

Use Of Different Data Structures In Association Rule Mining: A Survey

Adhav Ravi

M.Tech-II

SGGS IE&T,Nanded.

Bainwad A. M.

Assistant Professor

SGGS IE&T, Nanded.

Abstract

Association rule mining is important data mining task for

which many algorithms have been proposed. All these

algorithms generally work in two phases, finding frequent

itemsets and generating association rules from them. First

phase is most time consuming in most of the algorithms

because algorithm has to scan the database many times. Use

of different data structures overcomes this drawback. In this

paper we will survey the algorithms which make use of

different data structures to improve association rule mining

1. Introduction
Association rule mining, one of the most important and

well researched techniques of data mining, was first

introduced in [1]. It aims to extract interesting correlations,

frequent patterns, associations or casual structures among

sets of items in the transaction databases or other data

repositories. Association rules are widely used in various

areas such as telecommunication networks, market and risk

management, inventory control etc. Various association

mining techniques and algorithms will be briefly introduced

later.

Association rule mining is to find out association rules that

satisfy the predefined minimum support and confidence from

a given database. The problem is usually decomposed into

two sub problems. One is to find those itemsets whose

occurrences exceed a predefined threshold in the database;

those itemsets are called frequent or large itemsets. The

second problem is to generate association rules from those

large itemsets with the constraints of minimal confidence.

Suppose one of the large item-sets is Lk , Lk = {I1, I2,… , Ik},

association rules with this itemsets are generated in the

following way: the first rule is {I1 , I2,… , Ik−1} = {Ik} , by

checking the confidence this rule can be determined as

interesting or not. Then other rule are generated by deleting

the last items in the antecedent and inserting it to the

consequent, further the confidences of the new rules are

checked to determine the interestingness of them. Those

processes iterated until the antecedent becomes empty. Since

the second sub-problem is quite straight forward, most of the

researches focus on the first sub-problem.

The first sub-problem can be further divided into two

sub-problems: candidate large item sets generation process

and frequent itemsets generation process. We call those item

sets whose support exceed the support threshold as large or

frequent itemsets, those itemsets that are expected or have the

hope to be large or frequent are called candidate itemsets.

In many cases, the algorithm needs to scan data base for

number of times to generate frequent itemsets which causes

inefficiency of algorithm. Several strategies have been

proposed to reduce time complexity of algorithm. One of

these strategies is to use different data structures based

algorithms for finding frequent item sets such as tree, graph

and matrix.

2 Use of different data structures in association

rule mining

2.1 Graph

2.1.1 PAPG (Primitive Association Pattern Generation)

In this algorithm [2] the first step is to construct

association graph. This is two-step process numbering and

graph construction. In the numbering phase, the algorithm

PAPG arbitrarily assigns each item a unique integer number.

In the large item generation phase, PAPG scans the database

and builds a bit vector for each item. The length of each bit

vector is the number of transactions in the database. If an item

appears in the ith transaction, the ith bit of the bit vector

associated with this item is set to 1. Otherwise, the ith bit of

the bit vector is set to 0. The bit vector associated with item i

is denoted as BVi. The number of 1s in BVi is equal to the

number of transactions which support the item i, that is, the

support for the item i. For association graph construction

PAPG uses AGC (Association Graph Construction)

algorithm. The AGC algorithm is described as follows: For

every two large items i and j(i < 𝑗), if the number of 1s in

BViΛBVj achieves the user-specified minimum support, a

directed edge from item i to item j is created. Also, itemset (i,

j) is a large 2-itemset.

Second step is to generate Primitive Association Pattern.

The large 2-itemsets are generated after the association graph

construction phase. In the association pattern generation

phase, the algorithm LGDE (Large itemset Generation by

Direct Extension) is proposed to generate large k–itemsets (k

> 2), which is described as follows: For each large

k-itemset(k ≥ 2), the last item of the k-itemset is used to

extend the large itemset into k+1-itemsets.

Suppose (I1, I2 ,… , Ik) is a large k-itemset. If there is no

directed edge from item Ik to an item v, then the itemset need

not be extended into k+1-itemset,because

(I1, I2,… , Ik , v) must not be a large itemset. If there is a

directed edge from item Ik to an item u, then the itemset

(I1, I2,… , Ik) is extended into𝐾 + 1 − itemset(I1, I2,… , Ik).

The itemset (I1 , I2,… , Ik , u) is a large k + 1 − itemset if the

number of 1s in BV1ΛBV2Λ…ΛBVikΛBVu achieves the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

minimum support. If no large k+1-itemsets can be generated,

the algorithm LGDE terminates.

2.1.2 GAPG (Generalized Association

PatternGeneration)

GAPG [2] is used to discover all generalized association

patterns. To generate generalized association patterns, one

can add all ancestors of each item in a transaction to the

transaction and then apply the algorithm PAPG on the

extended transactions.

In the numbering phase, GAPG applies the numbering

method PON (POstorder numbering method) to number

items at the concept hierarchies. For each concept hierarchy,

PON numbers each item according to the following order:

For each item at the concept hierarchy, after all descendants

of the item are numbered, PON numbers this item

immediately, and all items are numbered increasingly. After

all items at a concept hierarchy are numbered, PON numbers

items at another concept hierarchy.

In the large item generation phase, GAPG builds a bit

vector for each database item, and finds all large items

(include database items and generalized items). Here, we

assume that all database items are specific items.

In the association graph construction phase, GAPG

applies the algorithm GAGC (Generalized Association Graph

Construction) to construct a generalized association graph to

be traversed. The algorithm GAGC is described as follows:

For every two large items i and j (i < 𝑗), if item j is not an

ancestor of item i and the number of 1s in BViΛBVj achieves

the user-specified minimum support, a directed edge from

item i to item j is created. Also, itemset (i, j) is a large

2-itemset.

In the association pattern generation phase, GAPG applies

the LGDE algorithm to generate all generalized association

patterns by traversing the generalized association graph.

2.1.3 Undirected Item Set Graph [3]

Undirected item set graph is set of nodes
V (V1 , V2 ,… , Vn) in the database. Each node contains: the
node name, the pointer to other nodes, and the number of
nodes to which it points. The side set E < 𝑖, 𝑗 > of
undirected item set graph has two attributes: the side
name and the number of side appear. < Vi , Vj > Express
two frequent itemsets;< V1, V2,… , Vn >express n frequent
itemset.

In construction of Undirected Item Set Graph First step
is to scan the database. It makes each item as a node and at
the same time it makes the supporting trade list for each
node. Supporting trade list is a binary group T =
{Tid , Itemset} (where Tid is transaction id and Itemset is
trade item set). So the side between nodes can be
accomplished by corresponding trade list operation. The
algorithm does the intersection of two nodes with
supporting trade list. When trade list is not empty, that
means there is a side between two nodes. The appearance
number of each side is the resultant number which
algorithm finds by the side’s intersection.
Algorithm one: Construction of undirected item sets

graph
Input: Database D
Output: Undirected item set graph
Begin
1. Add the items into the vertex set V;
2. For i = 1 to n − 1

2.1. Select Vi fromV;
2.2. For each Vj (j ≠ i)

2.2.1. If (Ii ∩ Ij) ≠ Ø then
2.2.2. Add link between Vi and Vj//Vi and Vj
 Become adjacent nodes.
 2.2.3. End if.
2.3. Next

3. Next
End

The algorithm in [3] uses the search strategy of Depth
first-Search to set universal undirected item graph. The
specific steps are shown as follows: Select a node Vi from
node set V . If the number of times Vi appears in the
database is not less than the minimum support minsupp,
then {Vi} will belong to the item in frequent 1-item set. If
count of node Vi adjacent to node Vj ’s side is not less than
support S, then {Vi , Vj} will belong to the item in frequent
2-itemset. When there are three nodes in undirected item
set graph and count of each side of the node is not less
than minimum support minsupp, these three nodes
< Vk , Vm , Vn > will belong to frequent 3-item set. When
there more than three nodes in undirected item sets graph
then count of each side of the node should not be less
than minimum support minsupp and all the subset of
these n nodes should be frequent.
Algorithm two: To find frequent item set based on
undirected item sets graph.
Input: Undirected item set graph, minimum support
minsupp, minconf
Output: frequent item set L, Association rule
Begin
1. The node set V is empty or not. If it is empty then stop;
2. Find count of each item (e.g.Vi) and check count of
each item is greater than or equal to minimum support
minsupp. If greater than the items are stored in frequent-1
item set;
3.(frequent item set) = L;
4. Select any unvisited node (e.g.Vj) from adjacent list OfVi ;
5. If count ((Vi , Vj) ≥ minsuppp) then

5.1. L U Vj;
5.2. L. adjacentlist =

(L. adjacentlist) ∩ (Vj . adjacent list);
5.3. Call DFS (Vj) Procedure;

6. End if;
7. Confidence of each item is compared with minconfand
strong association rules are generated.
8. End;

ProcedureDFS (Vj):
Begin
1. If Vj . adjacentlist ≠ Φ then

1.1. Select any other node, suppose Vkfrom

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vj . adjacentlist;
1.2. Call isloop (L, Vk) Procedure;
1.3. If count (L, Vk) is greater than or equal to
minimum support then combine L U (Vk).

1.3.1. Call DFS (Vk);
1.3.2. Output is frequent item set;
1.3.3. Delete Vk fromVj . adjacentlist;
1.3.4. Call DFS (Vj);

1.4. Else Return to its parent vertexVi ;
1.5. Call DFS (Vi);

2. End;

Procedureisloop (L, Vk):
Begin
1.If Vk € L. adjacentlist then return Vk;
2. Else delete Vk fromVj . adjacentlist;
3. CallDFS (Vj);
4. End;

When database and minimum support i.e. minsupp is
changed the undirected graph should be changed
accordingly. If we want to add some new items to the
database, then undirected item set graph is updated
accordingly. At this time, the new frequent item sets can
be found only by running algorithm two again. When the
minimum support is changed, new frequent item set can
be found only by adjusting the parameter of algorithm
two again.

2.1.4 DLG

DLG [4] is a three-phase algorithm. The large 1-itemset

generation phase finds large items and records related

information. The graph construction phase constructs an

association graph between large items, and at the same time

generates large 2-itemsets. The large item set generation

phase generates large k-itemsets (k > 2) based on this

association graph.

In large 1-itemset generation phase, the DLG algorithm

scans the database to count the support and builds a bit vector

for each item. The length of a bit vector is the number of

transactions in the database. The bit vector associated with

item i is denoted asBVi. The j th bit of BVi is set to 1 if item i

appears in the j th transaction. Otherwise, the j th bit of BVi is

set to 0. The number of 1‟s in BVi is equal to the support

count of the item.

In graph construction phase, the support count for the

itemset {I1, I2 ,… , Ik} is the number of 1‟s

inBVi1ΛBVi2Λ…ΛBVik , where the notation “Λ ” is a logical

AND operation. Hence, the support count of the

itemset {I1, I2 ,… , Ik} can be found directly by applying

logical AND operations on the bit vectors of the k-itemsets

instead of scanning the database. If the number of 1‟s

inBViΛBVj(i < 𝑗) is no less than the minimum support count,

a directed edge from item i to item j is constructed in the

association graph. Also, { i , j } is a large 2-itemset.

In large itemset generation phase, for each large

k-itemset{I1 , I2,… , Ik} inLk (k > 1), the last item ik is used

to extend the itemset into (k + 1) -itemsets. If there is a

directed edge from ik to itemj, the itemset {I1, I2 ,… , Ikj } is a

candidate (k + 1) -itemset. If the number of 1‟s in

BVi1ΛBVi2Λ…ΛBVikΛBVj is no less than the minimum

support count, {I1, I2,… , Ikj } is a large (k + 1) -itemset in

Lk+1. If no large k-itemset is generated in the kth iteration,

the algorithm terminates.

2.1.5 DLG*

In the kth (k > 2) iteration, DLG [4] generates candidate

k -itemsets by extending each large (k − 1) -itemset

according to the association graph. Suppose on the average,

the out-degree of each node in the association graph is q. The

number of candidate itemsets is |Lk − 1| × q , and DLG

must perform |Lk − 1| × q × (k − 1) logical AND

operations on bit vectors to determine all large k-itemsets.

The key issue of the DLG* [4] algorithm is to reduce the

number of candidate itemsets.

In the large itemset generation phase, DLG* extends each

large k-itemset in Lk(k ≥ 2) into (k + 1)-itemsets like the

original DLG algorithm. Suppose {I1 , I2,… , Ik} is a large

k-itemset, and there is a directed edge from item ik to item i.
If the (k + 1)-itemset {I1, I2,… , Ik , I} is large, it must satisfy

the following two conditions (Otherwise, it cannot be large

and is excluded from the set of candidate (k + 1)-itemsets).

1. Any {ij , i } (1 ≤ j ≤ k) must be large. In other words,

the in-degree of the node associated with item i must be at

least k.

2. Moreover, a directed edge from ik to item i means that

{ik , i } is also a large 2-itemset. Therefore, we only need to

check if all {ij , i }(1 ≤ j ≤ k − 1) are large.

These simple checks significantly reduce the number of

candidate itemsets. In order to speed up these checks, we

record some information during the graph construction

phase. For the first condition, for each large item, we count

the in-degrees of this item. For the second condition, a bitmap

with |L1| × |L1| bits is built to record related information

about the association graph. If there is a directed edge from

item i to item j, the bit associated with { i , j } is set to 1.

Otherwise, the bit is set to 0. DLG* requires extra memory

space of size quadratic to |I|, but speeds up the performance

significantly.

2.2 Matrix
2.2.1 ABBM

In general, the ABBM algorithm [5] consists of four

phases as follows:

1. Transforming the transaction database into the Boolean

matrix

2. Generating the set of frequent 1-itemsets L1

3. Pruning the Boolean matrix

4. Generating the set of frequent k-itemsets Lk(k > 1)

In the first step the mined transaction database is D, with

D having m transactions and n items. Let T={T1,T2,..,Tm} be

the set of transactions and I={I1,I2,..In}be the set of items. We

set up a Boolean matrix A m*n, which has m rows and n

columns. Scanning the transaction database D, if item Ij is

intransaction Ti, where1 ≤ j ≤ n, 1 ≤ i ≤ m, the element

value of Aij is „1,‟ otherwise the value of Aij is „0‟.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

In the second step, The Boolean matrix A m*n is scanned

and support numbers of all items are computed. The support

number Ij.supth of item Ij is the number of „1s‟ in the jth

column of the Boolean matrix A m*n. If Ij.supth is smaller

than the minimum support number minsupth, itemset {Ij} is

not a frequent 1-itemset and the j
th

 column of the Boolean

matrix A m*n will be deleted from A m*n. Otherwise itemset

{Ij} is the frequent 1-itemset and is added to the set of

frequent 1-itemset L1.

Pruning the Boolean matrix means deleting some rows

and columns from it. First, the column of the Boolean matrix

is pruned according to Proposition 2. This is described in

detail as: Let I′ be the set of all items in the frequent set LK-1,

where k>2. Compute all |LK-1(j)| where I′, and delete the

column of correspondence item j if |LK-1(j)| is smaller than

k-1. Second, recompute the sum of the element values in each

row in the Boolean matrix.

Frequent k-itemsets are discovered only by “and”

relational calculus, which is carried out for the k-vectors

combination. If the Boolean matrix A p*q has q columns

where 2<q≤n and minsup
th

≤ p≤m, Cq
k , combinations of

k-vectors will be produced. The „and‟ relational calculus is

for each combination of k-vectors. If the sum of element

values in the “and” calculation result is not smaller than the

minimum support number minsupth, the k-itemsets

corresponding to this combination of k-vectors are the

frequent k-itemsets and are added to the set of frequent

k-itemsets Lk.

2.2.2 TCOM

In order to employee the advantages of both horizontal

and vertical layouts,[6] uses matrix structure called

Transactional Co-Occurrence Matrix, in short TCOM. The

algorithms designed on the base of TCOM are very efficient

and fast after it is constructed since full access of original

database or TCOM is no longer necessary.

A Transactional Co-Occurrence Matrix is an innovative

variant of a co-occurrence matrix [7]. A co-occurrence matrix

is a square two dimensional matrix, whose rows and columns

are items, or called attributes. If there are M items (attributes)

in the database, the size of the corresponding co-occurrence

matrix will be M*M.

It is easy to notice that a co-occurrence matrix is great to

mine the simple rules but is impossible to mine a high-degree

rule since the transactional information of 3 or more items are

lost during the construction of the matrix. But such rules are

desired for most of the time. Another drawback of the

co-occurrence is that the items are not sorted according to

their occurrence counts, which will significantly slow down

the item set searching during the mining process.

To overcome the above short comings, algorithm

incorporates transactional information into a sorted

co-occurrence matrix and makes it suitable for all association

rule-mining tasks.

The transform from the original database into the

transactional co-occurrence matrix layout requires two passes

of the database. The first pass of the original database is to

count the occurrence of each item and sort items into

descending order according to their occurrence counts.

During the second pass of the original database, each

transaction is sorted and then inserted into the transactional

co-occurrence matrix.

TCOM has great advantage by combining the

transactional oriented information with item oriented

information in to one single structure. During the mining

process, two pieces of information are needed.

1. For a given transaction, we need to know what items it

contains;

2. For a given item set, we need to know the occurrence count

of this item set.

If we only use the horizontal layout database (the original

database) to do the mining problem, then a full access of the

database is needed every time when the occurrence count of

an item set is desired. On the other hand, if we only use the

vertical layout database then a full access of the database is

needed every time when the first kind of information is

desired.

Mining process

Unlike previous literature which has to find all itemsets

before finding the valid association rule, we directly find the

valid association rules and itemsets simultaneously. We call

our mining process as TCOM_mining. It is an item oriented

algorithm and the simplified version is shown below.

TCOM_mining:

1.Let set I be the set of infrequent items, I={i1;i2,……,in}

//the items in I is in decreasing order according to their

occurrence count, such as

//occurrence_count(i1)>=occurrence_count(i2)>=….>=occur

rence_count(in),

//which can be obtained directly from the TCOM

2. Start with item in, for each item ir in the set I, 1<=r<=n

2.1 Let ISSET be the set of itemsets, initially ISSET

 is an empty set

2.2 Find out all existing item set ISA = {is1; is2,….,ir}

where occurrence_count(is1) >= occurrence_count(is2) >=

…. >= occurrence_count (ir)

2.3 Populate ISSET with itemsets found in step 2.2

2.4 Find out occurrence count for each ISA found in

step2.2

3. For each item set ISA in the set ISSET

//find two kinds of rule: the rules in which ir is in the

antecedent and ir is the least

//frequent item and the rules in which ir is in the antecedent

and ir is only the least

//frequent item in the antecedent but not in the whole rule

//step 3.1 is to find first kind of rules

3.1 For each item set ISB in the set ISSET where ISB !=

 ISA

 3.1.1 If ISB contains ISA

 3.1.1.1 Let ISC be the difference of ISB and ISA

 3.1.1.2 If occurrence_count (ISB)

 ≥occurrence_count (ISA)*σ

// σ is the minimal confidence threshold

 3.1.1.2.1 ISA -> ISC is a valid rule

 End if

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

 //occurrence_count (ISB) >occurrence_count (ISA)*σ End

if //ISB contains ISA

End for

//each item set ISB in the set ISSET

//steps 3.2-3.4 are to find second kind of rules

3.2 Find out all happened item set ISB where ISB

 contains ISA, and there exist at least one item j in ISB

with occurrence_count(j) <occurrence_count(ir)

3.3Find out the occurrence count for each ISB found in

step 3.2

3.4For each itemset ISB found in step 3.2

3.4.1 Let ISC be the difference of ISB and ISA

3.4.2 If occurrence_count (ISB) ≥

 occurrence_count (ISA)* σ

3.4.2.1 ISA ->ISC is a valid rule

End if

// occurrence_count(ISB) >= occurrence_count(ISA)

End for// each item set ISB found in step 3.2

End for// each item set ISA in the set ISSET

2.2.3 Algorithm BitMatrix

In Apriori and AprioriTid algorithms, it is assumed that

items in each transaction are kept sorted in their

lexicographic order [8]. However, this is not needed in

BitMatrix. By careful programming, we can keep the items in

the large itemsets and the large itemsets of the same size are

kept sorted in their lexicographic order even if the items in

the transactions are not kept sorted. We call the number of

items in an item set its size, and call an item set of size k a

k-item set. The set of all large k-itemsets is defined as Lk.

Each k-item set c in Lk consists of items c[1],c[2],...,c[k],

where c[1] < c[2] <…< c[k]. Associated with each item set

are two fields: count field to store the support for this itemset,

and index field (henceforth referred to as support index) to

indicate the transactions that contain the itemset. The

BitMatrix algorithm is described as:

(1) Initialize the bitmatrix;

(2) L1 = {large 1-itemset};

(3) for (k=2; Lk!=0; k++) do

(4) Lk =GenLargeItemsets(Lk-1);

(5) Answer= UkLk.

In Step (1) of this algorithm, we initialize the bitmatrix as

follows. First we build a matrix whose row number and

column number are the item number and the transaction

number, respectively. Note that the matrix is a bit-matrix and

every position of the matrix only has one bit in the memory.

Then we go through the database. If there are items i1, i2,...,ik

in the jth transaction, bits ai1j, ai2j, ... , aikj (aij represents the bit

of i
th

 row and j
th

 column) and the other bits in the j
th

 column of

the matrix are initialized as 1 and 0 respectively.

In Step (2), we simply count the number of 1 in each row

to get the support count of every item and the large 1-itemsets

axe determined.

In Step (4), the previously generated large (k-1)-itemsets

are used to generate the large k-itemsets. This step repeats

until no new large itemsets are generated. The

GenLaxgeItemsets function is used here, which takes as

argument Lk-1 and returns Lk. The function works as follows.

(1) for(∀p, q ∈ Lk−1) do

(2)ifp[1] = q[1]Λ,… ,Λ(p[k − 2] = q[k − 2]Λ(p[k − 1] <
 𝑞[𝑘 − 1]) 𝑡ℎ𝑒𝑛 {

(3) c = p ∪ q; //c consists of p[1], p[2] p[k - 2], p[k - 1],

q[k - 1]

(4) for all (k - 1)-subsets s of c do

(5) if(s ∉ Lk) then {delete c; c = 0; break;}

(6) if(c ≠ 0) then {

(7) c.index = p.index&q.index; //support index

(8) computec.count from c.index; //support count

(9) if (c.count>minsup) then Lk = Lk U {c};

(10) }//end if

(11) }//end if

From Steps (1) to (5), the function simply helps generate

the Ck that is a set of candidate k-itemsets (potentially large

itemsets, see also [8]). In Step (2), the condition p[k - 1] <q[k

- 1] ensures that no duplicates are generated. However, this

algorithm differs from Apriori in that it need not store all the

candidates in the memory. Once a candidate itemset is

generated, it will be determined in Steps (7) to (9) whether it

is a large one.

To decide whether a candidate item set is a large one, we

associate each large itemset with a support index, which is a

bit index and each bit of which indicates whether the itemset

is contained by a transaction in the database. As to the

1-itemsets, their support index is some row in the bitmatrix.

Since c is the union of p and q, we simply generate c's

support index by bit operator AND ("&") that is applied to

each bit of p's and q's in Step (7).

2.3 Tree

2.3.1 TBAR

TBAR [9] is aApriori based association rule mining which

uses tree data structure to store relevant itemsets in database.

Use of itemset tree to store relevant itemsets saves space and

time required to process data. TBAR was mainly developed

to work with relational databases. It makes each item as pair

column_name:value. It will use the following algorithm to

find all the relevant itemsets:

set.Init (MinSupport);

itemsets = set.Relevants(1);

k = 2;

while (k <= columns && itemsets >= k) {

itemsets = set.Candidates(k);

 If (itemsets>0)

 Itemsets = set.Relevants(k);

k++;

}

In this algorithm the set is itemset tree. init method will

initialize the itemset tree. Method relevants(k) will generate

Lk and candidate(k) will generate Ck from Lk-1.

The itemset tree will look like

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig.1 TBAR data structure example.

2.3.2 STBAR

STBAR [10] is extended version of TBAR. STBAR

employs the tree-based storage, which is analogous to TBAR.

Each node in the tree is not a 2-tuple <a, v>, but a 3-tuple <a,

v, t>, in which 'a' is the attribute, 'v' is the number of tuples

which satisfy the condition, ‟t‟ is a flag whose value is 1 or 0.

This flag will decide whether an item can concatenate the

items found in the paths from the root of the tree to the

current i tem or not.

Step1: Generate all the frequent 1-itemsets, and store them in

the 3-tuples.

Step2: According to the order In-1 … I1, generate itemset L2,

validate whether it can constitute a frequent itemsets or not,

and set the corresponding flag in the 3-tuple.

Step3: For each sub-itemset in L2, recursively generate Ln

according to Step 2.

Step4: Seek for the tree's depth.

Step5: Find out the longest concatenations in the tree.

Step6: Produce all the association rules. This step is just as

TBAR doing.

The STBAR datastructure will look like

Fig.2STBAR data structure example.

3. Conclusion
Association rule mining is widely used in market basket

analysis, medical diagnosis, Website navigation analysis,

homeland security and so on. During association rule mining

most of the time is spent for scanning database for finding

frequent itemsets. This time can be reduced by using different

data structures to store frequent itemsets. In this paper we

surveyed the mining algorithms which make use of different

data structures to reduce space and time complexity of

algorithms.

4. References
[1] Agrawal R., Imielinski T. and Swami A. N., “Mining

Association Rules Between Sets of Items in Large

Databases,” ACM SIGMOD International Conference on

Management of Data, pp. 207-216, 1993.

[2] Show-Jane Yen and Arbee L.P. Chen, “A Graph-Based

Approach for Discovering Various Types of Association

Rules,” IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, VOL. 13, NO. 5,pp. 839-845

SEPTEMBER/OCTOBER 2001.

[3]Ms.SanoberShaikh, Ms.MadhuriRao and Dr. S. S. Mantha

“A New Association Rule Mining Based on Frequent

Itemset,” AIAA 2011,CS & IT 03, pp. 81–95 , 2011.

[4] K.L. Lee, Guanling Lee and Arbee L. P. Chen, “Efficient

Graph-Based Algorithms for Discovering and Maintaining

Association Rules in Large Databases,” Knowledge and

Information Systems (2001) 3: pp. 338–355, 2001.

[5] Hanbing Liu and Baisheng Wang, “An Association Rule

Mining Algorithm Based on a Boolean Matrix,” Data Science

Journal, Volume 6, Supplement, 9 September 2007 pp.

559-565.

[6] Junfeng Ding, Stephen S.T. Yau, “TCOM, an Innovative

Data Structure for Mining Association Rules Among

Infrequent Items,” Computersand Mathematics with

Applications 57 (2009) pp. 290-301.

[7] R. Haralick, K. Shanmugam, I. Dinstein, “Textural

Features for Image Classification,” IEEE Transactions on

Systems, Man, and Cybernetics (SMC-3) (1973) 610-621.

[8] G. Webb, “Efficient Search for Association Rules,”

International Conference on Knowledge Discovery and Data

Mining, pp. 99-107, 2000.

[9] Fernando Berzal , Juan-Carlos Cubero, Nicolas Marin,

“TBAR: An Efficient Method for Association Rule Mining in

Relational Databases,” Data & Knowledge Engineering 37,

pp. 47-64 2001.

[10] De-chang Pi, Xiao-Lin Qin, Wang-FengGu, Ran Cheng,

“STBAR: A More Efficient Algorithm for Association Rule

Mining,” Fourth International Conference on Machine

Learning and Cybernetics, Guangzhou, 18-21 August 2005.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

