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Abstract- Tracking is the process of finding the future 

position of the target. If this is done with the help of the 

available  range and bearing measurements (from a 

SONAR)then the tracking is called the active tracking. 

The problem with the technique is ,the received 

measurements are contaminated by some noise. Based 

upon these measurements if we try to hit the target , 

definitely we are going to miss and since there will be 

no second chance in the war environment, it is essential 

to remove the noise present in the measurements. Here 

an attempt is made to solve the mentioned problem 

using kalman filter and the authors were successful. 

The implementation was done in MATLAB 

7.8.0(R2009a) environment and simulation results are 

presented. 

Keywords-Tracking,  Range, Bearing, SONAR, Kalman 

Filter. 

I.  INTRODUCTION 

In military and war field tracking enemy object  

is very important for blasting it. Tracking is done in 

2 ways, they are active tracking and passive 

tracking. In active tracking we transmit a signal 

from our own ship,These signals hit the enemies 

object and some portion of signal is reflected back. 

We collect these echo signals to identify the 

location of enemy’s target. In passive tracking 

without sending any signals, we collect some 

acoustic signals generated from enemy ship like 

mechanical vibrations or sound signals etc. From 

these signals we find the target location. But these 

signals are corrupted with noise. If we use directly 

these noisy data for tracking, we get misleading 

results and can’t hit the enemy target at all. So 

before tracking the enemy target, we must 

minimize the noise to the  maximum extent 

possible because we can’t remove noise completely 

from the measurements. 

For minimising noise we use different adaptive 

algorithms like LMS, WLMS and RLS. An 

adaptive filter is a filter that self-adjusts its 

transfer function according to an optimization 

algorithm driven by an error signal.   

Least mean squares (LMS) algorithms are a class 

of adaptive filters used to mimic a desired filter by 

finding the filter coefficients that relate to 

producing the least mean squares of the error signal 

(difference between the desired and the actual 

signal). It is a stochastic gradient descent method in 

that the filter is only adapted based on the error at 

the current time. 

 

Fig 1 Block diagram of the least mean squares filter 

In least squares (LS) estimation, the unknown 

values of the parameters,  in the 

regression function, , are estimated by 

finding numerical values for the parameters that 

minimize the sum of the squared deviations 

between the observed responses and the functional 

portion of the model. Mathematically, the least 

(sum of) squares criterion that is minimized to 

obtain the parameter estimates is  

                                                 (1)     

As previously noted, are treated as the 

variables in the optimization and the predictor 

variable values, are treated as 

coefficients. To emphasize the fact that the 

estimates of the parameter values are not the same 

as the true values of the parameters, the estimates 

are denoted by . For linear models, 

the least squares minimization is usually done 

analytically using calculus. For nonlinear models, 

on the other hand, the minimization must almost 

always be done using iterative numerical 

algorithms. 

Advantages 

Linear least squares regression has earned its place 

as the primary tool for process modelling because 

of its effectiveness and completeness. 

Disadvantages 
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The main disadvantages of linear least squares 

are limitations in the shapes that linear models can 

assume over long ranges, possibly poor 

extrapolation properties, and sensitivity to outliers. 

In weighted least squares parameter 

estimation, as in regular least squares, the unknown 

values of the parameters, , in the 

regression function are estimated by finding the 

numerical values for the parameter estimates that 

minimize the sum of the squared deviations 

between the observed responses and the functional 

portion of the model. Unlike least squares, 

however, each term in the weighted least squares 

criterion includes an additional weight, wi, that 

determines how much each observation in the data 

set influences the final parameter estimates. The 

weighted least squares criterion that is minimized 

to obtain the parameter estimates is 

  
            (2) 

Advantages 

Like all of the least squares methods 

discussed so far, weighted least squares is an 

efficient method that makes good use of small data 

sets. It also shares the ability to provide different 

types of easily interpretable statistical intervals for 

estimation, prediction, calibration and optimization. 

In addition, as discussed above, the main advantage 

that weighted least squares enjoy over other 

methods is the ability to handle regression 

situations in which the data points are of varying 

quality. 

 

Disadvantages 

 

The biggest disadvantage of weighted least 

squares, which many people are not aware of, is 

probably the fact that the theory behind this method 

is based on the assumption that the weights are 

known exactly. This is almost never the case in real 

applications, of course, so estimated weights must 

be used instead. The effect of using estimated 

weights is difficult to assess, but experience 

indicates that small variations in the weights due to 

estimation do not often affect a regression analysis 

or its interpretation. However, when the weights 

are estimated from small numbers of replicated 

observations, the results of an analysis can be very 

badly and unpredictably affected. This is especially 

likely to be the case when the weights for extreme 

values of the predictor or explanatory variables are 

estimated using only a few observations. 

 

The Recursive least squares (RLS) adaptive 

filter is an algorithm which recursively finds the 

filter coefficients that minimize a weighted linear 

least squares cost function relating to the input 

signals. This is in contrast to other algorithms such 

as the least mean squares (LMS) that aim to reduce 

the mean square error. In the derivation of the RLS, 

the input signals are considered deterministic, 

while for the LMS and similar algorithm they are 

considered stochastic. Compared to most of its 

competitors, the RLS exhibits extremely fast 

convergence. However, this benefit comes at the 

cost of high computational complexity.   

 

 

Fig 2 Block diagram of RLS 

Advantages: 

 Unlike the LMS algorithm and its derivatives, 

the RLS algorithm directly considers the values of 

previous error estimations. RLS algorithms are 

known for excellent performance when working in 

time varying environments. 

Disadvantages 

These advantages come with the cost of an 

increased computational complexity and some 

stability problems. 

The problems associated with the RLS can be 

solved with the advanced stochastic algorithm 

called the kalman filter. This algorithm is used in 

this paper to track the target when the sonar is 

operating in the active mode. 

 Section II reviews the kalman filter theory, 

section III deals with the mathematical modelling, 

section IV presents the simulation and results and 

finally the paper is concluded in the section v. 

II. KALMAN FILTER 

 

The Kalman filter is an algorithm which 

operates recursively on streams of noisy input data 

to produce a statistically optimal estimate of the 

underlying system state. The Kalman filter is a very 

powerful tool when it comes to controlling noisy 

systems. The basic idea of a Kalman filter is: Noisy 

data in => hopefully less noisy data out. 

PROCESS INVOLVED IN KALMAN FILTER 
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         Sensors are used to make measurements of 

the system's state (position and velocity, in the case 

of a vehicle), but the measurements are always 

corrupted with some amount of error, including 

random noise. The Kalman Filter algorithm is an 

optimized method for determining the best 

estimation of the vehicle's state. The basic concept 

is similar to simple mathematical curve-fitting of 

data points using a least-squares approximation and 

enables predictions of the state into future time 

steps. The most basic concepts of the filter are 

related to interpolation and extrapolation. The 

algorithm works in a two-step process: in the 

prediction step, the Kalman filter produces 

estimates of the true unknown values, along with 

their uncertainties. Once the outcome of the next 

measurement is observed, these estimates are 

updated using a weighted average, with more 

weight being given to estimates with higher 

certainty. This method produces estimates that tend 

to be closer to the true unknown values than those 

that would be based on a single measurement alone 

or the model predictions alone. 

BLOCK DIAGRAM OF KALMAN FILTER 

 

 

Because the certainty of the measurements is 

often difficult to measure precisely, it is common to 

discuss the filter's behavior in terms of gain. The 

Kalman gain is a function of the relative certainty 

of the measurements and current state estimate, and 

can be "tuned" to achieve particular performance. 

With a high gain, the filter place more weight on 

the measurements, and thus follows them more 

closely. With a low gain, the filter follows the 

model predictions more closely, smoothing out 

noise but decreasing the responsiveness. At the 

extremes, a gain of one causes the filter to ignore 

the state estimate entirely, while a gain of zero 

causes the measurements to be ignored. 

KALMAN FILTER  EQUATIONS 

state equation:  

𝑋 𝑛 = 𝜙 𝑛 − 1 𝑋 𝑛 − 1 + 𝑊(𝑛) 

observation equation: 

𝑍 𝑛 = 𝐻 𝑛 𝑋 𝑛 + 𝑉(𝑛) 
 

Initialization: 

𝑋  0 0 = 𝐸{𝑋 0 } 

P(0|0)=E{x(0)x
T
(0)} 

Computation: for n=1,2,..... 

𝑋  𝑛 𝑛 − 1 = 𝜙(𝑛 − 1)𝑋  𝑛 − 1 𝑛 − 1  

𝑃 𝑛 𝑛 − 1 = 

𝜙(𝑛 − 1)𝑃 𝑛 − 1 𝑛 − 1  𝜙𝑇(𝑛 − 1) + Qw(n) 

𝑘 𝑛 = 

𝑃 𝑛 𝑛 − 1 𝐻𝑇(𝑛)[𝐻 𝑛 𝑃 𝑛 𝑛 − 1 𝐻𝑇 𝑛 
+ 𝑄𝑣 𝑛 ]−1 

𝑋  𝑛 𝑛 = 

𝑋  𝑛 𝑛 − 1 + 𝐾 𝑛 [𝑍 𝑛 − 𝐻(𝑛)𝑋  𝑛 𝑛 − 1  

𝑃 𝑛 𝑛 =  𝐼 − 𝑘 𝑛 𝐻 𝑛  𝑃(𝑛|𝑛 − 1) 

NOMENCLATURE 

𝑋  𝑘 𝑘 − 1 : Estimate of State vector at time ‘k’ 

without considering the measurement at time’k’. 

 𝑋  𝑘 𝑘 : Estimate of State vector at time ‘k’  

considering the measurement at time’k’. 

ts : Time sample , t(k+1) - t(k). 

𝜙(𝑘|𝑘 − 1):Transition Matrix. 

𝑃 𝑘 𝑘 − 1 : Covariance  matrix of 𝑋  𝑘 𝑘 − 1 . 

𝑃 𝑘 𝑘 : Covariance matrix of 𝑋  𝑘 𝑘 . 

𝐻 𝑘 : Measurement matrix.  

III. MATHEMATICAL MODELLING 

In order to make the kalman filter remove the 

noise present in the measurements it is essential to 

represent the situation in the form of the two 

equations one of them being the State equation 

while the other is the Measurement Equation. 

Before doing the job mentioned above the state 

vector should be chosen. For the present situation 

the state vector is considered as follows  

𝑋 𝑘 =  𝑥 𝑡(𝑘) 𝑦 𝑡(𝑘) 𝑅𝑥(𝑘) 𝑅𝑦(𝑘) 𝑇        (3) 
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 Where𝑥 𝑡 𝑘 , 𝑦 𝑡 𝑘  represent the velocity 

components of the target in the x and y directions 

respectively. 𝑅𝑥 𝑘 , 𝑅𝑦 𝑘  Represent the range 

components in the x and y directions respectively. 

The reason for choosing the above as the state 

vector is if the  𝑥 𝑡(𝑘) and 𝑦 𝑡(𝑘) are known the 

course and the velocity can be determined and the 

knowledge of 𝑅𝑥(𝑘) and 𝑅𝑦(𝑘) will help in 

determining the range and the bearing. once the 

range ,bearing ,course and the velocity are found 

the future position of the target can be determined 

and hence the tracking is said to be done 

successfully. 

State Equation: It is the equation that gives the 

relationship between the present state and the next 

state. for the state vector chosen as in (3) the state 

transition matrix will be as follows 

The transition matrix is given by  

𝜙 𝑘 + 1 𝑘 =  

1
0
𝑡𝑠
0

0
1
0
𝑡𝑠

0
0
1
0

0
0
0
1

                            (4)                                   

It is assumed that the target is moving at fixed 

course with constant velocity, and we can write that 

𝑥 𝑡(𝑘 + 1) = 𝑥 𝑡(𝑘) 

𝑦 𝑡(𝑘 + 1) = 𝑦 𝑡(𝑘) 

 𝑅𝑥 𝑘 + 1 = 𝑅𝑥 𝑘 + 𝑡𝑠𝑥 𝑡 − [𝑥0 𝑘 + 1 − 𝑥0 𝑘   

𝑅𝑦 𝑘 + 1 = 𝑅𝑦 𝑘 + 𝑡𝑠𝑦 𝑡 − [𝑦0 𝑘 + 1 − 𝑦0 𝑘 ]                                                                                                                                                                                                                                         
 

                                                                              (5)                                                             

Where xo(k) and  yo(k) are position components of 

own ship. Arranging the above eqns. in matrix form                                                                               

 
 
 
 
𝑥 𝑡 𝑘 + 1 

𝑦 𝑡 𝑘 + 1 

𝑅𝑥 𝑘 + 1 

𝑅𝑦 𝑘 + 1  
 
 
 

=  

1
0
𝑡𝑠
0

0
1
0
𝑡𝑠

0
0
1
0

0
0
0
1

 

 
 
 
 
𝑥 𝑡 𝑘 

𝑦 𝑡 𝑘 

𝑅𝑥 𝑘 

𝑅𝑦 𝑘  
 
 
 

 

+  

0
0

−[𝑥0 𝑘 + 1 − 𝑥0 𝑘 

−[𝑦0 𝑘 + 1 − 𝑦0 𝑘 

                                     (6) 

The above relation can be written as  

𝑥 𝑘 + 1 𝑘 = 𝜙 𝑘 + 1 𝑘 𝑥 𝑘 𝑘 + 𝑏(𝑘 + 1)    (7) 

Where b(k+1)=[0 0 -{xo(k+1) -xo(k)} -{yo(k+1) -

yo(k)}]T  

Equation (7) represents the state equation for our 

active tracking process. 

Measurement Equation: It  is the equation that 

gives the relation between the true state and the 

measured state. 

Here the measurement equation is as follows 

Z(k)=H(k)x(k)+𝛿                                                        (8) 

Z(k) is the measurement  vector=                                     

 
𝑅𝑚  𝑘 sin 𝐵𝑚 (𝑘)

𝑅𝑚 𝑘 cos 𝐵𝑚 (𝑘)
                                               (9) 

The reason for choosing z(k) as given in (9) is since 

we are performing the active tracking process the 

measurements available to us are the noisy range 

and the bearing. 

It is assumed that the noise in the bearing 

measurement and the noise in the range 

measurement are uncorrelated. 𝜎𝐵
2(𝑘 + 1)and 

𝜎𝑅
2(𝑘 + 1) are the variances of the noises at time 

t(k+1) in the bearing and range measurements 

respectively.                                     

For the z(k) taken as above the H(k) will be in the 

form of 

𝐻 𝑘 =  
0
0

0
0

1
0

0
1
                                       (10) 

𝛿 in (8) is the measurement noise which is 
assumed to have a mean of zero and it is a 
function of 𝜂 𝑘 , 𝛾(𝑘) which represent the noise 
in the range and the bearing measurements as 
given in (11)                                                         

𝑅𝑚  𝑘 = 𝑅 𝑘 + 𝜂(𝑘)         

𝐵𝑚  𝑘 = 𝐵 𝑘 + 𝛾(𝑘)                                       (11)                                                                     

 

IV. SIMULATION AND RESULTS 

        When the algorithm is working in the real 

environment the range and the bearing inputs are 

received from the sonar. but since we are testing 

the algorithm in the pc environment so it is 

essential to generate the noisy range and bearing 

measurements for a particular scenario, This is 

done with the help of a simulator. 

ASSUMTIONS 

     Following are the assumptions made in the 

simulator. 

1. Initially the own ship is at origin thereafter 

it moves with a constant course and 

velocity. 

2. Target is moving at constant velocity and 

course. 
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3. All angles are considered with respect to 

Truth North. 

OWN SHIP MOTION 

     The own ship motion is introduced as follows 

consider the figure shown below 

               

Figure 1 :Plot for computing own ship positions 

Slant height in the figure is equal to v0. 

(X0(t),Y0(t)) is the position of observer at time ‘t’. 

(X0(t+1),Y0(t+1) is the Position of  observer at 

time ‘t+1’. 

dxo  is the component of the distance covered by 

the vehicle in 1 sec in East direction. 

dyo  is the component of the distance covered by 

the vehicle in 1 sec in North direction. 

Ocr is the ownship course. 

v0 is the velocity of the ownship. 

Then 

X0(t+1)=X0(t)+dx0 

Y0(t+1)=Y0(t)+dy0 

Where  

dx0=v0*sin(ocr) 

dy0=v0*cos(ocr) 

CALECULATION OF THE INITIAL POSITION 

OF THE TARGET 

 

Figure 2: Plot for computing Initial position of 

the target. 

(X0(0), Y0(0)) is the initial position of the 

ownship. 

(Xt(0), Yt(0)) is the initial position of the Target. 

R is the Range. 

B is the Bearing. 

dx is the Range component in the East direction. 

dy is the Range  component in the North direction. 

Then 

Xt(0)=X0(0)+dx 

Yt(0)=Y0(0)+dy 

Where 

dx=R*sin(B) 

dy=R*cos(B) 

TARGET MOTION 

The target motion is introduced as allows.  

Consider the figure shown below. 

 
Figure 3: Plot for computing Target positions 

Slant height in the figure is equal to vt. 
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(Xt(t),Yt(t))is the position of the target at time ‘t’. 

(Xt(t+1),Yt(t+1)) is the position of the target at   

time ‘t+1’. 

dxt  is the component of the distance covered by 

the target in 1 sec  in the East direction.  

dyt  is the component of the distance covered by 

the target in 1 sec in the North direction. 

tcr is the Target Course. 

vt is the velocity of the Target. 

Then  

Xt(t+1)=Xt(t)+dxt 

Yt(t+1)=Yt(t)+dyt 

Where  

dxt=vt*sin(tcr) 

dyt=vt*cos(tcr). 

SCENARIO 

 The target and own ship are moving with 

constant velocity and course. We already know the 

initial positions of the target and ownship. Target 

and own ship motions parameters are given below 

  

Initial position of the ownship is origin. 

Initial range between own ship and Target= 10000 

KM  

Initial bearing between own ship and Target=0DEG 

Constant velocity of the own ship = 10 mps 

Constant course of the own ship =45DEG 

Constant velocity of the target = 15 mps 

Constant course of the target =100DEG 

 

OUTPUT PLOTS 

 

Figure 4:Target Estimated and True Paths 

 

Figure 5:Range Error Vs Time 

 

Figure 6: Bearing Error Vs Time 

 

Figure 7: Course Error Vs Time 

 

Figure 8: Velocity Error Vs Time 

V. CONCLUSION 

The results show that the error in  the range, 

bearing, course and velocity has fallen to zero after 

a maximum duration of 150 seconds which 

suggests that the kalman filter has indeed cleaned 

the noise present in the range and the bearing 

measurements given by an active sonar. A better 
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kalman filter can be designed if mean of 𝛿 in 
equation (8) is not assumed to be zero.  
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