

UPFC Based Stability Enhancement of PMSG-Based Offshore Wind Farm Fed to An SG-Based Power System

Balasuriya. M

PG student,

Power Systems Engineering, Department of Electrical and Electronics Engineering, Parisutham Institute of Technology and Science, Thanjavur, Tamil Nadu, India

Shankar. J

Assistant Professor²

Power Systems Engineering, Department of Electrical and Electronics Engineering, Parisutham Institute of Technology and Science, Thanjavur, Tamil Nadu, India

Abstract-Wind energy system has become increasingly competitive with other renewable-energy power generation options such as solar photovoltaic, geothermal, and marine, tidal, etc. Now a days preferred offshore wind farms became widely used as it is easy to maintain. Due to the wind integration voltage stability become a concern in the existing system. To improve voltage stability various FACTS devices were used. In the present work unified power flow controller is considered to improve the Voltage stability. The performance of UPFC to be compared with SSSC and SVeC.

Keyword: Offshore wind farm, permanent-magnet synchronous generator, series static synchronous compensator, seriesvectorial compensator, stability.

I. INTRODUCTION

In recent years, wind energy has become increasingly competitive with other renewable-energy power generation options such as solar photovoltaic, geothermal, and marine, tidal, etc. Some small-scale offshore wind farms (OWFs) are under evaluation while some large-scale OWFs have been continuously constructing and commercially operating. When delivering large generated electric power of OWFs to power grids, inherent power fluctuations have adverse impacts on the power quality of the power systems to which the OWFs are

Connected. The second-generation FACTS devices such as static synchronous compensator (STATCOM), SSSC, and unified power flow controller (UPFC), Utilizing voltage source converters (VSCs) based on power semiconductor devices such as gate-turn-off switches and isolated gate bipolar transistors offer greater advantages and are being increasingly installed to improve power system performance. Among the FACTS family, the shunt FACTS devices, such as a STATCOM, has been widely used to provide smooth and rapid steady-state and transient voltage control at the connected buses. In, the STATCOM has been used to achieve both voltage control and damping enhancement of a grid-connected integrated OWF and marine-current farm. On the other hand, series FACTS devices, such as an SSSC, can be effectively used for controlling power flow in transmission line to enhance damping of oscillations occurred in power systems. A

UPFC is the most versatile and complex device in the FACTS devices since it combines the good features of a STATCOM and an SSSC.

This new device is SVeC that has a simpler Pulse-width-modulation controller utilized to control active power of a transmission line. Although a SVeC device has not been really produced in the power market yet, it still has many theoretical advantages many specifications of a SVeC such as transformer rating, capacitor, converter, power loss, and estimating power circuit cost are compared with an SSSC to demonstrate the superior specifications of SVeC. However, the SVeC has not been tested on the issue of integrating OWFs to power grid yet. Thus, this paper focuses on the design of the damping controllers for an SVeC and an SSSC to improve the damping of an SG-based power system with a PMSG-based OWF by assigning mechanical mode and exciter mode of the SG-based power system through modal control theory.

Fig.1 Model of a WT coupled to the rotor shaft of a wind PMSG

This paper is organized as follows. Section II introduces the configuration and models of the proposed SVeC and SSSC applied to the studied SG-based power system with the PMSG-based OWF. Section III demonstrates the design procedure and design results of the damping controllers of the SVeC and the SSSC using modal control theory. Section IV shows the comparative eigenvalue results of the studied system using the proposed SVeC and SSSC with the designed damping controllers. Section V depicts the comparative transient responses of the studied system under a severe disturbance using the proposed SVeC and SSSC with the designed damping controllers. Finally, specific important conclusions of this paper are drawn in Section VI.

Are referred to the modes of the SG-based SMIB system, the eigenvalue corresponds to the mode of

The SSSC or the SVeC, and the eigenvalue is related to the designed PID controller. It is worth noting that the two modes and are the most important dominant modes, i.e., mechanical mode and exciter mode, of the studied SG-based SMIB system. These two modes and are close to the imaginary axis of the complex plane, and their damping needs to be improved.

Fig 3 SVeC including the designed PID damping controller

Fig 4Without facts devices

Fig 5 Withfacts devices

III.PROPOSED SYSTEM

To develop the mathematical model for Reactive Power problem. To solve the problem by using FACTS devices.

CONCLUSION

In this paper voltage stability have been improved by damping improvement on PMSG-based owf connected to an SG-based using facts devices.

SSSC and SVeC helps to improve the damping in the system. In the proposed system SSSC and SVeC has the best damping characteristics to improve the performance of the studied PMSG-based owf fed to an SG-based. Power system under different operating conditions from the simulation results. In future existing facts devices can be replaced by UPFC and multilevel inverter for better performance.

REFERENCES

- [1] L. Wang and L.-Y. Chen, "Reduction of power fluctuations of a large-scale grid-connected offshore wind farm using a variable frequency transformer," *IEEE Trans. Sustain. Energy*, vol. 2, no. 3, pp. 226–234, Jul. 2011.
- [2] S.-S. Chen, L. Wang, W.-J. Lee, and Z. Chen, "Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit," *IET Renew. Power Gen.*, vol. 3, no. 1, pp. 23–38, Jan. 2009.
- [3] K. E. Okedu, S. M. Muyeen, R. Takahashi, and J. Tamura, "Comparative study of wind farm stabilization using variable speed generator and FACTS device," in *Proc. 2011 IEEE GCC Conf. Exhib.*, pp. 569–572.
- [4] R. K. Varma, Y. Semsedini, and S. Auddy, "Mitigation of sub-synchronous resonance in a series-compensated wind farm using FACTS controllers," *IEEE Trans. Power Del.*, vol. 23, no. 3, pp. 1645–1654, Jul. 2008.
- [5] N. G. Hingorani and L. Gyugyi, *Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems*. New York: IEEE Press, 2000.
- [6] R. K. Varma, "Concepts of FACTS controllers," in *Proc. 2011 IEEE/PES Power Systems Conf. Expo.*, pp. 1–6.
- [7] L. Gyugyi, C. D. Schauder, and K. K. Sen, "Static synchronous series compensator: A solid-state approach to series compensation of transmission lines," *IEEE Trans. Power Del.*, vol. 12, no. 1, pp. 406–417, Jan. 1997.
- [8] H. F. Wang, "Design of SSSC damping controller to improve power system oscillation stability," in *Proc. 1999 IEEE AFRICON*, vol. 1, pp. 495–500.
- [9] L. Wang and C.-T. Hsiung, "Dynamic stability improvement of an integrated grid-connected offshore wind farm and marine-current farm using a STATCOM," *IEEE Trans. Power Syst.*, vol. 26, no. 2, pp. 690–698, May 2011.
- [10] K. K. Sen, "SSSC-Static synchronous series compensator: Theory, modeling, and applications," *IEEE Trans. Power Del.*, vol. 13, no. 1, pp. 241–245, Jan. 1998.
- [11] M. T. Hagh, A. Lafzi, and A. R. Milani, "Dynamic and stability improvement of a wind farm connected to grid using UPFC," in *Proc. 2008 IEEE Int. Conf. Industrial Technology*, pp. 1–5.
- [12] L. A. C. Lopes and G. Joos, "Pulse width modulated capacitor for series compensation," *IEEE Trans. Power Electron.*, vol. 16, no. 2, pp. 167–174, Mar. 2001.
- [13] G. Venkataraman and B. K. Johnson, "Pulse width modulated series compensator," *Proc. Inst. Elect. Eng., Gen., Transm., Distrib.*, vol. 149, no. 1, pp. 71–75, Jan. 2002.