
Unearthing the Stepping Stone Intrusion by

TCP/IP Packet Matching Algorithm

S. Kranthi K. Pranathi
Information Technology Information Technology

VR Siddhartha Engineering College VR Siddhartha Engineering College

Vijayawada, India Vijayawada, India

Abstract- In this paper we present the matching algorithms to

match TCP/IP packets in real time. Here we estimates the

length of downstream TCP/IP packet to find stepping stone

intrusion. The main intention of finding length of connection

chain is to match the TCP/IP send and echo packets. Here we

are going to come across SDC and SWAM algorithms. Where

the disadvantages of SDC are overcome by SWAM algorithm

.This new algorithm SWAM uses slide window format. The

proposed approach algorithm can detect stepping-stone

intrusion and resist intruders’ time-jittering and chaff-

perturbation manipulation to some extent.

KEY WORDS - Stepping stone intrusion, TCP/IP matching

packets, network security and intrusion detection.

1. INTRODUCTION:

Technology has become a major part of our lives. We have

entered into an era where almost everyone who uses a

computer should have basic knowledge about protecting

their system from treats. Most of the intruders attack a

system in a indirect way rather than direct way. Firstly they

compromise some computers called steeping-stones, and

then attack host computers.one reason about using

stepping-stone intrusion is it makes intruders safe from

being detected.

We formally give definitions for the following terms:

Connection: When a user from a host logs into another

host, we call this a connection session between the two

hosts.

Chain: Given n hosts H1,….,Hn , a sequence of

connection is defined as a chain C =<C1,C2,C3……, Cn-

1> where Ci is a connection from host Hi to Host Hi+1 for

I=1,…..,n-1.

Downstream and upstream: If a direction is along a

user’s login direction it is called downstream. Otherwise, it

is called upstream.

Send: A packet is defined as SEND if it propagates

downstream and has flags both ‘Push (P)’ and

‘Acknowledgement (A)’ or only ‘P’.

Echo: A packet is defined as ECHO if it propagates

upstream and has flags both ‘Push (P)’ and

‘Acknowledgement (A)’or only ‘P’.

ACK: A packet is defined as ACK if it propagates either

downstream or upstream and only has flag ‘A’.

Matched packet: If a given echo is directly triggered by a

send, then the Echo is defined as a matched packet of the

Send. The method to find matched packets is called a

Packet-matching algorithm.

Today’s computer network security has been developed to

a very advanced level and many algorithms have been

developed. Such as Deviation-based approach, Round-Trip

Time Approach and Packet Number Difference-Based

Approach.

Staniford-Chen and Herberlin introduced a method which

identifies intruders by comparing different sessions for

suggestive similarities of connection chains. The main

drawback of this is it cannot be applied to encrypted

sessions. Then Zhang and Paxson proposed time based

approach to detect stepping-stone intrusion. But this

method has three major problems. First, the TCP/IP session

can be easily manipulated. Second, these packets must

have the precise and synchronized timestamps to correlate

them properly .Yoda and Etoh proposed Deviation-Based

Approach, this is a network-based correlation scheme. This

method defines the deviation as the minimum average

delay gap between the packet streams of two TCP

connections. This time based approach has drawbacks like

1) computation deviation is not efficient .2) It depends on

the size of packet.3) It can only correlate only when TCP

connections have one-to-one correspondence in their TCP

sequence numbers.4) correlation measurements are

applicable only to post-attack traces because the correlation

metrics are defined over entire duration of connection.

The Round-Trip Time approach proposed by Yung this

estimates the length by using gap between a request and its

corresponding acknowledgement and as well as gap

between a request and its corresponding response.

Then a Packet Number Difference-Based Approach (PND-

based) proposed by Blum detects stepping-stones by

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030749

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

806

checking the difference between the send packet numbers

of incoming connection and of an outgoing connection. If

the two connections are relayed, the difference should

always be bounded, otherwise, it should not. This method

can resist time-jittering and chaff-pertubation.using

wavelet and multi-scale methods the stepping-stone

detection is still possible to monitor even the session is

jittered by time and chaff perturbation. The major problem

with the PND-based approach is that the upper bound of

the number of packets required to be monitored is large and

while the lower bound of amount of chaff needed to evade

this detection is small. And also too many false positive

errors are introduced. The longer the connection chain is,

the higher the probability that the session is a stepping

stone intrusion.

The key to compute the length of a downstream connection

chain is to match TCP/IP send and echo packet.so many

methods have proposed that match TCP/IP packets to

detect stepping-stone intrusion. However, they all suffer

from either inefficiency or in inaccuracy. In this paper, we

will make use of some special features of computer

network traffic to simply and improve the state of the art

packet matching algorithm.

2. TRIALS TO SUIT TCP/IP PACKETS

The packet matching problem is to find corresponding

echoes for each send in TCP/IP stream. The packets

transmitted on internet are complex, but they can be

decomposed into four cases.

First case: Each send is followed by one Echo

Echo is right one to match the send

Second case: Several sends are followed by one echo

Echo gets matched with first send

Third case: One send is followed by several echoes

First echo is supposed to match the send

Fourth case: Several sends are followed by several echoes.

It is not so clear how to match them, first echo is supposed

to match the first send.

There are many issues to affect matching TCP/IP packets.

They are namely five main reasons

(1) Lost packet re-transmission

(2) Packet cumulative acknowledgement and echo

(3) Session transmit window

(4) Packets communication between adjacent hosts

(5) Multiple echoes from a server side

The lost packet gets re-transmitted when it receives an

acknowledgement signal that is haven’t received from

sending client or when gets a request from receiving server.

Re-transmission of same continues until it receives an

acknowledgement is received or when connection timeout

expires. So we are faced with one echo that matches with

two or more sends.

Every TCP packet is not acknowledged individually rather

cumulative acknowledgement may take place. The most

vital advantage of this mechanism is that it reduces the

number of acknowledgement messages. This mechanism

makes one to one packet matching impossible. The same

problem occurs for echo packets too.

To control data flow, TCP maintains a transmit window.

The size of the window resolves how many unack signals

of data that a transmitter is allowed to send before it must

get ceased. In this way, if this size is set to one, which

implicate each packet is sent if and only if the previous

send has been acknowledged or echoed. If size is not set to

one, then several packets get overlapped.

The problems of packet matching are inherited form the

fact that send and echo packets may be in a many to many

relationship, not one to one. It is difficult to match them in

real-time. It is noteworthy that if we made any mistake in

packet matching at one point of a packet stream, then that

mistake would affect the entire packet matching after that

point. In order to reduce the mistake, we divide a packet

stream into some sub streams, one of which is the scope

where we match the packets.

3. EXISTING PACKET MATCHING AND ITS

PROBLEM:

The basic idea of matching TCP/IP packets is to exploit a

fact that the Round Trip Time of matched packets has the

smallest standard deviation comparing with the other non-

matched packets. The send and echo packets are collected

from the same connection chain at the same time interval

and recorded in two sequences: S= {s1, s2,….,sn} and

E={e1,e2,……em}. Si can match any packet, such as ej in

E.A set Si can be formed coming with that each element is

the difference between Si and a packet in E.

S1={s1e1, s1e2,…, s1em},

S2={s2e1, s2e2,…, s2em},

S E

S E

S E

S E

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030749

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

807

…

Si= {sie1, sie2, …,siem},

…

Sn={sne1, sne2,…,snem},

Where, Siej =tej– tsi, and here tsiand tej stand for the

timestamps of a send packet Si and a echo packet ej. Take

one element from each set and form a cluster X. if all the

cases are considered, there would be mn clusters with each

cluster n elements.

Algorithm SDC(S, E)

Begin:

(1) Generate data sets Ej (1≤j≤m): Ej={t(i,j) | t(i,j) = ej-si,

i=1, n &t(i,j)>0}

(2) Combine the elements in data sets Ej (1≤j≤m) to form

Clusters Xu (1≤u≤nm): Xu={t(ij,j)∈Ej | ∀1≤j≤m &

i1<i2…<im}

(3) For each cluster X: (a) if x(i, j), x(i, k) ∈ X, j<k, then

delete x(i, k), and (b) if x(i, j), x(k, j) ∈ X, i<k, then

delete x(i, j)

(4) Out R = {r1, r2,…rs} (1≤s≤n) which is the cluster with

smallest standard deviation among all clusters Xu

(1≤u≤nm).

End

the main problem of this algorithm is that to identify mn

clusters would be a big problem if m and n are of big

numbers.

Efficient packet matching:

Because of complexity of algorithm it cant be applicable to

online stepping-stone intrusion detection even application

to offline detection is doubtfull.so we need to improve the

algorithm that is to reduce the elements in Si.

TCP/IP protocol tells us that they should be in chronological

order. Because of chronological order, one send packet

can’t be matched twice.

The second point is that the packet in ej in E can echo and

only echo the packets in S which are before packet

ejchronically.so that the gap siejcannot be negative or zero.

The third point is that if a packet ein E could match a

packet si in S, the gap between them cannot be too large.

This is possible by a predefined parameter in TCP protocol.

That is if a packet is set from a sender to a receiver, the

packet will be either acknowledge and echoed or both with

in a time threshold.

The fourth point is that the intruders may think and pause

for a couple of seconds to wait for the response results or

hoe to do the next step. This is usually as short time for

humans but a large time for systems. This leads to the large

time gaps which makes the packet matching algorithm

more efficient.

The fifth point is that some consecutive packets have very

close timestamps, those packets can be combined to one

packet with average of their timestamps. This finally makes

the packet matching algorithm efficient.

From the above motivations new algorithmic concept has

been introduced called ‘Sliding Window’. We put the

packets of S and E together in a chronical order and set up

a new sequence Q.the size of the sliding window is W and

the 1st packet is send packet and the remaining W1 packets

are the echoed ones. We slide the window from the first

element of Q to the last one. These sets S1,S2,….,Sn are

computed with each one has W elements other than m.

4. SLIDING WINDOW PACKET MATCHING

ALGORITHM (SWAM):

We can use an example to explain SWAM algorithm

suppose there are 10 send, 14 echo packets collected and

stored in two sequences.

S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13,

e14}

By using SDC algorithm we can have

1410=289254654976clusters .if SWAM is used these two

sequences are combined in chronological order and put into

sequence Q.

Q= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

if we assume the sliding window as 3 and by moving the

window from beginning of Q we get the different packets

as

Q1= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

Q2= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030749

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

808

Q3= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

Q4= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

Q5= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

Q6= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

Q7= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

Q8= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

Q9= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7, e8,

e9, s8, e10, s9,

e11, e12, s10, e13, e14}

Q10= {s1, s2, e1, s3, e2, s4, e3, e4, s5, e5, s6, e6, e7, s7,

e8, e9, s8, e10, s9,

e11, e12, s10, e13, e14}

From the above sliding results, the following data sets are

obtained.

S1={s1e1, s1e2}; S2={s2e1, s2e2}; S3={s3e2, s3e3};

S4={s4e3, s4e4};

S5={s5e5, s5e6}; S6={s6e6, s6e7}; S7={s7e8, s7e9};

S8={s8e10, s8e11};

S9={s9e11, s9e12}; S10={s10e13, s10e14}.

From this the numbers of possible clusters are 210=1024. It

cannot be concluded by this because we don’t know about

the sliding window size so we need to take the different

sliding window sizes and converged them to get a final

stable result.

Generally, if there are n send and m echo packets collected,

using SDC incurs mn clusters. Assuming the sliding

window size tried is from w1 to w2, SWAM incurs ∑i=w
2
, w

1

in clusters.

Later advancements where made on stepping stone

intrusion detect where by using step function method

which is used to estimate the length of a connection chain

based on the changes in packet round trip times. The key

point to compute the round trip time of a connection chain

is to match a send and its corresponding echo.

First algorithm matches fewer packets and quality is high

and the second algorithm matches up more packets with

some uncertainty. This approach uses the changing RTT

(Round Trip Time) between matched packets to estimate

the length of a connection chain. The idea of using the

changes of RTTs to signal the compromised hosts is

demonstrated with experimental results from the interest.

They proposed two packet matching algorithm, a

conservative one and greedy one to match TCP send and

Echo packets. Conservative algorithm matches packet

precisely but only for a small subset of the packets and

greedy algorithm is used to know the correctness we are

unsure of. If conservative algorithm fails to produce

enough matched packet pairs, we can always use the

greedy algorithm.

5. CONSERVATIVE ALGORITHM:

We cannot match all TCP packets, so if we can match a

significant portion of the packets, it is sufficient for the

purpose of estimating the length of a connection chain.

(1) Match only those that we are sure of their

correctness.

(2) Include some that we are not completely sure

about.

In first algorithm, we collect only the matches that we are

truly confident in their correctness and we sacrifice on the

matching rate. During an interactive terminal session, it is

reasonable to divide a TCP/IP packet stream into some

segments used on the third hypothesis we made each

segment is started with one send. The gap between two

continuous segments is supposed to be considerably larger

than the RTT of a network. It is also safe to assume that no

Echo packet will match a send packet across the segment

gaps. If two consecutive send packets have time stamps

difference that is more than TG, we will assume the

existence of a gap. In our experiments, TG was set to one

second, which worked well.

Algorithm 1 is used to match TCP packet, based on

segment gap and two conditions stated above. In this

algorithm, an empty send queue, which is used to store an

unmatched send, is initialized once a packet is captured, we

first need to resolve if it is a send on an echo.

Suppose we use E, S to stand for Echo, and send

respectively each segment is going be expressed as either

case1: {S1E…..} or case 2: {S1S2…..SnE……}

Initialize a SendQ queue;

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030749

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

809

correctMatch = true; // clear match flag

while(there are more packets){

capture the next packet p;

if p is a send packet{

reset the SendQ;

correctMatch = true;

}else {add p to SendQ;}

}else if p is an Ack packet{ //Ignore it

}else if p is an Echo packet {

Q = dequeue(SendQ);

If((Q.ack# = p.seq#) and (Q.seq# < p.ack#) and

(correctMatch)){

Packets p and Q are matched;

Compute round trip time between p and Q;

} else {(// No match, set confusing match flag

correctMatch = false;

}

}

}

6. GREEDY ALGORITHM :

The main reason that algorithm 1 gives us low MR is that

once we are confused about how to match the send in a

send queue, we are going to discard al the sends of the

queue once we get confused on which on in the send queue

is supposed to match, we are going to match the very first

send, and the following conditions must be satisfied.

Send SAN < Echo RSN

Send SSN < Echo RAN

The greedy algorithm tends to give us a higher RTT when

it was confused in matching the packets in a send queue.

Suppose there is a segment, {S1 S2 S3……. SN E1

SN+1E2…..} , in which we already know that E1 matches

with S1, and E2 matches with S3. The RTT between E2 and

S2 obtained y the greedy algorithm is larger than it is

supposed to be because S2 is before S3. The higher RTT

doesnot hurt the purpose for stepping stone intrusion

detection.

Initialize a SendQ queue;

While(there are more packets){

Capture the next packet p;

If p is a send packet {

Compute Time Gap TG;

If (TG > Threshold) {Reset the SendQ; }

Else {add p to SendQ;}

} else if p is an Echo packet {

Q = dequeue(SendQ);

If ((Q.ack# = p.seq #) and (Q.seq# < p.ack#)) {

Packets p and Q are matched;

Compute round trip time between p and Q;

} else if ((Q.ack# =< p.seq#) and (Q.seq# < p.ack#)) {

Packets p and Q are matched;

Compute RTT between p and Q;

} else {// No match;}

} else {Return; }

}

Fig(1) RTT Vs Matched packets graph for conservative and greedy

algorithm

7. CONCLUSION:

These efficiency analysis shows that SWAM could reduce

upto 99.99% and future development is to reduce the

computation further and apply SWAM to online stepping

stones for detection. We have also proposed the

conservative and greedy algorithm to match TCP/IP

packets online for computing the RTTs of a TCP

interactive session. The conservative algorithm can give us

correct matches, which have been proved, but with low

MR. we evaluated the performance of the greedy algorithm

and results showed that this algorithm is more useful and

practical than the conservative one for the purpose of

stepping stone intrusion detection.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030749

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

810

REFERENCES

1. S. Staniford-Chen , L. T. Heberlein, Holding intruders accountable

on the Internet, Proceedings of the 1995 IEEE Symposium on

Security and Privacy, p.39, May 08-10, 1995

2. Kunikazu Yoda , Hiroaki Etoh, Finding a Connection Chain for

Tracing Intruders, Proceedings of the 6th European Symposium on

Research in Computer Security, p.191-205, October 04-06, 2000

3. Kwong H. Yung, Detecting long connection Chains of interactive

terminal sessions, Proceedings of the 5th international conference on

Recent advances in intrusion detection, October 16-18, 2002, Zurich,

Switzerland

4. Jianhua Yang , Shou-Hsuan Stephen Huang, Matching TCP Packets

and Its Application to the Detection of Long Connection Chains on

the Internet, Proceedings of the 19th International Conference on

Advanced Information Networking and Applications, p.1005-1010,

March 25-30, 2005 [doi>10.1109/AINA.2005.240]

5. David L. Donoho , Ana Georgina Flesia , Umesh Shankar , Vern

Paxson , Jason Coit , Stuart Staniford, Multiscale stepping-stone

detection: detecting pairs of jittered interactive streams by exploiting

maximum tolerable delay, Proceedings of the 5th international

conference on Recent advances in intrusion detection, October 16-

18, 2002, Zurich, Switzerland

6. Blum, A., Song, D., and Venkataraman, S. 2004. Detection of

Interactive Stepping-Stones: Algorithms and Confidence Bounds. In

Proceedings of International Symposium on Recent Advance in

Intrusion Detection (Sophia Antipolis, France, 2004). Springer

Press, New York, NY, 20--35.

7. Jianhua Yang , Shou-Hsuan Stephen Huang , Ming D. Wan, A

Clustering-Partitioning Algorithm to Find TCP Packet Round-Trip

Time for Intrusion Detection, Proceedings of the 20th International

Conference on Advanced Information Networking and Applications,

p.231-236, April 18-20, 2006 [doi>10.1109/AINA.2006.13]

8. Yang, J. and Huang, S.-H. 2007. Probabilistic Analysis of an

Algorithm to Compute TCP Packet Round-Trip Time for Intrusion

Detection. Journal of Computers and Security, Elsevier Ltd. Vol.

26(2) (Sep. 2007), 137--144.

9. Jianhua Yang , Shou-Hsuan Stephen Huang, A real-time algorithm

to detect long connection chains of interactive terminal sessions,

Proceedings of the 3rd international conference on Information

security, November 14-16, 2004, Shanghai, China

[doi>10.1145/1046290.1046331]

10. Yang, J. and Huang, S.-H. 2007. Mining TCP/IP Packets to Detect

Stepping-Stone Intrusion. Journal of Computers and Security,

Elsevier Ltd. Vol. 26(7--8) (Dec. 2007), 479--484.

11. Jianhua Yang , Byong Lee , Yongzhong Zhang, Finding TCP packet

round-trip time for intrusion detection: algorithm and analysis,

Proceedings of the 5th international conference on Cryptology and

Network Security, December 08-10, 2006, Suzhou, China

[doi>10.1007/11935070_21]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030749

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

811

