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Abstract 
 

Association rule mining is important data mining task for 

which many algorithms have been proposed. All these 

algorithms generally work in two phases, finding frequent 

itemsets and generating association rules from them. First 

phase is most time consuming in most of the algorithms 

because algorithm has to scan the database many times. Use 

of different data structures overcomes this drawback. In this 

paper we will survey the algorithms which make use of 

different data structures to improve association rule mining 
 

1. Introduction 
Association rule mining, one of the most important and 

well researched techniques of data mining, was first 

introduced in [1]. It aims to extract interesting correlations, 

frequent patterns, associations or casual structures among 

sets of items in the transaction databases or other data 

repositories. Association rules are widely used in various 

areas such as telecommunication networks, market and risk 

management, inventory control etc. Various association 

mining techniques and algorithms will be briefly introduced 

later. 

Association rule mining is to find out association rules that 

satisfy the predefined minimum support and confidence from 

a given database. The problem is usually decomposed into 

two sub problems. One is to find those itemsets whose 

occurrences exceed a predefined threshold in the database; 

those itemsets are called frequent or large itemsets. The 

second problem is to generate association rules from those 

large itemsets with the constraints of minimal confidence. 

Suppose one of the large item-sets is Lk , Lk =  {I1, I2,… , Ik}, 

association rules with this itemsets are generated in the 

following way: the first rule is {I1 , I2,… , Ik−1} = {Ik} , by 

checking the confidence this rule can be determined as 

interesting or not. Then other rule are generated by deleting 

the last items in the antecedent and inserting it to the 

consequent, further the confidences of the new rules are 

checked to determine the interestingness of them. Those 

processes iterated until the antecedent becomes empty. Since 

the second sub-problem is quite straight forward, most of the 

researches focus on the first sub-problem. 

The first sub-problem can be further divided into two 

sub-problems: candidate large item sets generation process 

and frequent itemsets generation process. We call those item 

sets whose support exceed the support threshold as large or 

frequent itemsets, those itemsets that are expected or have the 

hope to be large or frequent are called candidate itemsets. 

In many cases, the algorithm needs to scan data base for 

number of times to generate frequent itemsets which causes 

inefficiency of algorithm. Several strategies have been 

proposed to reduce time complexity of algorithm. One of 

these strategies is to use different data structures based 

algorithms for finding frequent item sets such as tree, graph 

and matrix.  
 

2 Use of different data structures in association 

rule mining 

2.1 Graph 

2.1.1 PAPG (Primitive Association Pattern Generation) 

In this algorithm [2] the first step is to construct 

association graph. This is two-step process numbering and 

graph construction. In the numbering phase, the algorithm 

PAPG arbitrarily assigns each item a unique integer number. 

In the large item generation phase, PAPG scans the database 

and builds a bit vector for each item. The length of each bit 

vector is the number of transactions in the database. If an item 

appears in the ith transaction, the ith bit of the bit vector 

associated with this item is set to 1. Otherwise, the ith bit of 

the bit vector is set to 0. The bit vector associated with item i 

is denoted as BVi. The number of 1s in BVi is equal to the 

number of transactions which support the item i, that is, the 

support for the item i. For association graph construction 

PAPG uses AGC (Association Graph Construction) 

algorithm. The AGC algorithm is described as follows: For 

every two large items i and j(i <  𝑗), if the number of 1s in 

BViΛBVj  achieves the user-specified minimum support, a 

directed edge from item i to item j is created. Also, itemset (i, 

j) is a large 2-itemset. 

Second step is to generate Primitive Association Pattern. 

The large 2-itemsets are generated after the association graph 

construction phase. In the association pattern generation 

phase, the algorithm LGDE (Large itemset Generation by 

Direct Extension) is proposed to generate large k–itemsets (k 

> 2), which is described as follows: For each large 

k-itemset(k ≥  2), the last item of the k-itemset is used to 

extend the large itemset into k+1-itemsets. 

Suppose (I1, I2 ,… , Ik) is a large k-itemset. If there is no 

directed edge from item Ik to an item v, then the itemset need 

not be extended into k+1-itemset,because  

(I1, I2,… , Ik , v) must not be a large itemset. If there is a 

directed edge from item Ik to an item u, then the itemset 

(I1, I2,… , Ik) is extended into𝐾 + 1 − itemset(I1, I2,… , Ik). 

The itemset (I1 , I2,… , Ik , u) is a large k + 1 − itemset if the 

number of 1s in BV1ΛBV2Λ…ΛBVikΛBVu  achieves the 
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minimum support. If no large k+1-itemsets can be generated, 

the algorithm LGDE terminates. 

2.1.2 GAPG (Generalized Association 

PatternGeneration) 

GAPG [2] is used to discover all generalized association 

patterns. To generate generalized association patterns, one 

can add all ancestors of each item in a transaction to the 

transaction and then apply the algorithm PAPG on the 

extended transactions. 

In the numbering phase, GAPG applies the numbering 

method PON (POstorder numbering method) to number 

items at the concept hierarchies. For each concept hierarchy, 

PON numbers each item according to the following order: 

For each item at the concept hierarchy, after all descendants 

of the item are numbered, PON numbers this item 

immediately, and all items are numbered increasingly. After 

all items at a concept hierarchy are numbered, PON numbers 

items at another concept hierarchy.  

In the large item generation phase, GAPG builds a bit 

vector for each database item, and finds all large items 

(include database items and generalized items). Here, we 

assume that all database items are specific items.  

In the association graph construction phase, GAPG 

applies the algorithm GAGC (Generalized Association Graph 

Construction) to construct a generalized association graph to 

be traversed. The algorithm GAGC is described as follows: 

For every two large items i and j (i <  𝑗), if item j is not an 

ancestor of item i and the number of 1s in BViΛBVj  achieves 

the user-specified minimum support, a directed edge from 

item i to item j is created. Also, itemset (i, j)  is a large 

2-itemset. 

In the association pattern generation phase, GAPG applies 

the LGDE algorithm to generate all generalized association 

patterns by traversing the generalized association graph. 

2.1.3 Undirected Item Set Graph [3] 

Undirected item set graph is set of nodes 
V (V1 , V2 ,… , Vn) in the database. Each node contains: the 
node name, the pointer to other nodes, and the number of 
nodes to which it points. The side set E < 𝑖, 𝑗 >  of 
undirected item set graph has two attributes: the side 
name and the number of side appear. < Vi , Vj > Express 
two frequent itemsets;< V1, V2,… , Vn >express n frequent 
itemset. 

In construction of Undirected Item Set Graph First step 
is to scan the database. It makes each item as a node and at 
the same time it makes the supporting trade list for each 
node. Supporting trade list is a binary group T =
{Tid , Itemset} (where Tid  is transaction id and Itemset is 
trade item set). So the side between nodes can be 
accomplished by corresponding trade list operation. The 
algorithm does the intersection of two nodes with 
supporting trade list. When trade list is not empty, that 
means there is a side between two nodes. The appearance 
number of each side is the resultant number which 
algorithm finds by the side’s intersection. 
Algorithm one:  Construction of undirected item sets 

graph  
Input: Database D  
Output: Undirected item set graph 
Begin  
1.  Add the items into the vertex set V;  
2.   For i = 1 to n − 1 

2.1. Select Vi  fromV;   
2.2. For each Vj  (j ≠  i) 

2.2.1. If (Ii  ∩  Ij)  ≠  Ø then    
2.2.2. Add link between Vi  and Vj//Vi  and Vj 
                         Become adjacent nodes. 
 2.2.3. End if.  
2.3. Next  

3.  Next  
End 

The algorithm in [3] uses the search strategy of Depth 
first-Search to set universal undirected item graph. The 
specific steps are shown as follows: Select a node Vi  from 
node set V . If the number of times Vi  appears in the 
database is not less than the minimum support minsupp, 
then {Vi} will belong to the item in frequent 1-item set. If 
count of node Vi  adjacent to node Vj ’s side is not less than 
support S, then {Vi , Vj} will belong to the item in frequent 
2-itemset. When there are three nodes in undirected item 
set graph and count of each side of the node is not less 
than minimum support minsupp, these three nodes 
< Vk , Vm , Vn > will belong to frequent 3-item set. When  
there  more than three nodes in undirected item sets graph 
then count of each side  of  the  node  should not be less 
than minimum support minsupp and all the subset of 
these n nodes should be frequent. 
Algorithm two: To find frequent item set based on 
undirected item sets graph.  
Input: Undirected item set graph, minimum support 
minsupp, minconf 
Output: frequent item set L, Association rule   
Begin  
1. The node set V is empty or not. If it is empty then stop;  
2. Find count of each item (e.g.Vi) and check count of  
each item is greater than or equal to minimum support 
minsupp. If greater than the items are stored in frequent-1 
item set;  
3.(frequent item set)  =  L;  
4. Select any unvisited node (e.g.Vj) from adjacent list OfVi ;  
5. If count ((Vi , Vj)  ≥  minsuppp) then 

5.1. L U Vj;  
5.2. L. adjacentlist =

(L. adjacentlist)  ∩   (Vj  . adjacent list); 
5.3. Call DFS (Vj) Procedure;  

6. End if;  
7. Confidence of each item is compared with minconfand 
strong association rules are generated.   
8. End;  

 
ProcedureDFS (Vj):  
Begin  
1. If Vj . adjacentlist ≠  Φ then  

1.1. Select any other node, suppose Vkfrom  

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T



 

 

 

 

 

Vj . adjacentlist;  
1.2. Call isloop (L, Vk) Procedure;  
1.3. If count (L, Vk) is greater than or equal to 
minimum support then combine L U (Vk).  

1.3.1. Call DFS (Vk); 
1.3.2. Output is frequent item set;  
1.3.3. Delete Vk  fromVj . adjacentlist;  
1.3.4. Call DFS (Vj); 

1.4. Else Return to its parent vertexVi ;  
1.5. Call DFS (Vi);  

2. End;  
 

Procedureisloop (L, Vk):  
Begin  
1.If Vk  € L. adjacentlist then return Vk;  
2. Else delete Vk  fromVj . adjacentlist;  
3. CallDFS (Vj);    
4. End; 

When database and minimum support i.e. minsupp is 
changed the undirected graph should be changed 
accordingly. If we want to add some new items to the 
database, then undirected item set graph is updated 
accordingly. At this time, the new frequent item sets can 
be found only by running algorithm two again. When the 
minimum support is changed, new frequent item set can 
be found only by adjusting the parameter of algorithm 
two again. 

2.1.4 DLG 

DLG [4] is a three-phase algorithm. The large 1-itemset 

generation   phase finds large items and records related 

information. The graph construction phase constructs an 

association graph between large items, and at the same time 

generates large 2-itemsets. The large item set generation 

phase generates large k-itemsets (k > 2)  based on this 

association graph. 

In large 1-itemset generation phase, the DLG algorithm 

scans the database to count the support and builds a bit vector 

for each item. The length of a bit vector is the number of 

transactions in the database. The bit vector associated with 

item i is denoted asBVi.  The j th  bit of  BVi is set to 1 if item i 

appears in the j th  transaction. Otherwise, the j th  bit of BVi is 

set to 0. The number of 1‟s in BVi  is equal to the support 

count of the item. 

In graph construction phase, the support count for the 

itemset {I1, I2 ,… , Ik}  is the number of 1‟s 

inBVi1ΛBVi2Λ…ΛBVik , where the notation “Λ ” is a logical 

AND operation. Hence, the support count of the 

itemset {I1, I2 ,… , Ik}  can be found directly by applying 

logical AND operations on the bit vectors of the k-itemsets 

instead of scanning the database. If the number of 1‟s 

inBViΛBVj(i < 𝑗) is no less than the minimum support count, 

a directed edge from item i  to item j  is constructed in the 

association graph. Also, { i , j } is a large 2-itemset. 

In large itemset generation phase, for each large 

k-itemset{I1 , I2,… , Ik} inLk  (k > 1), the last item ik  is used 

to extend the itemset into (k + 1) -itemsets. If there is a 

directed edge from ik  to itemj, the itemset {I1, I2 ,… , Ikj } is a 

candidate (k + 1) -itemset. If the number of 1‟s in 

BVi1ΛBVi2Λ…ΛBVikΛBVj  is no less than the minimum 

support count, {I1, I2,… , Ikj }  is a large (k + 1) -itemset in 

Lk+1. If no large k-itemset is generated in the  kth  iteration, 

the algorithm terminates. 

2.1.5 DLG* 

In the kth ( k > 2) iteration, DLG [4] generates candidate 

k -itemsets by extending each large (k − 1) -itemset 

according to the association graph. Suppose on the average, 

the out-degree of each node in the association graph is q. The 

number of candidate itemsets is |Lk  − 1|  ×  q , and DLG 

must perform |Lk −  1| × q × (k − 1)  logical AND 

operations on bit vectors to determine all large  k-itemsets. 

The key issue of the DLG* [4] algorithm is to reduce the 

number of candidate itemsets. 

In the large itemset generation phase, DLG* extends each 

large k-itemset in Lk(k ≥ 2) into (k + 1)-itemsets like the 

original DLG algorithm. Suppose {I1 , I2,… , Ik}  is a large 

k-itemset, and there is a directed edge from item ik  to item i. 
If the (k + 1)-itemset {I1, I2,… , Ik , I} is large, it must satisfy 

the following two conditions (Otherwise, it cannot be large 

and is excluded from the set of candidate (k + 1)-itemsets).  

1. Any {ij , i } (1 ≤  j ≤  k) must be large. In other words, 

the in-degree of the node associated with item i must be at 

least k. 

2. Moreover, a directed edge from ik  to item i means that 

{ik , i } is also a large 2-itemset. Therefore, we only need to 

check if all {ij , i }(1 ≤  j ≤  k − 1) are large. 

These simple checks significantly reduce the number of 

candidate itemsets. In order to speed up these checks, we 

record some information during the graph construction 

phase. For the first condition, for each large item, we count 

the in-degrees of this item. For the second condition, a bitmap 

with |L1| × |L1| bits is built to record related information 

about the association graph. If there is a directed edge from 

item i to item j, the bit associated with { i , j } is set to 1. 

Otherwise, the bit is set to 0. DLG* requires extra memory 

space of size quadratic to |I|, but speeds up the performance 

significantly. 

 
2.2 Matrix 
2.2.1 ABBM 

In general, the ABBM algorithm [5] consists of four 

phases as follows:  

1. Transforming the transaction database into the Boolean 

matrix  

2. Generating the set of frequent 1-itemsets L1  

3. Pruning the Boolean matrix  

4. Generating the set of frequent k-itemsets Lk(k > 1) 

In the first step the mined transaction database is D, with 

D having m transactions and n items. Let T={T1,T2,..,Tm} be 

the set of transactions and I={I1,I2,..In}be the set of items. We 

set up a Boolean matrix A m*n, which has m rows and n 

columns. Scanning the transaction database D, if item Ij is 

intransaction Ti, where1 ≤ j ≤  n, 1 ≤  i ≤  m, the element 

value of Aij is „1,‟ otherwise the value of Aij is „0‟. 
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In the second step, The Boolean matrix A m*n is scanned 

and support numbers of all items are computed. The support 

number Ij.supth of item Ij  is the number of „1s‟ in the jth 

column of the Boolean matrix A m*n. If Ij.supth is smaller 

than the minimum support number minsupth, itemset {Ij} is 

not a frequent 1-itemset and the j
th

 column of the Boolean 

matrix A m*n will be deleted from A m*n. Otherwise itemset 

{Ij} is the frequent 1-itemset and is added to the set of 

frequent 1-itemset L1. 

Pruning the Boolean matrix means deleting some rows 

and columns from it. First, the column of the Boolean matrix 

is pruned according to Proposition 2. This is described in 

detail as: Let I′ be the set of all items in the frequent set LK-1, 

where k>2. Compute all |LK-1(j)| where I′, and delete the 

column of correspondence item j if |LK-1(j)| is smaller than 

k-1. Second, recompute the sum of the element values in each 

row in the Boolean matrix.  

Frequent k-itemsets are discovered only by “and” 

relational calculus, which is carried out for the k-vectors 

combination. If the Boolean matrix A p*q has q columns 

where 2<q≤n and minsup
th

≤ p≤m, Cq
k  , combinations of 

k-vectors will be produced. The „and‟ relational calculus is 

for each combination of k-vectors. If the sum of element 

values in the “and” calculation result is not smaller than the 

minimum support number minsupth, the k-itemsets 

corresponding to this combination of k-vectors are the 

frequent k-itemsets and are added to the set of frequent 

k-itemsets Lk. 

2.2.2 TCOM 

In order to employee the advantages of both horizontal 

and vertical layouts,[6] uses matrix structure called 

Transactional Co-Occurrence Matrix, in short TCOM. The 

algorithms designed on the base of TCOM are very efficient 

and fast after it is constructed since full access of original 

database or TCOM is no longer necessary. 

A Transactional Co-Occurrence Matrix is an innovative 

variant of a co-occurrence matrix [7]. A co-occurrence matrix 

is a square two dimensional matrix, whose rows and columns 

are items, or called attributes. If there are M items (attributes) 

in the database, the size of the corresponding co-occurrence 

matrix will be M*M. 

It is easy to notice that a co-occurrence matrix is great to 

mine the simple rules but is impossible to mine a high-degree 

rule since the transactional information of 3 or more items are 

lost during the construction of the matrix. But such rules are 

desired for most of the time. Another drawback of the 

co-occurrence is that the items are not sorted according to 

their occurrence counts, which will significantly slow down 

the item set searching during the mining process. 

To overcome the above short comings, algorithm 

incorporates transactional information into a sorted 

co-occurrence matrix and makes it suitable for all association 

rule-mining tasks. 

The transform from the original database into the 

transactional co-occurrence matrix layout requires two passes 

of the database. The first pass of the original database is to 

count the occurrence of each item and sort items into 

descending order according to their occurrence counts. 

During the second pass of the original database, each 

transaction is sorted and then inserted into the transactional 

co-occurrence matrix. 

TCOM has great advantage by combining the 

transactional oriented information with item oriented 

information in to one single structure. During the mining 

process, two pieces of information are needed. 

1. For a given transaction, we need to know what items it 

contains; 

2. For a given item set, we need to know the occurrence count 

of this item set. 

If we only use the horizontal layout database (the original 

database) to do the mining problem, then a full access of the 

database is needed every time when the occurrence count of 

an item set is desired. On the other hand, if we only use the 

vertical layout database then a full access of the database is 

needed every time when the first kind of information is 

desired. 

 

Mining process 

Unlike previous literature which has to find all itemsets 

before finding the valid association rule, we directly find the 

valid association rules and itemsets simultaneously. We call 

our mining process as TCOM_mining. It is an item oriented 

algorithm and the simplified version is shown below. 

TCOM_mining: 

1.Let set I be the set of infrequent items, I={i1;i2,……,in} 

//the items in I is in decreasing order according to their    

occurrence count, such as 

//occurrence_count(i1)>=occurrence_count(i2)>=….>=occur

rence_count(in), 

//which can be obtained directly from the TCOM 

2. Start with item in, for each item ir in the set I, 1<=r<=n 

2.1 Let ISSET be the set of itemsets, initially ISSET  

 is an empty set 

2.2 Find out all existing item set ISA = {is1; is2,….,ir} 

where occurrence_count(is1) >= occurrence_count(is2) >= 

…. >= occurrence_count (ir) 

2.3 Populate ISSET with itemsets found in step 2.2 

2.4 Find out occurrence count for each ISA found  in 

step2.2 

3. For each item set ISA in the set ISSET 

//find two kinds of rule: the rules in which ir is in the 

antecedent and ir is the least 

//frequent item and the rules in which ir is in the antecedent 

and ir is only the least 

//frequent item in the antecedent but not in the whole rule 

//step 3.1 is to find first kind of rules 

3.1 For each item set ISB in the set ISSET where ISB != 

 ISA 

 3.1.1 If ISB contains ISA  

      3.1.1.1 Let ISC be the difference of ISB and ISA 

 3.1.1.2 If occurrence_count (ISB)     

 ≥occurrence_count (ISA)*σ 

// σ is the minimal confidence threshold 

             3.1.1.2.1 ISA -> ISC is a valid rule 

           End if 
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 //occurrence_count (ISB) >occurrence_count (ISA)*σ End 

if //ISB contains ISA 

End for  

//each item set ISB in the set ISSET 

//steps 3.2-3.4 are to find second kind of rules 

3.2 Find out all happened item set ISB where ISB 

 contains ISA, and there exist at least one item j in  ISB 

with occurrence_count(j) <occurrence_count(ir) 

3.3Find out the occurrence count for each ISB  found in 

step 3.2 

3.4For each itemset ISB found in step 3.2 

3.4.1 Let ISC be the difference of ISB and ISA 

3.4.2 If occurrence_count (ISB) ≥   

 occurrence_count (ISA)* σ  

3.4.2.1 ISA ->ISC is a valid rule 

End if  

// occurrence_count(ISB) >= occurrence_count(ISA) 

End for// each item set ISB found in step 3.2 

End for// each item set ISA in the set ISSET 

 

2.2.3 Algorithm BitMatrix 

In Apriori and AprioriTid algorithms, it is assumed that 

items in each transaction are kept sorted in their 

lexicographic order [8]. However, this is not needed in 

BitMatrix. By careful programming, we can keep the items in 

the large itemsets and the large itemsets of the same size are 

kept sorted in their lexicographic order even if the items in 

the transactions are not kept sorted. We call the number of 

items in an item set its size, and call an item set of size k a 

k-item set. The set of all large k-itemsets is defined as Lk. 

Each k-item set c in Lk consists of items c[1],c[2],...,c[k], 

where c[1] < c[2] <…< c[k].  Associated with each item set 

are two fields: count field to store the support for this itemset, 

and index field (henceforth referred to as support index) to 

indicate the transactions that contain the itemset. The 

BitMatrix algorithm is described as:  

(1) Initialize the bitmatrix;  

(2) L1 = {large 1-itemset}; 

(3) for (k=2;  Lk!=0; k++)  do  

(4) Lk =GenLargeItemsets(Lk-1);  

(5) Answer= UkLk.  

In Step (1) of this algorithm, we initialize the bitmatrix as 

follows. First we build a matrix whose row number and 

column number are the item number and the transaction 

number, respectively. Note that the matrix is a bit-matrix and 

every position of the matrix only has one bit in the memory. 

Then we go through the database. If there are items i1, i2,...,ik 

in the jth transaction, bits ai1j, ai2j, ...  , aikj (aij represents the bit 

of i
th

 row and j
th

 column) and the other bits in the j
th

 column of 

the matrix are initialized as 1 and 0 respectively. 

In Step (2), we simply count the number of 1 in each row 

to get the support count of every item and the large 1-itemsets 

axe determined.  

In Step (4), the previously generated large (k-1)-itemsets 

are used to generate the large k-itemsets. This step repeats 

until no new large itemsets are generated. The 

GenLaxgeItemsets function is used here, which takes as 

argument Lk-1 and returns Lk. The function works as follows.  

(1) for(∀p, q ∈ Lk−1)  do 

(2)ifp[1] = q[1]Λ,… ,Λ(p[k − 2] = q[k − 2]Λ(p[k − 1] <
 𝑞[𝑘 − 1]) 𝑡ℎ𝑒𝑛 { 

(3)  c = p ∪ q; //c consists of p[1], p[2] .....  p[k - 2], p[k - 1],  

q[k - 1]  

(4)  for all (k - 1)-subsets s of c do  

(5)  if(s ∉ Lk) then  {delete c; c = 0; break;}  

(6)  if(c ≠ 0) then  {  

(7)  c.index = p.index&q.index; //support index  

(8)  computec.count  from  c.index;  //support  count  

(9)  if (c.count>minsup) then Lk = Lk U {c};  

(10) }//end if  

(11) }//end if  

From Steps (1) to (5), the function simply helps generate 

the Ck that is a set of candidate k-itemsets (potentially large 

itemsets, see also [8]). In Step (2), the condition p[k - 1] <q[k 

- 1] ensures that no duplicates are generated. However, this 

algorithm differs from Apriori in that it need not store all the 

candidates in the memory. Once a candidate itemset is 

generated, it will be determined in Steps (7) to (9) whether it 

is a large one.  

To decide whether a candidate item set is a large one, we 

associate each large itemset with a support index, which is a 

bit index and each bit of which indicates whether the itemset 

is contained by a transaction in the database. As to the 

1-itemsets, their support index is some row in the bitmatrix.  

Since c is the union of p and q, we simply generate c's 

support index by bit operator AND ("&") that is applied to 

each bit of p's and q's in Step (7). 

 
2.3 Tree  

2.3.1 TBAR 

TBAR [9] is aApriori based association rule mining which 

uses tree data structure to store relevant itemsets in database. 

Use of itemset tree to store relevant itemsets saves space and 

time required to process data. TBAR was mainly developed 

to work with relational databases. It makes each item as pair 

column_name:value. It will use the following algorithm to 

find all the relevant itemsets: 

 

set.Init (MinSupport); 

itemsets =  set.Relevants(1); 

k = 2; 

while (k <= columns && itemsets >= k) { 

itemsets = set.Candidates(k); 

      If (itemsets>0) 

 Itemsets = set.Relevants(k); 

k++; 

} 

In this algorithm the set is itemset tree. init method will 

initialize the itemset tree. Method relevants(k) will generate 

Lk and candidate(k) will generate Ck from Lk-1.  

The itemset tree will look like 
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Fig.1 TBAR data structure example. 

 

2.3.2 STBAR 

STBAR [10] is extended version of TBAR. STBAR 

employs the tree-based storage, which is analogous to TBAR. 

Each node in the tree is not a 2-tuple <a, v>, but a 3-tuple <a, 

v, t>, in which 'a' is the attribute, 'v' is the number of tuples 

which satisfy the condition, ‟t‟ is a flag whose value is 1 or 0. 

This flag will decide whether an item can concatenate the 

items found in the paths from the root of the tree to the 

current i tem or not. 

Step1: Generate all the frequent 1-itemsets, and store them in 

the 3-tuples.  

Step2:  According to the order In-1 … I1, generate itemset L2, 

validate whether it can constitute a frequent itemsets or not, 

and set the corresponding flag in the 3-tuple.  

Step3: For each sub-itemset in L2, recursively generate Ln 

according to Step 2.  

Step4: Seek for the tree's depth.  

Step5:  Find out the longest concatenations in the tree.    

Step6: Produce all the association rules. This step is just as 

TBAR doing. 

The STBAR datastructure will look like 

 

Fig.2STBAR data structure example. 

3. Conclusion 
Association rule mining is widely used in market basket 

analysis, medical diagnosis, Website navigation analysis, 

homeland security and so on. During association rule mining 

most of the time is spent for scanning database for finding 

frequent itemsets. This time can be reduced by using different 

data structures to store frequent itemsets. In this paper we 

surveyed the mining algorithms which make use of different 

data structures to reduce space and time complexity of 

algorithms. 
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