
Usage Control Enforcement in Linux NFS Server

H. Aboelsoud M
Department of Computer Engineering

Military Technical College

Cairo, Egypt

Abstract—Servers in distributed environments are the main

targets of malicious attacks. As a consequence, the need for

securing and protecting resources residing on such servers is

considered a major and continuous challenge. However,

traditional access control models are not suitable for regulating

access in today’s highly dynamic, distributed, network-

connected, and open computing environments as they are

usually not expressive enough to capture important security

requirements such as continuity of decisions (ongoing controls)

and mutability of attributes, besides lacking of important

decision factors like obligations and conditions. Hence, the usage

control (UCON) comes as a novel and promising approach to

overcome the inadequacies of traditional access control models

[1]. However, applying UCON in modern distributed

environments is usually introducing complex usage scenarios

and new challenging issues as discussed by Grompanopoulos et

al. [2]. This paper, taking into account Grompanopoulos’s

UCON challenges, studies usage control enforcement in

distributed file systems, and take Linux Network File System

(NFS) as a case-study. This work follows the approach proposed

in [3] to present UCON based on the schema of the OM-AM [4]

(Objectives, Models, Architectures, Mechanisms) engineering

design philosophy by focusing on the architectures and

mechanisms layers. An enforcement architecture design

following the Sandhu’s UCONABC model [5] is proposed and a

prototype implementation in the Linux NFS server, on top of the

existing DAC mechanism, is also proposed as a proof of concept.

The implementation includes modifications to the Linux NFS

server through the nfsd loadable kernel module (LKM), which

handles the main functionality of the Linux NFS server. Security

and performance analysis were conducted to ensure that our

system enforced the UCON policies as expected and to measure

the additional overhead for making UCON checks compared

with an unmodified kernel (vanilla kernel).

Keywords—Access Control, Operating System (OS) Security,

Usage Control, and NFS Security.

I. INTRODUCTION

Distributed file system objects like files and directories are

examples for valuable and sensitive system resources that

need to be protected by OS which uses access control

mechanisms to protect and control access to them.

Traditionally, access control has dealt only with authorization

decisions on users’ access to target resources. The most

widely used traditional access control models are [6]:

Discretionary Access Control (DAC), Mandatory Access

Control (MAC), and Role Based Access Control (RBAC).

In DAC, objects or data are owned by a user (owner) and

permission to act on them is given at the discretion of the

owner [7]. DAC is widely implemented in many systems (e.g.

UNIX, Windows, etc.) because of its flexibility and ease of

implementation. In MAC, access is based on labels assigned

to subjects and objects and access decisions are made beyond

the control of the individual owner of the object [8]. MAC is

implemented in UNIX-based systems through Domain and

Type Enforcement (DTE) and implemented in Windows

through a security feature called Mandatory Integrity Control

(MIC). In RBAC, access is granted based on the roles

individual users have in their organization based on their job

functions [9], RBAC is implemented in windows OS using

groups.

Other modern access control models include Trust

Management (TM) and Digital rights management (DRM).

TM [10] is a model to authorize unknown entities in an open

environment, but it deals only with static entities, whose

characteristics do not change in time. DRM [11] concerns on

controlling and tracking access to and usage of already

disseminated digital objects at client-side, it mainly focus on

intellectual property rights protection.

However, current classic access control models are not

suitable for regulating access as they are usually dedicated to

specific target problems (ad-hoc solutions) and not

comprehensive enough to cover the broad traditional models.

Hence, UCON comes as a unified framework to extend

traditional access control models in a way that make it

suitable for new challenges in the computer security [1].

UCON encompasses traditional access control models, TM,

DRM and other enhanced access control models, by

integrating authorizations, obligations, and conditions and

providing the properties of decision continuity and attribute

mutability [5].

This research studies a UCON model called UCONABC

model, describes enforcement architecture following this

model and implements it in the Linux NFS server, on top of

the existing DAC mechanism, as a proof of concept. This

work discussed here is not meant to replace the underlying

OS controls, but to offer an additional decision level to them,

more accurate, flexible and consistent. This work follows the

OM-AM engineering design philosophy which allows

describing UCON in four relatively independent layers

beginning from the high-level specification till low-level

enforcement mechanisms and implementation. The main

focus of this work is on the architectures and mechanisms

layers.

An important issue in designing secure systems is to decide

at which level security mechanisms should be placed.

Typically, the organization of distributed systems consists of

separate layers for applications, middleware, OS services and

the OS kernel. In this work the decision was made to

implement the proposed work in the OS kernel layer because

of the following reasons:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

771

i. Typically, an access/usage control decision is made and

enforced by a reference monitor [12], principles that

should be considered when it is implemented are [13]

being tamper-proof and always-invoked which is

reasonably easy to achieve by implementing it in the

kernel layer.

ii. Doing all the work inside the kernel has a good impact

on the performance as transitions between user-mode and

kernel-mode cost time and resources.

This paper is organized as follows. Section 2 describes the

background, including the NFS architecture and UCONABC

model. Section 3 introduces the related works. Section 4

describes the proposed work, including the proposed

architecture, implemented prototype details, some policies

expressing covered UCONABC core models, and

considerations made in this work for Grompanopoulos’s

UCON challenging issues. Section 5 provides security and

performance analysis. Section 6 gives some conclusions and

presents future work directions.

II. BACKGROUND

In this section, first, the NFS architecture is reviewed

showing the existing access control mechanism then the

UCONABC model is reviewed.

A. NFS Architecture

NFS is one of the most widely-used server-based

distributed file systems. The model underlying NFS is a

client/server model which implements a communication

protocol that provides the clients transparent access to a file

system that is managed by a remote server [14]. In UNIX

based systems NFS is generally implemented following the

layered architecture shown in figure 1. As can be seen clients

are offered a common interface for different file systems

called the Virtual File System (VFS). The main idea of the

VFS is to hide the differences between these file systems by

abstracting common tasks of them so now the users can

interact with the VFS no matter what type of file system they

are accessing.

At client side, when a process make a NFS request the VFS

interface passes it to a separate component known as the

NFS client, which takes care of handling access to files stored

at the remote NFS server, Then NFS client implements the

NFS file system operations as RPCs to the server [14]. On

server side, after The NFS server receives the incoming client

request The RPC stub unmarshals the request and the NFS

server converts it to regular VFS file operations that are

subsequently passed to the VFS layer which in turn

translating them to the appropriate operations within the local

file system in which the actual files are stored [14].

Fig.1. The NFS Architecture for UNIX-Based Systems [14].

In NFS systems, after a client has been authenticated, it is

necessary to check whether that client has sufficient access

rights that make such a request carried out by the server. This

can be done by checking each access request against group of

predefined policies to decide whether the request granted or

denied. Current Linux NFS servers control the access to the

shared resources residing on it by using a simple form of

ACL maintained by the security administrator in which the

access rights (read, write) of the exported NFS volumes are

defined [15]. An entry in ACL typically looks like this:

Directory machine1 (option11, option12) machine2

(option21, option22)

Where Directory is the directory you want to export,

machine1 and machine2 are the client machines that are

allowed to access the directory and optionxx is the option

listing for each machine describing what kind of access that

machine have.

In several cases this solution is not enough and needs to be

enhanced, there are various access/usage control scenarios

that cannot be achieved using this classical method. For

example, suppose that only N clients can access an object

simultaneously, some resources are accessible only during

business hour or monitoring whether a certain processes are

running or not at NFS client side. Such scenarios are not

possible with the current access control mechanism. Hence,

applying UCONABC in NFS environment is necessary to cover

the requirements that such scenarios and others may request.

B. The UCONABC Model

UCONABC model proposed by Sandhu et al. [5] formalizes

the UCON notion based on the concepts of authorization (A),

obligations (B), and conditions (C) and also introduces new

features like continuity (ongoing controls) and mutability of

attributes, it encompasses and enhances traditional access

control models (e.g., DAC, MAC, RBAC, etc.), TM, and

DRM and goes beyond them in its definition and scope.

The UCONABC model consists of eight components [1] as

shown in figure 2.

Fig.2. UCONABC Model Components [1].

Next, we briefly discuss the core components of UCONABC

model giving examples on them in the context of NFS

environment.

Subjects and Objects: Subjects are entities that request the

usage of other entities (objects). When applying UCON in

NFS environment, the subjects are the NFS client machines

and objects are the shared files and directories residing on

NFS server.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

772

Rights: Rights enable access of a subject to an object in a

particular mode [1]. In NFS, examples of rights are read and

write permissions. Because files and directories are different

entities, the meaning of these permissions assigned to each

differs slightly. In case of directory, the read permission

allows the user to list the files in the directory and the write

permission allows the user to add, rename and remove a

directory entry [14].

Attributes: Both subjects and objects have attributes which

are properties that can be used during the access decision

process. In NFS, examples of subject attributes include

subject’s identity, roles and security clearance whereas

examples of object attributes include security labels, object’s

type and ACLs.

Decision factors: Authorizations, obligations and

conditions are UCONABC model decision factors that are used

to determine whether a subject should be allowed to access an

object in a particular mode:

• Authorizations: are evaluated based on subject and object

attributes and the requested right to determine whether to

grant the requested right or not. The evaluation of the

authorization decision can be performed prior to the

usage of an object (pre-authorization) or during the usage

(ongoing authorization). An example for an authorization

policy in NFS systems is the permission of a NFS client

to read a shared file/directory residing on the NFS server.

• Obligations: are mandatory actions that a subject must

perform before, during or after the usage of an object. An

example for an ongoing obligation in NFS systems is that

a NFS client has to keep certain process running on his

machine while he is logged into NFS service.

• Conditions are subject and object independent

environmental or system-oriented restrictions that have

to be satisfied before or during the usage process.

Examples for conditions in NFS systems are accessible

time period for a NFS client and processor load on NFS

server.

The main novelties of UCONABC model are continuity of

usage decisions and mutability of subject and object

attributes. UCONABC recognized continuity of decision

where usage decision is not only checked before an access,

but also throughout the period of the usage process and the

usage can be terminated if some specified policies are not

satisfied [1].

The subject and object attributes can be classified into

immutable and mutable attributes. Immutable attributes are

modifiable only by administrative actions but are

“immutable” in that the system does not modify them

automatically [1]. Unlike immutable attributes, mutable

attributes have to be updated as side-effects of a subject’s

usage on objects and do not require any administrative action

for updates. These updates, in turn, may affect current or

future usage decisions. For example, a subject’s e-cash

balance has to be decreased by the value of a digital object as

the subject uses or accesses the object [1].

III. RELATED WORK

In [5] the UCONABC model proposed by (Park and Sandhu,

2004) formalizes UCON notion based on the concepts of

authorization (A), obligations (B) and conditions (C) with

unique properties of access decision continuity and attribute

mutability. Several approaches based on the UCONABC model

for the OS protection are proposed in [16,17,18].

In [16], a simple but effective usage control model

UCONKI (the UCON kernel integrity) is proposed for OS

kernel integrity protection, it concerns accesses to sensitive

kernel objects (e.g., kernel text, system calls table, interrupt

descriptor table) in a real-time manner.

In [17], the general requirements of trusted usage control

enforcement in heterogeneous computing environments are

identified and general platform architecture is proposed to

meet these requirements. The overall goal of their approach is

to build a “virtually closed” and trusted subsystem for remote

usage control policy enforcement.

In [18], Teigao et al. define a usage control model based on

UCONABC and describes a framework to implement it in

OpenBSD 4.1 UNIX kernel to control the usage of local files.

The prototype evaluation shows that the proposed model is

feasible, straightforward, and may serve as a basis for more

complex usage control frameworks.

In [2], a number of challenging issues faced when UCON

is applied in modern computing environments were discussed

in the context of suitable representative usage scenarios. The

results of this study revealed various limitations in contextual

information handling, lack to support complicated usage

modes of subjects on objects, the lack of a feasible obligation

fulfillment mechanism, and weaknesses in utilizing

information concerning previous or current usages of system

resources.

As the role that security plays increases more and more in

distributed systems our work comes to increase the level of

security applied in Linux NFS server, that form the basis for

many distributed systems and applications, by providing the

advantages offered by the UCONABC model and taking into

account Grompanopoulos’s UCON challenges. So, our work

may serve as a solid base for more advanced research and

developments in the security era of the modern distributed

systems where sharing data is an essential process to these

distributed systems.

IV. THE PROPOSED WORK

As the main focus of this work is on the architectures and

mechanisms layers of the OM-AM methodology, this section

describes the proposed architecture design and the details of

the prototype implementation. Then, some policies expressing

covered UCONABC core models are presented with its pseudo

code. Finally, considerations made in this work for

Grompanopoulos’s UCON challenging issues are discussed.

A. The proposed Architecture

Figure 3 shows an overview for the architecture. As can be

seen, the proposed architecture is not intended to substitute

the current NFS access control system, but to extend it by

offering an extra decision level to it. Our system components

are represented by the colored boxes to distinguish them from

the original components of the NFS system

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

773

Fig.3. The Proposed Architecture.

The proposed architecture includes three main components

which are a Policy Enforcement Point (PEP), a Policy

Decision Point (PDP) and data sources components. The PEP

component task is to intercept every NFS client request after

it is accepted by the original NFS access control mechanism

and then forwards this request to the PDP component which

then in turn decides whether to accept or deny the client

request by matching it against a set of UCON policies

retrieved from the UCON policies repository component, then

PDP responds with the decision to the PEP which enforces it.

The PDP component is composed of a number of internal

sub-components, which are:

▪ Reference Monitor (RM) is the core component which

represents a gateway for all the usage decisions.

▪ Policy Resolver (PR) is a parser responsible for

retrieving the policies from the UCON policy repository

and resolving them into an internal representation to be

used by the PDP.

▪ Attribute Manager (AttM) is responsible for collecting

subject (NFS client) and object (requested file) attributes

from the attributes repository to use them in the process

of evaluating the policy and it is also responsible for

updating these attributes before, during and after the

usage process.

▪ Usage Decision Facility (UDF) includes the following

functional modules:

• Authorization Manager (AuthM) As the

authorization decisions is based on subject and

object attributes, this component communicates with

the attribute manager to get the attributes required in

the process of evaluating the usage policy.

• Obligation Manager (OBMAN) As operating in a

distributed file system environment requires that

monitoring the fulfillment of obligations is done at

client side and verifying them is done at server side,

in the proposed architecture the obligation manger is

divided into two sub-components:

o Obligation Monitor (OBMON) exists at the

NFS client side, its role is monitoring whether

the client has satisfied each required obligation

or not. It can monitor whether certain processes

(e.g., antivirus, antispyware, etc.) are running or

not to satisfy that the client machine meets

specific security requirements. Then, moving

obligations data to the NFS server by setting an

array of Boolean values (true or false) and inject

this array into the NFS client request.

o Obligation Enforcer (OBE) exists at the NFS

client side, its role is extracting the obligations

Boolean array from the NFS client request fed

to the PDP and verifying the fulfillment of each

obligation by checking its corresponding

Boolean flag.

• Condition Manager (CM) which is responsible for

gathering external condition information, to be used

in the policy evaluating process, like current time

and resources usage (e.g., processor, memory, etc.).

The PDP invokes the condition manager whenever

needed if the security policy requires the evaluation

of a certain condition.

There are also some external data sources components

which provide our PDP component with the needed

information:

▪ UCON Policy Repository (UPR) stores the UCON

policies and provides them to the PDP to be evaluated.

▪ Attributes Repository (AR) stores the subjects and

objects attributes and provides them to the attributes

manager to be used in the process of usage decision

evaluation.

When NFS server receives a request from a NFS client, it

authenticates the request and then the current NFS access

control system authorizes the request by inspecting the ACL

to decide whether the access should be allowed or not. If the

request is accepted then our PEP component intercepts and

forwards it to the PDP where most of the work is done.

At first, the RM extracts subject ID and object path from

the NFS request and pass this information to PR to retrieve

the corresponding UCON policies from the UPR. After the

PR loads the policies from the repository it parses them and

create the equivalent data structures that are used in the policy

evaluation process. According to the policy rules created by

the policy resolver the RM invokes the appropriate usage

decision components from UDF to evaluate the policies. For

example, to evaluate the authorization policy the

authorization manager is invoked which in turn communicate

with the attributes manager to fetch the appropriate subject

and object attributes from the AR, these attributes are used in

the decision evaluation process and they may be updated as a

as a consequence of usage process and these updates may

cause revaluation of the policy by the PDP which may

revokes an ongoing access. The RM may also invoke the

condition and obligation managers whenever needed if the

retrieved policies require the evaluation of a certain condition

or obligation.

If any policy rule is violated during the decision evaluation

process made by UDF the RM responds immediately with a

deny decision to the PEP. Otherwise, it returns the PEP an

allow decision. Based on the PDP’s decision, the PEP then

enforces the received result by either blocking the NFS

request or making it continue its way to the requested object.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

774

B. Implementation Details

The development environment used involved the

following:

▪ Red Hat Enterprise Linux (RHEL) Server 7 (Kernel

2.6.36.1): used as the target OS for development and

running the NFSv4.1 server.

▪ Virtual Machine Manager 0.8.4: used for running the

virtual machines that represents the NFS Clients.

▪ Emacs 24.3: is an extensible customizable text editor

used for editing the C source code.

▪ GNU Compiler Collection (GCC) compiler 4.7.2: open

source command-line software designed to act as a

compiler for Linux-based OSs.

The implementation details of the components presented in

the proposed architecture:

PEP and PDP components

▪ The PEP and PDP components are implemented in the

nfsd loadable kernel module (LKM) which handles the

main functionality of the NFS server.

▪ The PEP insertion points are injected in some relevant

NFS file operations functions (e.g., nfsd_open,

nfsd_close, nfsd_read, and nfsd_write) after they are

accepted by the original NFS DAC mechanism.

▪ Usage session for every file is initiated with the call to

nfsd_open function and terminated with the call to

nfsd_close function.

RM component

It calls the ExtractClientID function at the beginning of the

code to extract the identifier of the NFS client who makes the

request, gets as parameter pointer to svc_rqst structure (data

of the NFS client request) and then calls the

ExtractObjectPath function to extract the path of requested

file, gets as parameter pointer to file structure (data of the

requested file). Then, it sends these data as parameters to the

UCON_PolicyResolver function to retrieve the corresponding

policies from the UPR. Finally, based on the retrieved

policies it calls the appropriate usage decision components to

evaluate the policies.

UPR component

All policies are stored in plain text files, to simplify the job

of PR component, in the /etc/uc4nfs/repository directory on

the NFS server, this directory has two files which are:

▪ A file called (revoc_list) which is a plain text file

represents the client’s revocation list, it is the first file

checked before and during the usage session. If any NFS

client appears in this file its request is rejected

immediately without any further checks.

▪ A global policy file named (glopolicy) which contains

usage policies for NFS clients. The format of this file is

shown in figure 4, as can be seen the simplicity and the

clearness are considered in this format to make it suitable

to be parsed inside the Linux OS kernel. The file consists

of group of entries, each entry contains a policy which

starts with the usage decision factor (Authorization |

Obligation | Condition) followed by a series of (key,

value) pairs used by the policy resolver for evaluating the

usage policies.

Fig.4. UCON Policies in glopolicy File.

PR component

At first, it reads the policies from UPR component. Then, a

series of calls to some C library string functions (e.g., strsep(

), strtok() functions) are used to split the policies into

meaningful tokens, then a series of calls to data types

converter functions (e.g., atoi() function) are used to convert

the strings to the appropriate data types. The retrieved

policies are filtered based on the NFS client identity and the

requested object to get only the appropriate policies to be

evaluated by UDF component.

AR component

The object mutable/immutable attributes (e.g.,

classification and type) are persistently stored in the Linux

extended attributes which are properties organized in (name,

value) pairs associated with file system objects. On Linux,

specifically, there are four extended attribute classes:

security, system, trusted and user. In our case we use the

extended security attributes which are supported by the local

file system ext4 used to export the NFS volumes to the

clients. The subject mutable/immutable attributes (e.g.,

clearance and allowed time interval) are stored in the

/etc/uc4nfs/clients/client-id file where each NFS client has its

own attributes file named with the client identifier (IP or

machine name).

AttM component

It is responsible for updating and retrieving the subject

(NFS client) attributes by reading and parsing the client

specific attributes file, besides retrieving the object (requested

file) attributes through system call getxattr() which retrieves

the value of the object extended attribute identified by the

attribute name and associated with the given object path in

the file system to use them in the process of evaluating the

policy and it is also responsible for updating these attributes

before, during and after the usage process through system call

setxattr().

AuthM component

Pre-authorization control is implemented by making

modifications to nfsd_open function while ongoing-

authorization controls are implemented by making

modifications to nfsd_read and nfsd_write functions. In the

process of evaluating the policy communications with the

attribute manager are made for requesting and updating the

attribute values of the NFS clients and objects.

OBE component

In the nfsd LKM, svc_rqst structure contains the data of

the NFS request like the client who makes the request. A

modification made to this structure by adding a 4-byte pointer

to Boolean array to be checked by the obligation enforcer in

the process of verifying the fulfillment of obligations.

OBMON component

The implementation of this component is not covered in

this work.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

775

CM component

To get the current processor and memory usage, queries

are made to the /proc/stat file which contains some stats about

the kernel and exists in the procfs file system which is a

special file system in Linux OS that represents system

information in a hierarchical file-like structure [19]. To get

the current time, at first a call to the do_gettimeofday()

function is made which returns the time of day expressed as

seconds and microseconds and stores it in a timeval structure,

then a call to time_to_tm() function is made to convert it

into a human readable time format like Hour:Min:Sec:Msec

format and store it in a tm structure.

C. Proposed UCON Policies

UCONABC is actually a family of core models with several

parameters. Based on the three decision factors authorizations

(A), obligations (B), and conditions (C), along with

mutability of attributes (immutable(0), pre-update(1), on-

update (2), post-update (3)) and continuity of enforcement

(pre or on-going) the model space is enumerated as shown in

table 1 [5] to define the 16 basic UCONABC core models.

TABLE 1: THE 16 BASIC UCONABC MODELS WITH OUR COVERED MODELS.

Cases that are not likely to be suitable in practice are

marked as “N‟. If decision factor is “pre”, updates are

expected to occur only before or after the right is exercised

and there is little reason to have ongoing updates [5]. For

condition models, evaluation of condition cannot update

attributes as it just checks current environmental or system

status [1]. In reality, many real-world systems will use some

combination of these models. In our case the gray cells

represents the core models that we covered in this work. In

the following, some policies expressing covered UCONABC

core models, formally defined in the original UCONABC

model proposal [5], are presented with its pseudo code to

show the effectiveness of applying UCONABC model in NFS

environment:

Policy 1. MAC policy, UCONpreA0:

MAC policy is an example for pre-authorization control

that is performed in open NFS operation by calling

UCON_MAC function that gets the clearance and

classification security labels by calling

UCON_GetSubjectAttribute and UCON_GetObjectAttribute

functions which are part of the attribute manager module.

Then, based on the open mode (read or write) Bell-

LaPadula’s [20] security properties (simple and star property)

are utilized for allowing or denying the request.

Pseudo code:

UCON_MAC (NFSReq,File): check if a subject s has the right to read/write

to an object o.

Input: A NFS client request structure.
Input: A File structure.

Output: Returns true if s has the right to read/write o, otherwise return false.

BEGIN Function
NFSClientID = ExtractClientID (NFSReq)

ObjectPath = ExtractObjectPath (File)
ClientClearance = UCON_GetSubjectAttribute(NFSClientID,”Clearance”)

ObjectClassification = UCON_GetObjectAttribute (ObjectPath”Classification”)

IF (OpenMode equals read) AND (ObjectClassification dominates

ClientClearance) THEN
Return false

ELSE IF (OpenMode equals write) AND (ClientClearance dominates
ObjectClassification) THEN

Return false

ENDIF
Return true

End Function

Policy 2. A limited number of concurrent accesses,

UCONpreA13:

This policy limits the concurrent access to a given object to

N clients. If N+1 client requests access, the access will be

denied until the number of concurrent clients falls under the

Limit N. Though this policy can be applied on any type of

files but it is very suited for the multimedia files. As, NFS is a

server-based distributed file system, where model underlying

it is a client/server model in which NFS server responses to

requests come from clients, playing a multimedia file makes

NFS server responses to a large number of read requests and

this number is linearly increasing in case of concurrent access

by N clients. Thus, the number of concurrent accesses should

be limited to make a reasonable load on the NFS server. To

implement this policy, the UCON_ConcurrencyCheck

function, which is part of the authorization manager module,

is called in the NFS open file operation and the

UCON_SetObjectAttribute function is called in the NFS

close file operation to decrement the number of concurrent

clients after the usage session.

Pseudo code:
UCON_ConcurrencyCheck (File): limit concurrent access to a given

multimedia object.
Input: A File structure.

Output: Returns true if concurrency test successes, otherwise return false.

BEGIN Function
ObjectPath = ExtractObjectPath (File)

FileType = UCON_GetObjectAttribute (ObjectPath,”FileType”)
IF (FileType equals multimedia) THEN
CurrentUsage = UCON_ GetObjectAttribute (ObjectPath,”CurrentUsage”)
MaxConcurrentUsage = UCON_GetObjectAttribute (ObjectPath,”MaxConcurrentUsage”)

IF(CurrentUsage < MaxConcurrentUsage) THEN
UCON_SetObjectAttribute (ObjectPath,” CurrentUsage”, CurrentUsage+1)

Return true

Else
Return false

END IF

END IF
Return true

END Function
Policy 3. Revocation by appearing in a revocation list,

UCONpreA0onA0:

In our work for every usage controlled file the usage

session starts when NFS file open operation is called and

terminates when NFS file close operation is called.

Consequently, pre-authorization control is performed in open

operation while ongoing-authorization controls are performed

in read and write NFS operations. Such controls can be

realized by checking a revocation list before the access is

0

(immutable)

1 (pre-

update)

2 (ongoing-

update)

3 (post-

update)

preA Y Y N Y

onA Y Y Y Y

preB Y Y N Y

onB Y Y Y Y

preC Y N N N

onC Y N N N

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

776

allowed and repeating this check during the usage session

with every read or write request. If any NFS client appears in

this revocation list before the access or during the usage

session the usage right is denied or revoked immediately. The

following function is called in open, read, and write NFS

operations.

Pseudo code:
UCON_RevocationList (NFSReq): Check whether a subject s should be
denied/revoked or not before and during the usage session by checking a

revocation list file.

Input: A NFS Request.
Output: Returns true if subject s should be denied/revoked, otherwise return

false.
BEGIN Function

NFSClientID = ExtractClientID (NFSReq)

FileHandle = OpenRevocationListFile(Path, ReadMode)
IF (FileHandle equals null) THEN

PrintError (ErrorMessage)
Return true

END IF

Array A = LoadListInArray(FileHandle)
CloseRevocationListFile(FileHandle)

Foreach (element e in A)
IF (NFSClientID match e) Then

Return true

END Foreach
Return false

End Function

Policy 4. Temporal usage control, UCONpreC0onC0:

This policy restricts usage based on time which is an

environmental factor that is independent from individual

subjects and objects. Pre-condition control is performed in

open NFS operation while ongoing-condition controls are

performed in read and write NFS operations. Such controls

can be realized by calling UCON_TimeCheck function which

is part of the condition manager module.

Pseudo code:
UCON_TimeCheck (NFSReq): Check if a NFS client has the right of

access/usage to an object at a certain time.

Input: A NFS request.

Output: Returns true if NFS Client has the right, otherwise return false.
BEGIN Function

NFSClientID = ExtractClientID (NFSReq)
StartTime = UCON_GetSubjectAttribute (NFSClientID,”StartTime”)

EndTime = UCON_GetSubjectAttribute (NFSClientID,”EndTime”)

CurrentTime = UCON_GetCurrentTime()
UCON_ConvertFormat(CurrentTime)

IF ((StartTime ≤ CurrentTime) AND (CurrentTime < EndTime)) THEN
Return true

Else

Return false
END IF

End Function

Policy 5. Processor usage limitation, UCONpreC0onC0:

This policy restricts usage based on processor usage which

is a system factor that is independent from individual subjects

and objects. Pre-condition control is performed in open NFS

operation while ongoing-condition controls are performed in

read and write NFS operations. Such controls can be realized

by calling UCON_ProcessorCheck function which is part of

the condition manager module.

Pseudo code:
Check_Processor_Usage_Constrains(NFSReq): Check if a NFS Client has

the right of access/usage to an object at a certain processor usage.
Input: A NFS request.

Output: Returns true if NFS Client has the right, otherwise return false.

BEGIN Function
NFSClientID = ExtractClientID (NFSReq)

ProcessorLimit = UCON_GetSubjectAttribute

(NFSClientID,”ProcessorLimit”)

FileHandle = UCON_OpenFile ("/proc/stat", ReadMode)
IF (FileHandle equals null) Then

PrintError (ErrorMessage)

Return false
END IF

Fields = UCON_ReadFields(FileHandle)
CurrentProcesor = UCON_GetCurrentProcessorUsage(Fields)

IF (CurrentProcesor < ProcessorLimit) THEN

Return true
Else

Return false
END IF

End Function

D. UCON challenging issues considerations

The results of a study made by Grompanopoulos et al.,

revealed various limitations and a number of challenging

issues faced when UCON is applied in modern computing

environments and it also, discussed some solution approaches

to these challenging issues. In this section considerations

made in this work for most of these challenges are discussed.

Challenge1. Contextual information handling

The condition evaluation in UCON is a complicated

process, especially in systems with a large number of

condition variables, which make its implementation result in

a very complicated usage control system. Based on the notice

in [5], stating that there is a vague line differentiating which

information should be assigned to attributes and which to

condition variables, a proposed solution [2] to the above

issues could be achieved through the assignment of

contextual information to subject and object attributes.

The above mentioned solution is considered in our work by

assigning of contextual information like time and processor

usage to the attributes of NFS clients as mentioned in the

previous section.

Challenge2. Keeping information about system usages

By utilizing attribute mutability, UCON becomes capable

to support consumable rights and history-based access

control. So, the recording of the system objects usages, by

using the information regarding previous or current usages of

them, is required in UCON systems. A proposed solution [2]

to this issue could be achieved through the association of use

attributes with system’s objects.

The above mentioned solution is considered in our work by

setting an upper bound limit on the number of concurrent

usages of a given multimedia file by N clients. This has been

achieved by association of CurrentUsage attribute with the

multimedia file to track the number of concurrent usages of it.

Challenge3. Managing obligation enforcement

There is lack of a feasible obligation fulfillment

mechanism as mentioned in [21]. In this work an obligation

fulfillment mechanism is proposed at the architecture layer

and partially implemented in the proposed prototype. As NFS

is a distributed file system, so there is a need to split the

obligation manger component into two sub-components:

i. Client side sub-component (obligation monitor) which

is responsible for the process of monitoring the

fulfillment of obligations at client side and sending the

obligation results to the NFS server by injecting them

into the NFS request data.

ii. Server side sub-component (obligation enforcer)

which is responsible for the process of verifying the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

777

obligation results at server side and enforcing the

obligation policies.

V. TESTING AND ANALYSIS

Test plans for validating our work for correct functionality,

verifying the enhanced security, and measuring its

performance overhead were developed.

A. Validation Test

Validation testing was performed by using Pynfs tool [22]

as it knows how to parse and generate the protocol itself, so it

can talk directly to the client or server to be tested. This

makes it particularly well-suited for testing responses to

unusual error conditions, protocol conformance, and

correctness of new features.

Test Results

Our enhanced Linux NFS server has gone through 640

tests made by Pynfs to be validated and the results obtained

show that there are no unusual errors or problems with our

enhancements.

B. Verification Test

Verification testing was performed to ensure that our

system enforced the UCON policies as expected.

NFSTEST_POSIX [23] is an open source tool comes as part

of the NFStest package; some modifications are made to this

tool to make it suitable for verifying NFS file system level

access using positive and negative testing.

Testing Environment:

▪ NFS Server: a machine running RHEL Server 7

configured to export (/home/ucontest) directory with the

following Condition variables:

• CurrentTime = 15 (3 PM)

• Processorload < 20%

▪ NFS clients: 2 machines running Ubuntu 15.04.

▪ Original DAC mechanism on the NFS server is

configured to give 2 NFS clients read/write permissions

on the exported directory.

▪ Subjects and objects are set as the following:

• 5 files are created on the NFS Server mounting

point (/home/ucontest), with the attributes

shown in table 2.

• 2 NFS clients with the attributes shown in table

3.

TABLE 2: THE OBJECTS ATTRIBUTES.

TABLE 3: THE SUBJECTS ATTRIBUTES.

The following test scenarios are performed to verify our

work:

Test1 Scenario

i. Mounting the exported directory (/home/ucontest) on

the 2 NFS clients.

ii. Running the modified NFSTEST_POSIX tool on the 2

NFS clients.

Test1 Results

As shown in figures 5 and 6, the test results produced by

NFStest_posix tool are matched with the expected results

shown in table 4 which prove how our system is able to

effectively apply the appropriate UCON policies on the 2

NFS clients.
TABLE 4: THE EXPECTED RESULTS.

Subject
Read Write

Pass Fail Pass Fail

Client1 5 0 0 5

Client2 0 5 0 5

Fig.5. NFSTEST_POSIX Tool Results on Client1 Machine

Fig.6. NFSTEST_POSIX Tool Results on Client2 Machine

Test2 Scenario

i. Putting an AVI video on the exported directory and

playing it using movie player program on the client1

machine

ii. Pushing the processor load on NFS server above 50%

Test2 Results

The movie player program stopped playing the video after

a few seconds which means that PEP of our system succeeded

in enforcing ongoing-condition policy related to Processor

usage limitation.

C. Performance Test

The objective of performance testing procedure is to

measure the additional overhead for making usage controls

checks by our proposed work compared with an unmodified

kernel. The following sections describe file system

benchmarks that are used to evaluate the performance of our

enhancements to the NFS server, and the results of

performance testing.

File System Benchmarks

The following file system benchmarks are used to evaluate

the performance of our enhancements to the NFS server:
▪ Am-utils The first file system benchmark we used to

measure overall file system performance was Am-utils

(The Berkeley Automounter) [24] version 6.1b3 which

contains 430 files and more than 60,000 lines of C code.

Object
MAC attribute
(classification)

File1 Normal

File2 Normal

File3 Secret

File4 Secret

File5 Secret

Subject
MAC

attribute

(clearance)

Conditional attribute
Temporal
attributes

Client1 Top Secret Maxprocessorload:30% 2:6 (PM)

Client2 Normal Maxprocessorload:40% 4:6 (PM)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

778

This benchmark configures and compiles the am-utils

software package inside a given directory.

▪ NFSSTONE The second file system benchmark we used

was a NFS-specific benchmark called NFSSTONE [25].

This traditional benchmark performs a series of 45522

file system operations on a mounted NFS file system,

mostly executing system calls, to measure the number of

operations (NFSStones) a NFS server can serve in a

second.

Test Results

Figure 7 shows the results of am-utils benchmark, the time

values presented are the average for 10 executions;

coefficient of variation = 3.6%. As can be seen, results show

a small difference between all of the tests, the difference

between the fastest and slowest results = 1.86%.

Fig.7. Results of the Am-utils Benchmark.

Figure 8 shows the results of the NFSSTONE benchmark,

the time values presented are the average for 10 executions;

coefficient of variation = 3.9%. As can be seen, results show

a small difference between all of the tests, the difference

between the fastest and slowest results = 3.18 %.

Fig.8. Results of the NFSSTONES Benchmark.

In summary, we evaluated our NFS server enhancement

using both NFSSTONE and Am-utils, results showed that our

security enhancement has an acceptable overhead over the

vanilla kernel.

VI. CONCLUSION AND FUTURE WORK

This paper has presented an enforcement architecture

design following the Sandhu’s UCONABC model and

implements it in the Linux NFS server. Our approach has

concentrated on the architectures and mechanisms layers of

OM-AM framework of security engineering. Our proposal

shows the viability of implementing UCONABC model in

Linux NFS server, by providing advanced UCON policies

that allows various access/usage control scenarios that cannot

be achieved using the existing classical method. Our work

does not aim to replace the existing access control mechanism

in NFS, but rather to extend it by offering an extra decision

level to it.

This work has been implemented in NFSv4.1 but the same

architecture design could be implemented on all versions of

NFS with minimum possible changes. Although there is

space for performance optimizations but our work causes

reasonable impact on the overall system performance. We

believe that this work addresses the specific problems

identified within the traditional access control solutions by

implementing UCONABC model in a flexible way that meets

the modern security requirements of the NFS.

Our future work includes the following:

▪ We plan on moving our implementation to the VFS

layer. This way, the advantages of UCONABC model

could be gained for other underlying native file systems

such as EXT3 on local hosts, or with other distributed

file systems.

▪ We plan to explore methods to improve the performance.

One of these methods could be using one of the policies

caching techniques to avoid reading them continuously

from the disk.

▪

REFERENCES
[1] Sandhu, Ravi, and Jaehong Park. "Usage control: A vision for next

generation access control." Computer Network Security. Springer

Berlin.
[2] Grompanopoulos, Christos, and Ioannis Mavridis. "Challenging issues

of UCON in modern computing environments." Proceedings of the

Fifth Balkan Conference in Informatics. ACM, 2012.

[3] J. Park, Usage control: A unified framework for next generation access

control, Ph.D. Thesis, George Mason University, Fairfax, VA, USA,
2003.

[4] R. Sandhu, Engineering authority and trust in cyberspace: The OM-AM
and RBAC way, in: In Proceedings of 5th ACM Workshop on Role-

Based Access Control, ACM, 2000, pp. 111–119.

[5] Park, Jaehong, and Sandhu Ravi (2004). The UCONabc usage control
model. ACM Trans. Inf. Syst. Secur., 7:128–174.

[6] S.D.C. di Vimercati, S. Paraboschi, P. Samarati, Access control:
Principles and solutions, Softw. Pract. Exper. 33 (5) (2003) 397–421.

[7] Russell D, Gangemi GT. Computer security basics. Sebastopol,

CA:O’Reilly and Associates; 1991.
[8] Ramachandran R, Pearce DJ, Welch I. AspectJ for multilevel security.

In: The 5th AOSD workshop on aspects, components, and patterns for
infrastructure software (ACP4IS). Bonn, Germany; 2006. p. 1–5.

[9] SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN,C.

1996. Role based access control models. IEEE Computer 29, 2.

[10] D. Artz, Y. Gil, A survey of trust in computer science and the semantic

web, Web Semant. 5 (2) (2007) 58–71.
[11] H.L. Jonker, S. Mauw, J.H.S. Verschuren, A.T.S.C. Schoonen, Security

aspects of DRM systems, in: 25th Symposium on Information Theory

in the Benelux, 2004, pp. 169–176.
[12] Security frameworks for op en systems: Access control framework.

Technical Report ISO/IEC 10181-3, ISO (1996).
[13] J. P. Anderson. Computer security technology planning study volume

II, ESD-TR-73-51, vol. II, electronic systems division, air force

systems command, hanscom field, bedford, MA 01730.
http://csrc.nist.gov/publications/history/ande72.pdf, Oct. 1972.

[14] Andrew, Tanenbaum S., and Steen van Maarten. Distributed systems-
principles and paradigms (2." 2007).

[15] S. Shepler, M. Eisler, and D. Noveck. Network File System (NFS)

Version 4 Minor Version 1 Protocol. RFC 5661 (Proposed Standard),
January 2010. URL http://www.ietf.org/rfc/rfc5661.txt.

[16] M. Xu, X. Jiang, R. Sandhu, X. Zhang, Towards a VMM-based usage
control framework for OS kernel integrity protection, in: SACMAT’07:

Proceedings of the 12th ACM Symposium on Access Control Models

and Technologies, ACM, New York, NY, USA, 2007, pp. 71–80.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

779

http://www.ietf.org/rfc/rfc5661.txt

[17] He, Ruan, Marc Lacoste, and Jean Leneutre. "Virtual security kernel: A

component-based os architecture for self-protection." Computer and

Information Technology (CIT), 2010 IEEE 10th International
Conference on. IEEE, 2010.

[18] Teigão, Rafael, Carlos Maziero, and Altair Santin. "Applying a usage

control model in an operating system kernel." Journal of Network and
Computer Applications 34.4 (2011): 1342-1352.

[19] https://en.wikipedia.org/wiki/Procfs.
[20] Bell, D. and LaPadula, L.: Secure computer systems: Mathematical

foundations and model. MITRE Report, 2(2547) (November 1973).

[21] A. Lazouski, F. Martinelli, and P. Mori. Usage control in computer
security: A survey. Computer Science Review, 4(2):81 – 99, 2010.

[22] http://www.citi.umich.edu/projects/nfsv4/pynfs.
[23] http://wiki.linux-nfs.org/wiki/index.php/NFStest.

[24] http://www.am-utils.org.

[25] B. Shein, M. Callahan, and P. Woodbury. NFSSTONE: A network file
server performance benchmark. In Proceedings ofthe Summer

USENIXTechnical Conference, pages 269–275, Baltimore, MD,
Summer 1989.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS010141
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 01, January-2021

780

