architecture.

2385

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

Figure 2: Multi-phase GA schedule system architecture

The course scheduling system has the following object

classes and which do the following:

 Lecturer class- handles data about the
lecturer object attributes

 Pdayclass- handles data about week days
object attributes

 Ptimeclass- handles data about day time
object attributes

 Student Group class- handles data about the
student groups object attributes

 Course class- handles data about the course
object attributes

 Room class- handles data about lecture room
object attributes

The Configuration class obtains timetable data objects
(rooms, courses, day, time, lecturers and student groups)from
the configuration file and parse it into the system.

The „CourseClass’ object class is a logical representation
of a class which is ready to be scheduled to an event day and
time. The class is a controller of the timetable objects data.

The Schedule class performs the assignment of course
classes today and time slots in the timetable vector. The

ScheduleObserver class contained in the Schedule
class handles events that are triggered by the algorithm during
execution such as: when the algorithm finds new best
chromosome or when state of execution of algorithm is
changed. It also functions to block caller‟s thread until the
execution of the algorithm is finished using the

WaitEvent() method.
When the configuration file is parsed, a timetable vector

frame is loaded by the ChildView class into the main window.
The Schedule class invokes the GA and the course scheduling
process commences. The algorithm execution stops when the
stopping criterion is met and this frees the system resources. A
timetable solution is displayed in the main window showing
the computed fitness function and the number of generations
produced during the process.

A. THE MULTI-PHASE GA ALGORITHM

A complete cycle of genetic operations (selection,
crossover and mutation) forms a generation of partial
timetable solutions and for each generation, the algorithm
performs two basic operations:

1. Randomly selects N pairs of parents from
the current population and produces N new
chromosomes by performing a crossover operation
on the pair of parents.

2. Randomly selects N chromosomes from the
current population and replaces them with new ones.
The algorithm does not select chromosomes for
replacement if it is among the best chromosomes in
the population.

The two operations are repeated until the best chromosome
reaches a fitness value equal to 1,this indicates that all classes
in the schedule meet the requirements. The algorithm keeps
track of the best chromosomes in the population and
guarantees that they are not going to be replaced while they
are among the best chromosomes. Below is the pseudo code
for the Multi-phase GA algorithm.

B. THE MULTI-PHASE GA PSEUDO CODE

PHASE 1(Preprocessing)
Load all constraint data from a configuration file.
While the population size is less than the maximum:
PHASE 2 (Initialisation)
{
Create a new timetable with no classes booked to it.
Repair the new timetable by using the constraint data.
Evaluate the cost of the new timetable by using the

constraint data.
Enter the new timetable into the population.
 }
PHASE 3 (Scheduling)
(Apply genetic operators)
Selection -> while the cost of the best timetable is greater

than zero:
 {
Discard a portion of costly timetables.
Repeat until the population size is maximum:
{

 Breed a new timetable.
Crossover -> Apply the crossover operator to the new

timetable
Mutation -> Apply mutation operator to the new timetable.
PHASE 4(Heuristic repair strategy)
Repair the new timetable by using the heuristic repair

strategy based on constraint data.
Evaluate the cost (average fitness) of the new timetable by

using constraint data.
Enter the new timetable into the population.
 }
 }

C. POPULATION INITIALISATION AND SELECTION

The fitness-based selection is used in the population
selection process. This is a kind of parent selection where each

2386

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

chromosome has a chance of being selected that is directly
proportional to its fitness value.

When using the GA to solve a combinatorial optimization

problem, it is important to map out how to represent a solution
of the problem as a chromosome. Figure 3 below is a diagram
showing the chromosome representations in a vector data
structure.

Figure 3: Chromosome representation in a vector

The diagram above shows chromosome representation,

there is a time-slot for each hour for every room in each
working day. Assuming that classes start at 0800hours and
finish at 1600hours, that is a total of 10 hours and the working
days under consideration are Monday to Friday, thus 5. We

can use a standard vector (std::vector) with a size

10*5*number_of_rooms. The vector slot must be a

standard list (std::list) as during the system execution,
the algorithm requires temporal storage of multiple course
classes allocated in the same time-slot.

The system uses hash maps for storage of vector data
variables during execution. Hash maps are data structures used
to implement associative arrays which are structures that map
strings to values. During the scheduling process, the algorithm
uses hash maps for rapid access of vector positions
(chromosomes). There is also a hash map that is used to store
the first time-slot at which a class begins, that is its position in
the vector from the address of the class‟ object. Each hour of a
class has a separate entry in the vector, but there is only one
entry per class in the hash map, this intuitively resolve clashes.
In cases where the key of a new item match the key of an old
item, a hash collision occurs, typically this erases the old item
and overwrites it with a new item in order to maintain
consistency so that every item in the table have a unique key.

Chromosomes are represented in the C++ Schedule class,
the class stores the representation of a class schedule in
following two attributes:

1. Time-space slots, one entry represents one
hour in one lecture room

vector<list<CourseClass*>> _slots;
2. The class table for chromosome is used to

determine the first time-slot used by a course class
hash_map<CourseClass*, int> _classes;

The chromosome parameters used by the GA are as
follows:

1. The number of crossover points of
parent‟s class tables

int _numberOfCrossoverPoints;

2. Number of classes that are moved
randomly by single mutation operation

int _mutationSize;
3. Probability that crossover will occur
int _crossoverProbability;
4. Probability that mutation will occur
int _mutationProbability;

The above parameters are used to make a prototype of
chromosomes also for making new global instance of an
algorithm.

D. CROSSOVER OPERATOR

The crossover operation combines data in the hash maps of
two selected parents and creates a vector of slots according to
the content of the new hash map. The operation splits hash
maps of both parents in parts of random sizes which are
defined by the number of crossover points which are defined
in the chromosome‟s parameters. Then, it alternately copies
parts from parents to the new chromosome and forms a new
vector of slots. Figure 4 below is a diagram showing abstract
representation of the crossover operation in the hash maps.

Figure 4: Crossover operation in the hash map

E. MUTATION OPERATOR

The mutation operation randomly takes a class and moves
it to another chosen slot. The number of classes which are to
be moved in a single operation is defined by the mutation size
in the chromosome‟s parameters.

F. THE GA FITNESS FUNCTION

Chromosomes store their fitness values and parameters
which are used by genetic operators as shown in the below
C++ implementation.

 Fitness value of chromosome
float _fitness;

 Flags raised for class requirements
satisfaction

vector<bool> _criteria;
The fitness value is represented by a single-precision

floating point number in the range of 0 to 1. The closer the

2387

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

fitness value to the fitness upper bound, the better the optimal
solution is.

Calculation of fitness isbased on score value and is
represented as:

schedule_score/maximum_score, and

maximum_score is number_of_classes*5.

The C++ implementation is shown below:

_fitness = (float)score /
(Configuration::GetInstance().GetNumberOfCourseClasses()
* DAYS_NUM);

The criterion employed by the system for the fitness
function evaluation is as follows:

 Each class can have 0 to 5 points.

 If a class uses a spare lecture room, its score
is incremented.

 If a class requires academic resources and is
located in the room with them, or it does not require
them, the score of the class is incremented.

 If a class is located in a lecture room with
enough available seats, the score is increment.

 If a lecturer has no other classes at that time,
the class's score is incremented.

 If any of the student groups that attend a
class do not have any other classes at the same time,
the class score is incremented.

 If a class breaks a rule at any time-space slot
that it occupies, its score is not incremented for that
rule.

 If a class is scheduled for a particular empty
slot day or time, a class score is incremented.

 The total score of a class schedule is the sum
of points of all classes.

A timetable under consideration has a set of constraint to

be satisfied during the timetable processing and these are
divided into two: hard and soft constraints. The two are
defined as follows:

Hard constraints: Are restrictions, of which, in any
working timetable, there will be no breaches. For example, a
lecturer cannot be in two places at once. A list of hard
constraints considered in the system timetabling is shown
below:

 A class can be placed only in a spare
classroom.

 No lecturer or student group can have more
then one class at a time.

 A classroom must have enough seats to
accommodate all students.

 To place a class in a classroom, the
classroom must have laboratory equipment
(computers, in our case) if the class requires it.

Soft constraints: These are limitations which may be

broken, but of which breaches must be minimised. For
example, classes should be booked at a preferred day and
time. Lists of soft constraints under consideration is below:

 Preferred time of class by lecturers.

 Preferred classroom by lecturers.

 Distribution in time or space of classes for
student groups or lecturers.

The timetable input data sets consisting of all information

about lecturers, lecture rooms, student groups, courses and
preferences were obtained from the timetable committee. The
timetable system requires these constrained data to be loaded
into the system also that the user should be able to modify
them for example by adding a new course or change date and
time preferences for a particular course schedule.

Each time the system executes it loads all the constraint
data from a configuration file which is a text file with a “.cfg”
extension. Each different *.cfg file describes a unique
department such as Chemistry, Developmental Studies or
Biology.

G. CONSTRAINT DATA ENCODING

The C++ Configuration class reads the config file and
storethe parsed objects into the system using the

„ParseFile’ method. It reads timetable object data by
searching for object tags then calling appropriate objects.
After parsing, the method clears previously parsed objects to
allow taking in of new objects into the next iteration.

The config file stores objects data and their attributes.
Each object is delimited between an opening tag and finishing
tag. In the body of an object, each line contains only one key
and value pair (attribute) separated by an „=‟ character. Each
attribute is specified just once except for the #group object
which can have multiple attributes.

VI. RESEARCH DESIGN

The research study was carried out at BUSE, faculty of
science which was the domain of the problem under study. To
overcome the timetable problem aforementioned in chapter
one, a course timetable system using multi-phase GA was
designed and implemented.

The system was put under a test by users (timetablers) in
the faculty of science in order to determine their perception
towards automated course scheduling in timetable fabrication.

The process involved sampling from the target population

and then visiting each users within the sample space to carry
out the investigation.

The procedure was as follows:
1. Randomly choose participants by using

simple random sampling.
2. Concertising the participants

(timetablers)about the scope of the research study and
the relevant information about the University Course
Scheduling desktop application program.

3. Installation and configuration of the
application program on their computers.

4. Engaging the timetabler in the timetabling
process, modifying the configuration file to suit the
timetabler choices or requests then perform the
timetabling using the automated system.

5. Verified the timetable drafts and re-
computed to obtain timetable solution variations.

6. Administering of questionnaires.
7. Collecting the questionnaires and

performing data analysis.

2388

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

A. POPULATION AND SAMPLING

A population is generally a large collection of individuals
of concern under a scientific query.

The university course timetable has three main
stakeholders who represent the population and each as their
own purpose these are:

1. The timetable committee (administration) sets the
minimum standards that the timetable must conform to. For
example, lectures start at 800hours and end at 1800hours.

2. The departments under the faculty of science, their
concerns is the course schedule to be consonant with the
development of the courses taught as well as making more
specific demands for particular lecture rooms or laboratory.

3. The third group of stakeholders are the students, whose
view of the timetable will be restricted to the part that affects
them although given the number of students involved it is
difficult to obtain specific criteria as to what is the best
timetable for them.

B. RESEARCH INSTRUMENTS

Observation, questionnaires and the timetable system
which we developed were used.During direct observations, the
researcher was interested in observing the timetable system
behavior and or events in real-time then consequently
administered questionnaires for the purpose of gathering data
from timetablers.

C. QUESTIONNAIRES

A questionnaire is a document containing questions to
solicit information for appropriate analysis. Questionnaires
present information in writing to respondents who in turn
provide written responses in form of comments, ticks, rating
or other response form. The questionnaires were administered
to the population sample of forty people.

VII. DATA PRESENTATION, ANALYSIS AND

INTERPRETATION

A. INTRODUCTION

Forty respondents participated from the five departments
under the faculty of science with eight representatives for
(Biological-Sciences, Chemical-Technology, Computer-
Science, Developmental-Studies and Nursing Sciences).

B. ANALYSIS AND INTERPRETATION OF RESULTS

Both qualitative and quantitative data was used. The raw
data was first preprocessed before use, thus, was checked for
errors such as: consistency, completeness and duplication,
SPSS (Statistical Package for Social Sciences) data analysis
software was used for validation.

C. AUTOMATED TIMETABLING PROCESS ASSESMENT

RESLUTS

This section acquired data from the population sample
about timetabling using the multi-phase GA timetable system.
Questionnaires contained closed-ended questions with a three
point Likert response scale such that: (0-Not solved, 1-

Partially solved, 2-Solved) in response to questions about:
lecture room double bookings, equipment availability errors,
lecturer double booking errors, student group double booking
errors, day and time preference errors (misalignment).

 12.5% of the respondents‟ perceived that the automated

system partially solved the room errors and 87.5% perceived
that the system solved the errors. 5% of the respondents‟
perceived that the automated system did not solve for
equipment availability errors, 37.5% perceived that the system
partially solved the errors and 57.5% perceived that the system
solved the errors. 7.5% of the respondents‟ perceived that the
automated system was partial in solving and 92.5%
respondents perceived that the system solved the double
booking errors. 2.5% of the respondents‟ perceived that the
automated system was partial in solving double bookings and
97.5% respondents perceived that the system solved the
student group double booking errors. 10.0% of the
respondents‟ perceived that the automated system was partial
in solving day preferences and 90.0% respondents perceived
that the system solved the day preference errors. 92.5% of the
respondents‟ perceived that the automated system was partial
in solving time preferences and 7.5% respondents perceived
that the system solved the time preference errors.

VIII. CONCLUSIONS, FUTURE WORK AND

RECCOMENDATIONS

Respondents from department which had almost half of

their courses as practical and heavily demanded use of
academic equipment which is in shortage within the institution
had a slight negative perception whilst the majority was
positive, which showed that as the number of constraints
increased and also as the constraints became tighter, the
scheduling becomes less satisfactory. The future scope based
on this study includes the need to amalgamate the departments
timetabling into one unit for it to be solved as if it‟s a single
department and per faculty level, so as to improve the
system‟s ability to schedule university wide shared resources.
Also try to cater for the fast growing dynamics of the
institution enrolments, new building facilities for lectures,
equipment and other changes which are possible in the future
as quickly as possible.

 REFERENCES

[1] Werra. D. (1985). “An Introduction to Timetabling”, European

Journal of Operation Research 19, pp151-162

[2] Wren. A. (1996), “Scheduling, Timetabling and Rostering – A

Special Relationship?”, In the Practice and Theory of Automated
Timetabling, ed. E.K. Burke and P. Ross, pp46-75

[3] Burke. E, Kingston. J, Jackson. K and Weare. R (1997),

“Automated University Timetabling: The State of the Art”, The
Computer Journal 40 (9) pp565-571

[4] Abdennadher. S and Marte. M (1999), “University timetabling

using constraint handling rules”, Journal of Applied Artificial
Intelligence, Special Issue on Constraint Handling Rules

[5] Barták. R (2000), “Dynamic Constraint Models for Planning and

Scheduling Problems”, In New Trends in Constraints, LNAI1865,
Springer, pp237-255

[6] Kocjan.W (2002), “Dynamic scheduling: State of the art report”,

Technical Report T2002:28
[7] Rudová. H and Murray. K (2003), “University course timetabling

with soft constraints”, In Edmund Burke and Patrick

2389

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

DeCausmaecker, editors, Practice And Theory of Automated

Timetabling, Selected Revised Papers, pp310–328
[8] Müller. T and Rudová. H (2004), “Minimal Perturbation Problem

in Course Timetabling”, Proceedings of the 5th international

conference on the Practice And Theory of Automated Timetabling,
pp283-303

[9] Davis. L. E (1991), “Handbook of Genetic Algorithms”, New

York: Van Nostrand Reinhold
[10] Corne D and Ross P (1995), “Peckish Initialisation Strategies for

Evolutionary Timetabling”, In Burke E and Ross P (Eds): Lecture

Notes in Computer Science 1153 Practice and Theory of
Automated Timetabling First International Conference, Edinburgh,

U.K., August/September 1995, Selected Papers. New York:

Springer-Verlag Berlin Heidelberg, pp 227-240
[11] Anderson. A and Simpson. A. R (1996), “Genetic Algorithm

Optimisation Software in FORTRAN Research Report No. R136”,

Department of Civil and Environmental Engineering, The
University of Adelaide

[12] Gen M and Cheng R (1997), “Genetic Algorithms and Engineering

Design”, New York: John Wiley & Sons, Inc.

[13] Buckles. B.P and Petry. F.E (1992), “Genetic Algorithms”, Los

Alamitos: The IEEE Computer Society Press

[14] Burke. E and Ross. P. E (1996), “Lecture Notes in Computer
Science 1153 Practice and Theory of Automated Timetabling First

International Conference, Edinburgh, U.K., August/September

1995, Selected Papers”, New York: Springer-Verlag Berlin
Heidelberg

[15] Petrovic, S. and Burke E. K (2004), “University timetabling”,
Handbook of scheduling: algorithms, models and performance

analysis

[16] Thanh. N. D (2007), “Solving Timetabling Problem Using Genetic
and Heuristic Algorithms”, Eighth ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, pp472-477
[17] Jong. De. K (1993), “Genetic Algorithms are NOT Function

Optimisers.” In D. Whitley (ed.), Foundations of Genetic

Algorithms, vol. 2, San Mateo, CA: Morgan Kaufmann, pp5-17
[18] Michalewicz. Z and Fogel. B.D (2000), “How to Solve It: Modern

Heuristics”

[19] Gen. M and Zhang H. (2006), “Effective designing chromosome
for optimizing advanced planning and scheduling”, In: Dagli, C.

H., Buczak, A. L., Enke, D. L., Embrechts, M., and Ersoy, O. (ed.),

Intelligent Engineering Systems through Artificial Neural
Network, ASME Press, New York, pp61-66

[20] Norberciak, M. (2006). Universal Method for Timetable

Construction based on EvolutionaryApproach.
[21] Schaerf, A. (1999, April). A Survey of Automated Timetabling.

Artificial Intelligence Review,87-127.

2390

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031806

