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 Abstract  -  Investigation concerning Peristaltic 

pumping of a Jeffrey fluid in a finite length tube with 

permeable wall is made. The walls of the finite length tube are 

subjected to the contraction waves that do not cross the 

stationary boundaries. Mathematical analysis is expressed 

through long wavelength and low Reynolds number 

approximation in non-dimensional form . Saffman slip 

boundary condition used in this analysis. Exact analytical 

expressions of axial velocity, radial velocity, non-dimensional 

flow rate are obtained. The effect of various parameters on the 

flow pattern is discussed through graphs. When 𝝀𝟏 = 𝟎 the 

results are in agreement with Ravi Kumar.Y.V.K [2010]. 
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1. INTRODUCTION 

  Peristalsis is a mechanism of pumping of viscous 

fluids in ducts against an adverse pressure gradient by 

means of a series of moving contractile rings on the wall. 

Most of the transportations in physiology are due to the 

peristaltic pumping mechanism. The flow of blood through 

arteries and veins, the flow of urine through ureter, the 

passage of bile from the gall bladder to the duodenum, the 

movement of chime in the gastrointestinal tract and the 

transportation of the food bolus through the alimentary 

canal are some examples of peristaltic pumping. 

 The study of the fluid mechanism of peristaltic 

transport has been confirmed experimentally by Latham[1] 

and Weinberg et al.[2]. Several research proposed different 

models by considering various geometries with relevant 

boundary conditions [10-20].Shapiro et.al [3] made a 

detailed investigation of peristaltic pumping of a Newtonian 

fluid in a flexible channel and a circular tube. 

 Most of the theoretical investigations have been 

carried out by assuming blood and the other physiological 

fluids behave like a Newtonian fluid. Although this 

approach may provide a satisfactory understanding of the 

peristaltic mechanism in the ureter ,it fails to provide a 

satisfactory efferentus of the male reproductive tract and in 

the transport of spermatozoa in the most of the 

physiological fluids behave like non-Newtonian fluids. Li 

and Brasseur [6] considered the non-steady peristaltic 

transport in a finite length tube by considering Newtonian 

fluid. Misra and Pandey [8-9] extended the model for 

peristaltic flow  of power-law fluids in a finite length 

circular cylindrical peristaltic pumping in a finite length 

tube with permeable wall. 

 Now, we proposed to study the unsteady peristaltic 

pumping in a finite length tube with permeable wall with 

Jeffrey fluid model, Saffman boundary conditions are used 

at the permeable wall of the tube. 

 

2. JEFFREY FLUID MODEL 

 

The  equation for an incompressible Jeffrey fluid are 
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where T  and S are Cauchy stress tensor and extra stress 

tensor, P is the pressure, I is the identity tensor, 1 is the 

ratio of the relaxation to retardation times, 2  is the 

retardation time and   is the shear rate. 

3. MATHEMATICAL FORMULATION 

 

We consider the peristaltic pumping of a non-

Newtonian fluid namely Jeffrey fluid in a finite length tube 

with permeable walls. Sinusoidal waves of constant speed 

propagate along the channel boundaries. 
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The wall deformation of the peristaltic wave is given by 
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where ε is the minimum tube occlusion, a is the average 

radius of the bolus, A is the amplitude, 𝜆 is the wavelength 

of the peristaltic wave, m is a constant  whose magnitude 

depends on the length of the tube, exist, and inlet 

dimensions, and c is the Velocity of the peristaltic wave. 

Introducing a wave frame ( 𝑟 , 𝑧  ) moving with velocity c 

away from the fixed frame ( 𝑅 , 𝑍  )  by the following 

transformations 

𝑧 =  𝑍 − 𝑐𝑡   ,𝑟 =  𝑅 , 𝑣 =  𝑉 − 𝑐,  𝑢 =  𝑈 , where        ( 𝑢 , 𝑣  
) and ( 𝑈 , 𝑉  ) are velocity components in wave and fixed 

frame ,respectively. 

After using these transformations, the equations of motion 

are 
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where 𝑈   and 𝑉   are the velocity components in the 𝑟   and 𝑧   
directions respectively. 

Now we introduce the following non-dimensional variables  
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U  and V are the axial and radial velocity components in the 

laboratory frame and k is the permeability of the wall. 

After nondimensionalization, equations (4) – (6)   become 
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By considering long wavelength and low Reynolds number 

approximations   and dropping terms of order 𝛿   and higher, 

it follows from equations (7) and (8)  that the appropriate 

equations describing the flow in the frame are  
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The non dimensional boundary conditions are discussed 

bellow 

The wall itself undergoes radial vibrations with the velocity 

i.e. 
t

H
V




      at     r = H                               (13) 

The Saffman condition is imposed on permeable wall of the 

tube  

i.e  
r

U
U




      at     r = H                    (14) 

The centre line velocity and velocity gradient in the radial 

direction are taken as zero 

i.e     V=0     at     r = 0                                           (15) 

    0
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r

U
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The finite tube length requires the pressures at the two ends 

of the tube 

i.e  0pP    at     z = 0                           (17) 

     LpP       at     z = L                          (18) 

4. SOLUTION OF THE PROBLEM 

Solving equation (10) subject to the boundary conditions 

given by (14) and (16), we get axial velocity as  
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Using equation (19)  in equation (10)  and solving  together 

with the boundary condition given by  (15), we get the 

radial velocity as 
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                                                                 (20) Substituting 

equation (11) in equation (8)   and integrating with respect 

to z yields 
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                                                          (21)   where   𝐺0 𝑡   at 

most depends on time.Integrating again yields a relationship 

between intraluminal pressure, wall geometry, and wall 

velocity as 
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𝐺0 𝑡    is determined by evaluating equation (22) together 

with the equation (18) as 
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where  )()()( 0 tptptp L   

4.1 Volume Flow Rate 

The non dimensional flow rate is given as 
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where   𝐶𝑄  =  1 for train wave and   𝐶𝑄 =
𝐿

𝜆
  for single wave 

transport. 

Pumping performance is characterized by the relationship 

between a time averaged the  volume flow rate is 𝑄 =
1

𝑇
  𝑄 𝑧, 𝑡  𝑑𝑡

𝑇 

0
  and the pressure difference between the end 

of the tube ∆𝑝 , where ∆𝑝 is fixed in time. Then we get 
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where   𝑄  0 is the maximal flow rate at z,
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where  ∆𝑝0 is the pressure difference required to maintain 

zero net flow rate at z. 

5. NUMERICAL RESULTS AND DISCUSSION 

Figs 1-4 are drawn for the time varying pressure distribution 

for a integral number of peristaltic waves in the tube for  

L 𝜆 =2. From fig.1 , at t = 0 ,it is observed that the 

pressure rises very sharply at the initial end reaches the cusp 

, then decreases to a lower rate at the midpoint of the bolus 

and it finally rises sharply  to meet the leading end of the 

bolus to transport it under huge control. Similar 

phenomenon is observed for different values of  . It is 

noticed that there is a large decrease in the peak pressures 

(maximum and minimum pressures) with increasing 

permeability parameter. 

From figs1-4, it is observed that the increase in time shifts 

the bolus to the right of the axis for increasing “ t ”. The 

pressure distribution exhibits how the two boluses are 

carried along the length by changing the pressure 

distribution. 

Figs 5-7, are drawn by considering the propagation of a non 

– integral number of waves in the train. It can be observed 

that ∆𝑝 decreases with an increase  𝛼. From both the cases, 

it is observed that the peaks of the pressures are identical in 

the integral case while different in the non-integral case. fig 

8 is drawn to study the effect of Jeffrey parameter for non-

integral case when 𝜆1 = 0 the results are in agreement with 

that of Ravi Kumar [2010]. 

From figs. 1–8 and fig. 9 we can observe that the effect of  

𝛼 and 𝜆1  on ∆𝑝 as ∆𝑝 decreases with an increase in 𝛼 and 

𝜆1. 

 

 

 
Fig 1 Pressure distribution with z along the tube for  𝛼 = 

0.0, 𝛼 = 0.1,  𝛼 = 0.07, with   
𝜀

 𝑎
= 0.5 , A = 1.609, 

𝐿

𝜆   
 = 2 , 

when t = 0 and  𝜆1 = 1.                           
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Fig 2 Pressure distribution with z along the tube for  𝛼 = 

0.0, 𝛼 = 0.1,   with   
𝜀

𝑎
= 0.5 , A = 1.609, 

𝐿

𝜆   
 = 2 , when t = 

0.02 and  𝜆1 = 1. 

 

Fig 3 Pressure distribution with z along the tube for  𝛼 = 

0.0, 𝛼 = 0.1,  with   
𝜀

𝑎
= 0.5 , A = 1.609, 

𝐿

𝜆   
 = 2 , when t = 

0.04 and  𝜆1 = 1.                      

          

 

Fig 4 Pressure distribution with z along the tube for  𝛼 = 

0.0, 𝛼 = 0.1,  with   
𝜀

𝑎
= 0.5 , A = 1.609, 

𝐿

𝜆   
 = 2 , when t = 

0.06 and  𝜆1 = 1. 

       

 

 Fig 5 Pressure distribution with z along the tube for   𝛼 = 

0.0, 𝛼 = 0.1, with   
𝜀

𝑎
= 0.5 , A = 1.609,         

𝐿

𝜆   
 = 1.69, when 

t = 0 and  𝜆1 = 1.              

 

Fig 6 Pressure distribution with z along the tube for  𝛼 = 

0.0, 𝛼 = 0.1,  with   
𝜀

𝑎
= 0.5 , A = 1.609,         

𝐿

𝜆   
 = 1.69, 

when t = 0.04 and  𝜆1 = 1.   

 

 

Fig 7 Pressure distribution with z along the tube for  𝛼 = 

0.05, 𝛼 = 0.06,  𝛼 = 0.07, with 
𝜀

𝑎
= 0.5 ,                 A = 

1.609, 
𝐿

𝜆   
 = 1.69 , when t = 0.3 and  𝜆1 = 1.   
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Pressure distribution with z along the tube for 

 

𝛼

 

= 

0.1, with   
𝜀

𝑎
= 0.5

 

, A = 1.609, 
𝐿

𝜆

  
 

= 1.89,

 

when  

 

t = 0.0 and  

𝜆1 = 0,  𝜆1 = 1.
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