
Two Way Lookahead of Software Testing in

Android Application

Saryu Arora

1
* and Arti Rana

2

1* Amity Institute of Information Technology, Amity University, India,

2 Amity Institute of Information Technology, Amity University, India,

Abstract - Software testing is concerted. The emergence of

multicore architectures and the escalationof bug-prone

multithreaded software makes testing even more

painstaking.The objective of this subjective study was to

sightsee and comprehend that Software Testing which is a

software embraces of two different activities, depending upon

whether one is the developer of the software or the

tester.[1]The study used qualitative grounded notion as its

research method.Commendably conducting developer testing

as well as tester testing requires both effective tool support by

tools and abilities by concerned people. In this paper, I

describe my experiences and lessons learned in teaching and

training software testing techniques and tool support in both

the areas.As software engineering one may just end

uptreating themselves in roles as either a developer or a

tester, they must learn the skills for both. Thus, wide-spread

acceptance of Software Testing depends upon mechanisms

that provide both functional and performance transparency.

The practical implementation of the above theory is expressed

with the help of Android Application’s testingwith the

automated approach of android applications and their

requirement. All are the tools available for the same in case of

white box as well as black box. Elaborative view on UI and

GUI testing for the same. Different goals that necessitate

different types and levels of testing at different stages in the

process.

KEYWORDS : Software testing, (BBT) black box testing,

(WBT) white box testing, validation, verification, android

application, UI testing, GUI testing.

I. INTRODUCTION

What is software testing?

Software Testing is the progression of executing a program

or system with the intent of discoveryof errors. It involves

any activity intended at assessing an attribute or

competency of a program or system and shaping that it

meets its requisite results [2]. Software is not unlike other

physical processes where inputs are received and outputs

are shaped. Most systems fail in fixed ways. By contrast,

software can fail in many peculiar ways. Identifying all of

the different failure modes for software is commonly

infeasible [2].

Testing is a two-headed monster with two different

characters: one for developers, and a different one which is

for testers. Also, testing possesses a different nature if one

is a developer in comparison to if one is a software tester

[1] [2].There arespecific areas where the differences are

especially unambiguous: The first area is that developers

and testers can see different things: developers can see the

code they write, while testers generally do not see the code

(i.e., black box testing). Visibility of the code (i.e., white

box testing) has benefits for evaluating coverage of the

code written. The second area of difference is the attitude

toward testing. For developers, the major aim is to finish

writing with the code, and then to perform testing, which is

basically an activity to show whether the code works. On

the other hand, testers know that the code is buggy, and

their job is to discover where the problem is. Because of

this thing, developers have a tendency to to test casually,

often picking “test cases” that are most probable to work.

[1] The third area of difference is their duties. This means

that there are quality assurance-related abilities for both

developers and testers, yet they are unalike.

In Section 1 I present why software testing is essential?

What are those core reasons that make testing asignificant

part of any software? This is because in spite of many

limitations, testing is a major part in software development.

It is largelypositioned in every phase in the software

development life cycle. Typically, more than 50% percent

of the development time is consumed in testing.

In section 2 I describe the two look areas of software

testing i.e. as that of a developer and the other as that of a

tester. Which covers testing methods and testing from the

perspectives of both tester and developer.Where the black

box testing is performed by testers and white box testing is

performed by developers.

In section 3 I define the clear edge difference between

validation and verification in terms of methods of software

testing. As Verification and validation is the standard name

given to checking processes which make sure that the

software imitates to its specification and meets the needs of

the customer. The system should be verified and validated

at each phase of the software development process using

documents created in earlier phases.

In section 4 I present the android application structure and

its design. A typical Android app encompasses of top level

and detail/edit views.

In section 5 I provide with the automated approach of

android applications and why is it required? What all are

the tools available for the same in case of white box as well

as black box. How UI and GUI testing is done? As

different objectives that require different types and levels

of testing at different stages in the process. These needs

command whether it makes logic to test manually or to

automate the testing.

In section 6 I conclude my research with the finest

understanding and implementation of the study.

In section 7 I gather and put all the references that would

be used during the gathering of information and analyzing

it.

2074

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042048

International Journal of Engineering Research & Technology (IJERT)

 1) Why

do we need to perform Software testing?

 Testing is additional than debugging a code. Be whatever

the need

of testing is, it should be taken into concern very

seriously.An error is a human act

that produces an

inappropriate

result. A fault is anindicator of an error in

software. A fault, if come upon, may lead to a failure,

which is a deviation of the software

from its likely

delivery

or service. Imperfectness of humans causes errors. Testing

classifies

faults, whose deletion

increases the software

quality by increasing the software‟s latent
 reliability.

Testing is the dimension

of software

quality.Software

is written by people; people are imperfect

and make mistakes. Thus, testing is desirable

as it brings

balance and perspective.
 Software testing is important not only in a software but in

any business. Most of us have had apractice

with software

that did not work as predictable. Failed

software can lead to

major effects over an organization.
 a) Loss of money –

this can compriseof losing customers

right through to financial penalties for non-compliance to

legal requirements,
 b) Loss

of time -

This can be triggered

by transactions

taking a long time to process but can include staff not being

able to work due to a fault or failure,
 c) Damage to business reputation –

if an organization is

incapable

to deliver

service to their customers due to

software problems then the customers will lose confidence

or faith in the

organization.

 II.

TESTING CAN BE CATEGORIZED INTO TWO

MAIN DIVISIONS
 Developer‟s testing i.e. white box testing -

White Box

Testing

(WBT) is also referred to as Code-Based

Testing or

Structural Testing. It is the method in which internal
 structure is well-known to tester who is going to test the

software

[9].White box testing includes the testing by

viewing at the internal structure of the code & when you

are utterly aware of the internal structure of the code then

you can run the test cases and verify

whether the system

meet necessitiesstated

in the specification document

[9].

Dependingupon resulting

test cases the user exercised the

test cases by giving the input to the system andinspection
 for expected outputs with actual output. In this is testing

method user has to drive

beyond the user interface to find

the precision

of the system.Stereotypically

such method are

used at Unit Testing of the code

as Unit testing

is

done by

the developer.For developer

to test the software application

undergoing

test is like a white/transparent box where the

inside of the box is clearly seen to the developer working

as a tester

(as he

is aware of the internal code),

so this

method is called as White Box Testing.
 The White-box testing is one of the finest

method to catch

the slips

in the software application in early step

of

software development

life cycle

[9]. In this

processdeveloping

the test cases is most vital

part.

 Tester‟s testing i.e. black box testing -

Black box testing is

the

Software testing mode

which is used to test the

software without knowing the internal arrangement of code

or program.

This testing method is what maximum

of tester

actual perform in the practical life.Fundamentally software

under test is called as “Black-Box”, we are considering this

as black box and without inspecting the internal structure

of software we test the software. While black box testing,

the tester is just aware of the inputs and what are the

expected outcomes of the software and they are not aware

of how the software or applicationis internally processing

to those inputs to give the desired outputs. The Tester only

pass the valid as well as invalid inputs anddefines the

correct expected outputs. The major reason for performing

black box testing is to check whether the software is

working as per expected in requirement document &

whether it is meeting the user expectations or not.

2.1) the Testing Spectrum

Software testing is intricate in each stage of software life

cycle, but the way of conducting the testing at each stage of

software development life cycle is different in environment

and it has different intentions.

Unit testing is a code centered testing which is performed

by developers, this testing is primarily done to test each

and individual units of codedistinctly. This testing is done

for small units of code or generally no bigger than a class

[4] [16].

Integration testingauthenticates that two or more units or

other combinations work together appropriately, and

inclines to focus on the interfaces specified in low-level

design [4].

System testingdivulges that the system works endways in a

production-like site to deliver the business functions stated

in the advanced design [4].

Acceptance testing is led by business possessors, the reason

behind acceptance testing is to test what the system does in

fact, meet their business requirements [4].

Regression Testing is the testing of software

postalterations; this testing is done to check that the

consistency of each software release, testing after changes

is been made to safeguard that changes did not invoke any

new inaccuracies into the system [4].

Alpha Testingis performed generally in the presence of the

developer at the developer‟s site.

Beta Testingis conducted at the customer‟s site with no

developer on site.

Functional Testing is executed for a completed application;

this testing is to validate that it delivers all of the behaviors

essential of it.

2.1.1) Black box / functional testing techniques are as

follows:

. Equivalence partitioning (EP) is a specification-based

technique. It can be practical at any point of testing and is

often a decent method to use first.

The idea behind this technique is to partition a set of test

conditions into sets that can be considered the same by the

system, hence „equivalence partitioning or equivalence

classes‟.

In equivalence-partitioning technique we are required to

test only one condition from each partition. This is since

we are supposing that all the conditions in one partition

will be smoked in the similarmanner by the software. If one

2075

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042048

International Journal of Engineering Research & Technology (IJERT)

condition in a partition will work correctly then others will

also work correctly. Similar in case of failure.

 Valid Input Class = Keeps all valid inputs.

 Invalid Input Class = Keeps all Invalid inputs.

. Boundary value analysis is executed by forming tests that

exercise the edges of the input and output Classes

identified in the specification. Test cases can be derived

from the „boundaries‟ of equivalence classes. Normally

programming mistakes occur at the boundaries of

equivalence classes are known as “Boundary Value

Analysis (BVA)”. Sometime programmers do not succeed

in checking, special processing is mandatoryat boundaries

of equivalence classes. A broad example is programmers

may inadequately use <as a replacement for<=. The

choices of boundary values contain above, below and on

the boundary of the class [4].

. Decision tables are human understandable rules used to

express the test experts or design expert‟s knowledge in a

condensed form. Decision Tables can be used when the

result or the logic involved in the program is created on a

set of decisions and rules which need to be tracked.

Decision table is comprised of four things a) condition

stub, b) the condition entry, c) the action stub and finally d)

action entry [4] [12].

. State Transition Diagrams (or) State Graphs is an

exceptional tool to seizure certain types of system

requirements and document internal system design. When a

system need to think of what took place before or when

valid and invalid orders of operation survives, then state

transition testing might be used. State graphs are used

when system transfers from one state to another state [12]

[3].

2.1.2) white box / functional testing techniques are as

follows:

.Statement coveragein this each node or statements are

crisscrossed at least once, statement testing also known as

node coverage. It is a simple metric to estimate, and there

are number of open source products which are used to

calculate this coverage. In due course, the main benefit of

statement coverage is to find out with part of code has been

tested.

. Branch coverage/ decision coveragein this a branch is the

outcome of a decision. This method is a better one because

it provides with a deep view as compared to statement

coverage [11].

. Cyclomatic complexity of a method is one plus the

number of unique decisions in the method. It helps you

define the number of linearly liberated paths, also called as

basis set. It is a software metri that provides a quantitative

measure of logical complexity of a program [12] [4]

[3].Cyclomatic complexity is simply known as program

complexity, or in other words McCabe‟s complexity.

It is calculated in one of the three ways:

V(G) = E – N + 2 , where E is the number of edges and N

is the number is nodes in the graph.

V(G) = P + 1 , where P is the number of predicate nodes.

V(G) = R , where number of region in the graph.

. Identification of Basis Path. For identification of basis

path, independent path is required. An independent path is

any path through the program that introduces at least once

a new set of processing statements or a new condition.

. Loop testing

Figure-1[12]

Simple loops

–

skip the entire loop. Make 1 pass

through the loop. Make 2 passes through the

loop. Make m number of passes through the loop,

where,

m<n, n is the maximum number of passes

through the loop. Make n, n+1 passes through the

loop

[12].

Nested loops

–

start at the innermost loop.

Conduct simple loop test for the innermost loop.

Work outwards, conducting test for the next loop

keeping all the other loops at minimum. Continue

until all the loops are tested

[4].

Concatenated loops

–

if the loops are

independent, test them as simple loops or else test

them as nested loops

[12].

Unstructured loops -

to test them one needs to

reconstruct their design

[12].

III.

VALIDATION AND VERIFICATION

Verification

comprises

checking that the programs toe

the

line

to its specification.

Validation

encompasses

checking that the program as

employed

meets the expectations of the customer.

Validation: it says “Are we building the right product?”

Verification: it

says “Are we building the product right?”

IV.

ANDROID APP STRUCTURE

Android platform is comprised

of 4 layers: Applications at

the topmost, an Application Framework layer that delivers

services to applications, e.g., providing data access, a

Library/VM layer, and, at the bottommost, the Linux

kernel.

Java and Microsoft's .NET rule. On the other hand, Java

has the power, as it is No. 1 language in terms of

developers.

Java is the core of android mobile OS. Android

delivers

the tools and APIs obligatory

to instigate

developing applications for the Android OS using the Java

2076

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042048

International Journal of Engineering Research & Technology (IJERT)

programming language. Android applications are

stereotypically written in Java, possibly with some

additional inherent code. The Java code is compiled to a

.dex file, containing compressed bytecode. The bytecode

runs in the DVM (Dalvik virtual machine), which in turn

runs on top of a smartphonespecific version of the Linux

kernel [13] [14]. Android applications are circulated as

.apk files, which bundle the .dex code with a “manifest”

(app specification) with .xml extension [5].

Android app workflow

A rich application framework easesAndroid app

construction, as it offers a set of libraries, a high-level

interface for interaction with low-level devices, etc. More

essentially, for our purposes, the application framework

arranges the workflow of an app, which makes it laidback

to construct apps but rigid to reason about control flow [7]

[5]. A typical Android applicationcomprises of distinct

screens named Activities. An activity expresses a set of

jobs that can be assembled together in terms of their

actions and corresponds to a window in a conventional

desktop GUI. An activity acts as a container for usual GUI

elements such as toasts (pop-ups), text boxes, text view

objects, list items, progress bars, check boxes. When

interacting with an app, users traverse different activities

using the aforesaid GUI elements [7]. Activities can serve

different commitments. It provides a screen with which

user can interact in order to do something. For e.g., in a

classic news application, an activity home screen displays

the list of present-day news; picking a news headline will

trigger the switch to another activity that displays the full

news item. Activities are regularly invoked from within the

application, though some activities can be raised from

outside the application if the host applicationpermits it.

Figure-2[8]

In the above Figure-2 it is given an Android application for

testing, the first step is to mechanically Detect Input/output

Interfaces. An application‟s input interfaces signify the

different ways in which it can be raised by either the

execution environment or user.

V. AUTOMATED APPROACH FOR TESTING OF

SOFTWARE

Why to automate?

The necessity for speed is basically the hymn of the

information age. Because technology is now being used as

a weapon on the priority list of customer interaction,

delivery diaries are subject to market pressures. Late

products can drop revenue, customers, and market share.

But economic pressures also demand resource and cost

cutbacks as well, leading many establishments toimplement

automation to shrink time to market as well as cut testing

budgets.

Some of the famous tools used for automating android

applications are:

Robotium is undoubtedly the most standard framework for

test automation of Android applications for now. It is a

dominant tool for writing consistent automatic tests for

nominal time. Tests are written in Java, and can also be

written in other languages like Python. Tests cannot run on

devices, they can only run on the emulator.

Monkeyrunner is counted in to Android SDK tools and

provides API to control a device for functional testing of

applications. It does not want the source code of an app and

can be run both on the emulator as well as on the real

device. Tests are either recorded or written with python.

Appthwack is an exciting service for testing on Android

devices. The application can be loaded on the resource and

can be installed on the device.Afterwards it is explored by

running, taking measurements of memory and CPU usage,

detecting errors and complications, having a minor monkey

test. According to the survey Appthwack delivers a report

with screenshots.

MonkeyTalk is a free tool with its own commanding script

language and it also supports Javascript. Used for testing

Android and iOS applications. With MonkeyTalk you can

generate and store testing projects (test cases, test suites). It

can be joined to Eclipse.

4.1) UI testing frameworkfor android (developer testing),

the Android development environment offersan integrated

testing framework centered on JUnit to test the applications

[16]. At the moment, the framework has been

typicallyplanned to carry out assertion based unit testing

and fuzz (random) testing of activities [5]. Android testing

is based on JUnit which is used for unit testing [5]

[15].Unit tests state a developer that the code is doing

things correct. Unit tests are written from a programmer's

standpoint. They guarantee that a certain method of a class

fruitfully performs a set of specific tasks. Each test

confirms that a method outcomes with the expected output

when provided with a known input. JUnit is very good at

unit testing. In common, a JUnit test is a method whose

statements test a part of the application in test. You

establish test methods into classes called test cases (or test

suites). Each test is a separate test of an individual module

in the application under test. Each class contains related

test methods [15].

It is relaxed to become astounded when you start scripting

unit tests. The best way to start is to generate unit tests

for new code. Start with new code, get used to the process,

and then reexamine the present code to create a test suite

for it. You ought to write unit tests formerly you write the

code they will test. How can you pen down a test for

something that doesn't exist? Learning this practice is 90%

2077

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042048

International Journal of Engineering Research & Technology (IJERT)

conceptual and 10% practical. What is meant is that you

merely pretend that the class you are writing the test for is

present. Then write the test. The next step is to run your

unit tests, fix the syntax errors i.e., implement the class

with the interfaces just described by your test and run the

tests for a second time. Repeat this process, whenever

writing just adequate code to fix the failures. Run the tests

till they pass. The code is "done" when all of the unit tests

pass.

In all-purpose, there should be a unit test for every public

method of your class. Put the unit tests in the same package

as the related classes being tested. This type of union

allows each unit test to call methods and reference

variables that have access modifiers

of package or protected in the class being tested. Evade

using domain objects in unit tests. Domain objects are

explicit to an application because very frequently the

classes formed for a project apply to other projects.

Reusing these classes may be direct. But if the tests for the

reused classes use another project's domain objects, it can

become a very time-consuming activity. In that case

generally the test will either be dropped or amended.

How does JUnit work [4]?

Assertions

Use assert statements to assert that a thing is

true (assertTrue(expected, actual), assertTrue(condition),

etc), that a thing is false (assertFalse(condition), etc), that a

thing is equal (assertEqual(expected, actual), etc). When an

assert fails, the test failed for that specific case, henceforth

the code needs to be fixed.The parameter order is expected

value followed by actual value.

Version 4.x, JUnit:

@Test

Spot your test cases with the @Test annotation

For instance:

@Test

public void testAssertEquals() {

org.junit.Assert.assertEquals("…");}

 @Test

public void testAssertFalse() {

org.junit.Assert.assertFalse(“…”);

Aggregating tests in suites

Using suite as a runner allows you to by hand build a suite

comprising tests from many classes. To use it, annotate a

class

with @RunWith(Suite.class) and @SuiteClasses(TestClass

1.class, ...). all the test cases in this class will be executed.

importorg.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses({

TestFeature...class,

TestFeature...class,})

Test execution order

By design, JUnit does not tell the implementation order of

test method requests. Until now, the methods were

basicallyraised in the order returned by the reflection

API. JUnit will by default use a deterministic, but not

expectable, order (MethodSorters.DEFAULT). if we want

to change the test execution order just annotate your test

class using @FixMethodOrder and specify one of the

existingMethodSorters:

@FixMethodOrder(MethodSorters.NAME_ASCENDING)

: sorts and displays the names in lexicographic order.

Matchers and assertThat

A new assertion mechanism was built and the syntax was

like this:

assertThat(a, is(5));

assertThat(b, is(not(10)));

Benefits of this assertion syntax is that it becomes more

understandable and simple to type.

Ignoring tests

If for more or less reason, you don't want a test to fail, you

just want it to be ignored, the syntax used is @Ignore("This

Test is ignored")

Timeout for tests

Tests that are

taking too long to run, can spontaneously

fail. There are two options for prompting

this behavior:

Timeout

parameter on @Test Annotation. This only applies

to test method. You can also

specify timeout in

milliseconds for

a test method to fail if it takes lengthier

than that number of milliseconds. If the time limit is

exceeded, the

failure is prompted

by an

Exception

being

thrown:

@Test(timeout=10000)

public void testWithTimeout() {

…….}

Timeout Rule. This applies to entire test class

The Timeout Rule relates

the same timeout to all test

methods in a class:

public class HasGlobalTimeout {

public static String log;

…

4.2) GUI testing

for android-

The widespreadpractice

of

GUIs for intermingling with software is moving towards

the creation

of more and more complex GUIs

[6]. With the

mountingdifficulty

come encounters

in testing the

correctness of a GUI and its core

software. Robotium is

typically

used to automate UI test cases and within

uses

run-time binding to

Graphical

User

Interface

(GUI)

component.

V. ROBOTIUM FRAMEWORK

Robotium is an open source automation testing framework

that is used to write a strong

and dominant

black box for

Android applications

[4]. The highlighting

is generally on

black box test cases. It completely

supports testing for

2078

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042048

International Journal of Engineering Research & Technology (IJERT)

natural and mixture applications. Natural apps are live on

the device, i.e., designed for a specific platform and can be

installed from the Google Play Store, howeverMix apps are

partly built-in and partly web apps. It can also be installed

from the App store, just the HTML is required in the

browser, and the task is done [10] [4].

Robotium offers the following welfares:

 It test Android apps, both inherent as well as

hybrid.

 It involvesnegligible knowledge of the application

under test.

 The framework handgripsmany Android activities

automatically.

 It needs minimal time to write solid test cases.

 With this, reading of test cases has improved to a

great extent in comparison to standard

instrumentation tests.

 Test cases are stronger due to the run-time binding

to UI components.

 The execution of test cases is fast with this.

To develop constant and trustworthy tests, Robotium

suggestsseveral methods that respond to various graphical

elements in an Android app, which are as follows:

clickOnText(“Login”);

clickOnButton(“Save”);

searchText(“Logout”);

goBack();

getButton();

isRadioButtonChecked();

The following example shows a test containing the login

process. The testLogin() method is fashioned to test the

login process which contains the java code:

public void test_login(){

 solo.enterText(0,username);

 solo.enterText(1,password);

 solo.clickOnButton("Login");

 assertTrue(solo.searchText("Please wait while Logging

in."));

 solo.waitForActivity("com.pointabout.mypersonal.Main

TabActivity", 1000);

 solo.assertCurrentActivity("The activity has to be the

Main Tab", "MainTabActivityUser");

 solo.sendKey(Solo.menu);

 solo.clickOnText("Logout");

 solo.waitForText("Are you sure you want to log out?");

 solo.clickOnButton("Logout");

 solo.waitForText("You have been logged out of

mypersonal.");

The solo object gives access to the enterText method which

further needs two constraints that allow some text topass

into a text input field in the app. The former value of the

parameters signifies the IDs of the input text field on the

login screen. The other parameter is the string that is to be

put. The clickOnButton() method “clicks” the button for

logging in the user.The waitForActivity()method waits for

the user to login the application.Once the user is logged

in,Robotium uses the assertCurrentActivity() method to

check whether the main activity is shown or not. At the end

of the test method, a JUnitassertTrueconfirmation is done

to check whether or not the main activity. Also with the

help of solo you can have access to the device buttons such

as Menu, Home,sendKey().At last, the TearDown() method

is called for closure of all the activities [10].

Executing tests- If we want to run Robotium tests on

Eclipse, right-click the test class and select Run-

As → Android JUnit Test. Robotium can also run over

command line.

VI. CONCLUSION

In this research paper, we are trying to convey the

importance of software testing, to what extend is it required

in any application development. Along with that what all

the types of software testing and who actually can perform

this task. In which we elaborated on the Developer‟s

testing as well as Tester‟s testing, which in technical words

also known as Black box are testing and White box testing.

Further we discussed about the soul of smartphones i.e.,

android application structure also how its testing is done

from both perspectives, UI framework as well as GUI

framework used for testing an android app. The JUnit

framework motivates the coders to write down the test

cases, so they can re-run those test cases whenever they

modify their code in future. JUnit test cases are framed in

java code, test class contains one or more than one test

methods in it which further framed into test suite, as shown

in

Figure 3 [17]

It presents the Robotium frameworkgrounded on JUnit,can

be used to write the black box test cases to test the android

app‟s functionality, system and acceptance level. By using

Robotium,test cases outputs can be verified using JUnit

assertions. Robotium is a GUI testing framework for

Android applications that supports both black-box testing

as well as white-box testing.

VII. REFERENCES
1. Teaching Software testing from two Viewpoints, Neil B. Harrison,

Department of Computer Science, Utah Valley University, 800 West
University Parkway Orem, Utah 84058801-863-7312

2. Software Testing 18-849b Dependable Embedded Systems Spring

1999, Authors: Jiantao Pan
3. A Comparative Study of White Box, Black Box and Grey Box

Testing Techniques, Mohd. Ehmer Khan, Department of Computer

Science, Singhania University, Jhunjhunu, Rajasthan, India,
Farmeena Khan, Department of Computer Science, EIILM

University, Jorethang, Sikkim, India

2079

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042048

International Journal of Engineering Research & Technology (IJERT)

4. Black box and white box testing techniques- a literature review,

Srinivas Nidhra1 and Jagruthi Dondeti School of Computing,
Blekinge Institute of Technology, Karlskrona, Sweden Jawaharlal

Nehru Technological University, Hyderabad, Andhra Pradesh, India

5. A GUI Crawling-based technique for Android Mobile Application
Testing DomenicoAmalfitano, Anna Rita Fasolino,

PorfirioTramontana Dipartimento di Informatica e Sistemistica,

Università di Napoli Federico II, Via Claudio 21, 80125 Napoli,
Italy

6. Guided GUI Testing of Android Apps with Minimal Restart and

Approximate Learning Wontae Choi EECS Department University
of California, Berkeley George Necula EECS Department University

of California, Berkeley Koushik Sen EECS Department University

of California, Berkeley
7. Research on Development of Android Applications Jianye Liu

School of Information Yunnan University of Finance and Economics

KunMing, China ljyxingyun@yahoo.com.cn Jiankun Yu School of

Information Yunnan University of Finance and Economics

KunMing, China yjk1102@163.com

8. Link mail. Google.com/images
9. Teaching and Training Developer-Testing Techniques and Tool

Support Tao Xie1 Jonathan de Halleux2 Nikolai Tillmann2 Wolfram

Schulte21North Carolina State University, 2Microsoft Research
10. AndroidRR Logan Donovan - lrd2127@columbia.edu,

DmitriyGromovdg2720@columbia.edu, Riley Spahn-

riley@cs.columbia.edu, DeepikaTunikoju - dt2417@columbia.edu
11. Automatic detection of infeasible paths in software testing D. Gong1

X. Yao1, 21School of Information and Electrical Engineering, China

University of Mining and Technology, Xuzhou, Jiangsu 221116,

People‟s Republic of China 2College of Science, China University
of Mining and Technology, Xuzhou, Jiangsu 221116, People‟s

Republic of China E-mail: yxjcumt@126.com

12. Software Testing Methods and Techniques Jovanović, Irena
13. A Study of Android Application Security William Enck, Damien

Octeau, Patrick McDaniel, and SwaratChaudhuri Systems and

Internet Infrastructure Security Laboratory Department of Computer
Science and Engineering The Pennsylvania State University {enck,

octeau, mcdaniel, swarat}@cse.psu.edu

14. Implementing Security on Android Application 1, Kirandeep, 2,
AnuGarg 1, School Of engineering and Science, Lovely Professional

University 2, G.T. Road, Near Chehru Railway Bridge, Phagwara

(Punjab)-144401, India
15. Enhancing Component Based Testing Using JUnit Tool in Net

Beans Environment Ravinder Kumar Mr. Karambir Singh Student:

CSE Department Asst. Proff. CSE Department U.I.E.T. kurukshetra

university U.I.E.T. Kurukshetra University Kurukshetra, India

Kurukshetra, India

[16] A Simple and Practical Approach to Unit Testing: The JML and
JUnit Way YoonsikCheon and Gary T. Leaven

16. Empirical Studies of Test Case Prioritization in a JUnit Testing

Environment Hyunsook Do University of Nebraska - Lincoln,
dohy@cse.unl.edu Gregg Rothermel University of Nebraska-

Lincoln, grother@cse.unl.edu Alex Kinneer University of Nebraska

- Lincoln, akinneer@cse.unl.edu

2080

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042048

International Journal of Engineering Research & Technology (IJERT)

