
UMLSecCheck: A Tool to Detect Security

Vulnerabilities in UML Diagrams

Pallavi T. R1, Tejavathi T. N2 and Dr. Anirban Basu3

 Department of CSE,

East Point College of Engineering and Technology

Bangalore, Karnataka, India
 *Project supported by the Government of Karnataka under VGST Scheme (2014-2015)

Abstract: A vulnerability is defined as any defect in software,

which can be used by an attacker to get access to the system.

Such vulnerabilities can be the result of inappropriate coding

or flaws in design. While vulnerabilities in code have been

well documented, little research has been done to detect

vulnerabilities in design specified in UML. The presence of

vulnerabilities in the design models of the system makes it

necessary to have tool that can help developers to avoid or

detect them in the design stage.

This paper discusses a tool called UMLSecCheck developed

by the authors to identify vulnerabilities in UML Diagrams.

The tool takes XMI data of the UML diagrams produced by

using Argo-UML. Then the XMI data is compared against the

rule set defined by the user based on the UML diagrams. The

outcome of the tool indicates if there is violation of the defined

rules for the design models.

Keywords: Vulnerability, UML Models, XMI Data File, Parser,

Schema.

I. INTRODUCTION

Software security [1], [2] is an area which is gaining lot of

attention. Security lapses can happen due to flaws in design

and coding. While security vulnerabilities due to defects in

code have been studied and well documented as CWE [3],

[4] work on vulnerabilities due to design flaws has not been

studied much. An important work in this area has been the

book on software design patterns [5].

UML 2.0 diagrams are extensively used in specifying

design of Object Oriented software. However, these cannot

be manually checked in an efficient way for security flaws.

This paper describes the development of a software

analysis tool to test UML models for vulnerabilities to

indicate inadequacy of security features.

While tools for drawing UML diagrams are available,

testing tools for checking security aspects in UML

diagrams are not easily available. To fulfill this need, we

have developed a tool called UMLSecCheck. The tool has

been used to analyze UML diagrams to detect

vulnerabilities.

In section II we will discuss about work done in this area.

Section III discusses the methodology followed and the

architecture of the analysis tool developed. In section IV

we discuss working of tool by considering class, state chart

and sequence diagrams as input and experimental results

are given.

II. LITERATURE SURVEY

There is a need to study the design patterns to know how to

apply security patterns to the design models [5].

Test cases can be generated as a result of the model(s)

verifier within the trace form of the models which are

contradicting the assets (properties) (see [6], [7] for

example). M. Dwyer, to make possible for the confirmation

engineer to utilize chronological property, has recognized

here [8], the group of designing patterns which permit for

articulate as chronological properties a set of temporal

requirements frequently met in industrial studies.

Input/output Symbolic or Labeled Transition Systems have

frequently been used to specify test purposes [9] [10].

A few proposals are depending upon the meaning of

scenario in support of the test, e.g. in [11], where test case

analysis results are coming from UML models as a tree

sets. The scenario is taken out by a Breadth First Search

upon the tree. Related approaches are developed in the

device saying test stories [12], on the basis of a test model

defined from basic analysis series prepared of an early

state, test data and test story.

One tool called Carisma[13] exists to check UML diagrams

based on the stereotypes used in those diagrams. The tool

only tests the models if they contain stereotypes in it. So

this tool will not identify the weaknesses in the design

models if they do not posses any stereotypes.

The uniqueness of the plan by means of these correlated

proposals can be reviewed in these points: scientifically,

technologically and self-expression. These allow a

validation engineer to profit from its fine awareness of the

models and to openly utilize the entire objects of the

models (objects names).

III. METHODOLOGY FOLLOWED

The methodology the tool is shown in Fig.1 and consists of

three major functional modules namely, Parser, Rule

validation and Rule Engine.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080224

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

219

UML XMI Data: This data is obtained by converting UML

diagrams [14] into XMI file format (.xmi extension) using

Argo-UML tool.

Parser: Parser will take the input XMI data and produces

the schema and one example is shown below for smart card

application state chart diagram.

The schema is nothing but the reflection of security rules

which are defined based on the test intention. The

following test schema intention is to set card status to

TERMINATED and to try out all operations to check the

model for correctness.

For_each $x from APDU_Set_status

Use any_operation any_number_of _times to_reach

State_respecting(self.state=TERMINATED)

On_instance”card”then

Use $x at_least_once to_reach state_respecting

(self.state=TERMINATED) on_instance”card”

Rule Engine: Security rule sets are designed based on the

application, which is given as an input for rule engine.

Rule Validation: At this stage the schema generated from

the parser and rules from rule engine are considered as an

input to the rule validation. The outcome is rule violation /

no violation obtained by comparing schema and rule sets.

This tool detects design flaws based on any of one: the

class diagram, state chart diagram or sequence diagrams.

Future enhancements are planned for incorporating other

diagrams as input.

Parser

Rule

Validation
Rule Engine

UML XMI Data

Security Rules
Schema

Rules

Violation / No Violation

Fig.1. Architecture of UMLSecCheck Tool

The rules with respect to class, state chart and sequence

diagrams are discussed below.

Class Analyzer: In this module the class analyzer identifies

the class diagram which contains class name and attributes.

This module also identifies the number of attributes and

contains attribute values like visibility (public or private)

which is declared in the class diagram.

Rule1 is designed for class diagrams which identify the

class name and attribute name with the visibility and

permission type. Rule describes the violation if the

attribute visibility is declared as public in the designed. If

the attribute visibility is private, then there is no violation.

State Chart Analyzer: In this module it identifies state

chart diagram which contains pseudo state, final state and

simple state.

Rule2 is designed for state chart diagrams which identifies

the set of states and transitions in the input state diagrams

and provides security rules to rule engine to get output.

Sequence Analyzer: In this module it identifies the

classifier role of the sequence diagram, later which will be

exported to XMI data.

Rule3 is designed for sequence diagrams which identifies

the classifier role name and function name or interaction

message. Rule describes the violation if the sender and

receiver has the same interaction message in the design,

else there is no violation of rule set.

The front end of the developed tool is shown in Figure.2. It

has two screens namely, INPUT and LOG. Input screen

allows choosing input UML-XMI Data File and Rule file.

When you click on START ANALYSIS button, you can

see output on LOG screen.

Fig.2. Front-End of the tool

IV. EXPERIMENTAL RESULTS

The tool was used to detect vulnerabilities in all the three

diagrams: Class diagram, State chart diagram and Sequence

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080224

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

220

diagram. The experimental results are discussed as three

cases.

CASE 1: A class diagram in the Unified Modeling

Language is a type of static structure diagram that
describes the structure of a system by showing the system's
classes, their attributes, operations (or methods), and the

relationships among objects. If the attributes of the class

declared as public then class rule will be violated. Hence

the attributes of the class must be declared as private to

achieve security in the system being developed. An

example class diagram is shown in Fig.3.and the

corresponding test case is given in Table 1.

Fig.3. Example Class Diagram

CASE 2: The state chart diagram (state machine diagram)

represents the events occurring in the system during its

operation by means of states. Any state diagram must

consist of an initial state and final state and in the following

example state diagram (Fig.4) if there is a transition from

“Suspended” state to “Normal” state then state rule will be

violated, due to insecurity in this transition, else no

violation occurs. The corresponding test case is given in

Table 2.

Fig.4. Example State Chart Diagram

CASE 3: The sequence diagram represents the events

occurring in the system during its operation by means of

interactions (messages). An example sequence diagram is

shown in Fig.5. which contains the following, the classifier

role names are buyerbank, ledger, Function names are

retrieveaccount, getbalance. The sender is Buyerbank,

Receiver is ledger and the interaction message between

buyerbank and ledger is retreiveaccount. The Rule3 is

violated as the function name retrieveaccount matches with

the rule sets declared. The corresponding test case is given

in Table 3.

Fig.5. Sequence Diagram

TEST CASES: The experimental results are given for

different input UML diagrams as shown in below tables.

Test Case ID 1

Description Class diagram to be tested(Fig.3)

Input XMI file obtained for the input class

diagram(Fig.3)

Expected Output Rule1 is Violated because the visibility

set as public for the attribute Permissions

of the class diagram(fig.3)

Remarks Successful

Table.1. Test Case for Class Diagram

Test Case ID 2

Description State chart diagram to be tested (Fig.4)

Input XMI file obtained for input state chart

diagram(Fig.4)

Expected Output Rule2 is Violated for state

transition:Suspended to Normal

Remarks Successful

Table.2. Test Case for State Chart Diagram

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080224

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

221

Test Case ID 3

Description Sequence diagram to be tested (Fig.5)

Input XMI file obtained for input sequence

diagram(Fig.5)

Expected Output Rule3 is Violated as the function name

retrieveaccount matches with the rule.

Remarks Successful

Table.3. Test Case for Sequence Diagram

V. CONCLUSION

The tool discussed in this paper analyzes input UML

diagrams and check for vulnerabilities and gives assurance

of security in designed model. The testing of developed

tool for input UML diagrams (class, state and sequence) by

means of rule sets designed based on the input diagrams is

successful. The tool is useful for detecting design errors

that may lead to security vulnerabilities. Usually designers

make mistakes in the models which could generate

software vulnerabilities. The tool is developed by using

java. The GUI designed is simple and easy to use by any

users. The tool is being enhanced to incorporate other UML

diagrams like Use Cases, Activity diagrams etc., and

defining different security rules for these.

VI. REFERENCES

[1] G. Mcgraw, Software Security: Building Security In, Addison

Wesley, 2006.

[2] A. K.Talukder, M. Chaitanya. Architecting Secure Software
Systems, Auerbach Publications, 2009.

[3] http://www.cwe.mitre.org

[4] Priyadarshini R, Ghosh N and Basu A, “SecChech:a tool for
detection of vulnerabilities and for measuring insecurity in java

programs”, International Journal of Software Engineering, Vol. 7,

No. 2, pp.67-93, July 2014.

[5] Markus Schumacher, Eduardo Fernandez- Buglioni, Duane

Hybertson, Frank Buschmann and Peter Sommerlad, “Security
Patterns - Integrating Security and Systems Engineering”, John

Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester, West

Sussex PO19 8SQ, England.
[6] P.E. Amman P. E. Black, and W. Majurski, “Using model checking

to generate tests from specifications,” Formal Engineering Methods,

International Conference on, p46, 1998.
[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property

specifications for finite-state verification,” in ICSE’99, 21st

international conference on Software engineering, LA, California,
United States, 1999, pp. 411–420.

[8] C. Jard and T. Jér on, “Tgv: theory, principles and algorithms: A tool

for the automatic synthesis of conformance test cases for non-
deterministic reactive systems,” Int. J Soft. Tools Technol. Transf.,

vol. 7, no. 4, pp. 297–315, 2005.

[9] Frantzen, J. Tretmans, and T. Willemse, “Test generation based on
symbolic specifications,” in FATES 2004, Formal Approaches to

Software Testing, ser. LNCS,J. Grabowski and B. Nielsen, Eds., vol.

3395. Springer, 2005, pp. 1–15.
[10] D. Clarke, T. Jeron, V. Rusu, and E. Zinovieva, “STG: A symbolic

test generation tool,” in TACAS’02, Tools and Algorithms for the

Construction and Analysis of Systems, ser. LNCS, vol. 2280.
Springer, 2002, pp. 151–173.

[11] F. Basanieri, A. Bertolino, and E. Marchetti, “The Cow_Suite

approach to planning And deriving test suites in UML projects,” in
UML’02, 5-th int. conf. on the UML language, ser. LNCS, vol.

2460, London, UK, 2002, pp. 383–397.
[12] Y. Ledru, F. Dadeau, L. Du Bousquet, S. Ville, and E. Rose,

“Mastering combinatorial explosion with the TOBIAS-2 test

generator,” in ASE’07: Procs of the 22nd IEEE/ACM int. conf. on
Automated Software Engineering, 2007, pp. 535–536.

[13] http://www-secse.cs.tu-dortmund.de/carisma/

[14] http://www.wikipedia.org/wiki/Unified_Modelling

_Language.html.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080224

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

222

