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Abstract- Kumbhar and Shirke [12] provided one-sided -

expectation and β-content γ-level tolerance limits for the 

lifetime distribution of k-unit parallel system, when lifetimes 

of the units are independent and exponentially distributed 

with the same mean. This article provides the Two-Sided β-

Expectation Tolerance Interval for lifetime distribution of k-

unit parallel system. The Expected coverage of the proposed 

Tolerance Interval is obtained by using Taylor series 

expansion about mean. The numerical values of the expected 

coverage for different values of k when values of sample size n 

and  are specified are also computed for a fixed sample size.   

 

Keywords- Parallel system; Exponential distribution; -

Expectation Tolerance Interval; 𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝑪𝒐𝒗𝒓𝒂𝒈𝒆. 

 

1.  INTRODUCTION 

 
One of the important issues in reliability theory 

and life testing is to set tolerance limits based on observed 

lifetimes. These lifetimes may be of components or of the 

system composed of various components. Let X be lifetime 

of the unit having a distribution function F(x;𝜃), 𝜃 ∈ ∈ .   
Let L(X)  and U(X) be two functions of observations such 

that L(X) < U(X). Then (L, U) is called a -content γ-level 

tolerance interval (TI), if  

  

𝑃{∫ 𝑓(𝑥; 𝜃)𝑑𝑥 ≥
𝑈

𝐿
𝛽} = 𝛾  , for every 𝜃 ∈              (1.1) 

 

Where, 𝑓(𝑥; 𝜃) is probability density function of X. 

If L and U are determined so that   

 

𝐸{∫ 𝑓(𝑥; 𝜃)𝑑𝑥
𝑈

𝐿
} = 𝛽 ,     for every 𝜃 ∈                                               

(1.2) 

then (L, U) is called a 𝛽 -expectation TI.  The quantity 

∫ 𝑓(𝑥; 𝜃)𝑑𝑥
𝑈

𝐿
  is called the sample coverage and L and U 

are called lower and upper tolerance limits, respectively.  

 

Guttman ([1]; [2]), Goodman and Madansky [3], 

are few among others, who have provided tolerance limits 

for exponential distribution. Guenther et al. [8] have 

obtained one sided TI, while Engelhardt and Bain [9] have 

obtained TI on reliability for two parameter exponential 

distribution. Patel [11] has given a good review of some 

known results on TIs, which takes an account of TI for 

various discrete and continuous distributions. Now as far as 

lifetime distribution of the system is concerned, Hanson 

and Koopmans [4] have provided nonparametric tolerance 

limits for the class of distributions with increasing hazard 

rates. Barlow and Proschan [5] have obtained tolerance 

limits based on order statistics for the class of distributions 

based on failure rates. However, it appears that not much is 

reported on the parametric tolerance limits for the lifetime 

of system, when components have exponential lifetimes. In 

this paper, we consider the problem of setting tolerance 

limits for the lifetime distribution of k-unit parallel system, 

when the lifetimes of units are independently and 

identically distributed (i.i.d.) exponential random variables. 

When lifetimes of units are independent but have different 

means, the model to be considered will be mulitiparameter 

and hence problem of tolerance intervals requires different 

treatment. Therefore, we consider here the case of i.i.d. 

exponential variates only. Kumbhar and Shirke [12] 

provided one-sided -expectation and β-content γ-level 

tolerance limits for the lifetime distribution of k-unit 

parallel system, when lifetimes of the units are independent 

and exponentially distributed with the same mean.  They 

have also studied the problem of sample size determination 

forgiven  and γ by using the Faulkenberry and weeks [6] 

criterion. Pradhan [13] has discussed the problem of point 

and interval estimation for life time distribution of k-unit 

parallel system based on progressively type-II censored 

data. 

 

This article provides Two-sided β-Expectation 

Tolerance Interval for Lifetime distribution of k-Unit 

Parallel System; when lifetimes of the units are 

independent and exponentially distributed with the same 

mean. The numerical values of expected coverage are also 

calculated. 

 

2. TWO-SIDED Β-EXPECTATION TOLERANCE 

INTERVAL TOLERANCE INTERVAL 

 

Let 𝑌𝑖 , 𝑖 = 1, 2, … , 𝑘 be the lifetime of the ith unit 

of a k-unit parallel system. Assume that 𝑌𝑖 
′𝑠, 𝑖 =

1, 2, … , 𝑘 are i.i.d. exponential with mean 𝜃 . Then 𝑋 =
𝑀𝑎𝑥{𝑌𝑖 , 𝑖 = 1, 2, … , 𝑘 } is the lifetime of the system. The 

distribution function and probability density function of X 

is given by 
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𝐹(𝑥; 𝜃) = (1 − 𝑒−𝑥/𝜃)𝑘;  x ≥ 0,   𝜃 ≥ 0           (2.1)  

 

and  

  

𝑓(𝑥; 𝜃) = (
𝑘

𝜃
) 𝑒−

𝑥
𝜃 (1 − 𝑒−

𝑥
𝜃)

𝑘−1

,   

                                               x ≥ 0,   𝜃 ≥ 0,   

   

   =  0 , otherwise.                     (2.2) 

respectively. 

 

Suppose n, k-unit parallel systems are put on test 

and X1, X2, . . . , Xn, be the observed lifetimes of these 

systems. Based on these observations the problem is to find 

two-sided β -expectation TI for the distribution function 

F(.; 𝜃).    Let  X(1- )/2 and X(1+ )/2 be the lower  

 ((1- )/2)th  and ((1+ )/2)th percentiles of the cdf (2.1).  

 

Define   

 

  









k
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2/)1(1ln)(

1
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Then  
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XLFXUFE .  

 Thus if  is known then  )(
1

),(
1

XUXL  is a two-sided 𝛽-

Expectation Tolerance Interval.  Since  is unknown we 

replace it by its MLE say 



 .  Therefore, we propose a two-

sided 𝛽-Expectation Tolerance Interval for F(. ; ) as 

              

      .β)/2(11lnθ,β)/2(11lnθ)(
1/k1/k













XI                                      

(2.3) 

MLE and Its Asymptotic Variance 

 

Kumbhar and Shirke (2004) have obtained the MLE of 𝜃 in 

(2.2) by using Newton-Raphson Method. They have also 

obtained an Asymptotic Variance of of the MLE;  �̂�  as   
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3. EXPECTED COVERAGE: 

 
The expected coverage of the Two-sided  𝛽-Expectation 

Tolerance Interval is obtained in the following Therom. 

 

Theorem  3.1 : The  expected coverage of the TI (2.3) is 

given by 
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                                      where    
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Proof: The expected coverage of the interval I (X) is  

.
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Expanding terms inside expectation using binomial expansion and substituting 
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We expand the exponential terms in (3.2) using Taylor series expansion about  
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Similarly we get  
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                        (3.4) 

where R1 , R2  are the remainders with  higher order terms in the expansion.  Substituting the expressions for exponential terms 

in (3.2) from (3.3) and (3.4) and ignoring the higher order terms in the expressions after simplification  we get   
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The first term in in the above expression reduces to .  Using Consistency property of 



 , after simplification we get (3.1). 

 

 

     4. NUMERICAL EXPECTED COVERAGE 

 

Using the values of  Ak  , Bk and an Asymptotic 

Variance of MLE; 



  , for different values of the k we 

have obtained the expected coverage of the proposed Two-

sided Tolerance Interval in (2.3). 

 

 For   k=2,  

  1/2
2/)1(1kA   ,      1/2

2/)1(1kB     

 and     )(2  =0.55312.   

Therefore, 

Expected Coverage =    

    22

k

2

k

22

k

2

k )ln(BB)ln(AA
n

0.27655


 

n

0.5531
     2

kk

2

kk )ln(BB)ln(AA  . 

 

Similarly  expressions for expected coverage are obtained 

for k = 3, 5 etc. The numerical  

values of the expected coverage for k=1, 2, 3 and 5 when  

=.90 and .99 are tabulated for different values of n in  

Table 4.1.  

 

Table 4.1: Numerical expected coverage 

 

 

k 

Sample Size=10 Sample Size=20 

  

.90 .95 .975 .99 .90 .95 .975 .99 

2 .8805 .9361 .9657 .9848 .8903 .9430 .9703 .9874 

3 .8815 .9372 .9666 .9855 .8908 .9436 .9708 .9877 

5 .8649 .9381 .9674 .9820 .8825 .9440 .9884 .9742 

 Sample Size=50 Sample Size=100 

2 .8961 .9472 .9731 .9890 .8981 .9486 .9741 .9895 

3 .8963 .9487 .9733 .9881 .8992 .9487 .9742 .9895 

5 .8930 .9476 .9735 .9884 .8965 .9488 .9742 .9892 

 

 

 

 

We observe from Table 4.1 that as n increases I (X) attain 

desired coverage. As such there is no significant effect of 

increase in k; the number of units in the paralle system.  
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