Two -Phase Free Convection Flow and Heat Transfer From A Vertical Flat Plate

S. S. Bishoyi¹, P. K. Tripathy² and S. K. Mishra³

¹Department of Mathematics, Gandhi Institute of Industrial & Technology, Golanthra, Berhampur, Dist. Ganjam, Odisha, INDIA

²Department of Mathematics & Science, U.C.P. Engineering School, Berhampur - 760010, (Odisha)- INDIA

> ³Department of Mathematics, R.C.M. Science College, Khallikote–761030,(Odisha)INDIA

> > $\vec{a}(u,v)$

Abstract

Momentum integral method has been employed to study the effect of suspended particulate matter (SPM) on two-phase free convection heat transfer from a vertical plate. The presence of SPM increases the velocity of the carrier fluid where as diffusion of particles and concentration of particles in the fluid has little effect on it. The Grashoff number has a effect to increase the carrier fluid velocity but Prandtl number has a effect to decrease the magnitude of particle velocity and temperature. It is observed that, the heat is transferred from plate to fluid.

Key words: Particulate suspensions; boundary layer characteristics; volume fraction; heat transfer.

Nomenclature:

 $(x, y,) \rightarrow$ Space co-ordinates i.e. distance along the perpendicular to plate length

- \rightarrow Velocity components for the fluid phase in *x* and *y* directions respectively
- $\vec{q}_p(u_p, v_p) \rightarrow$ Velocity components for the particle phase in x and x and ydirections respectively
- $(T, T_p) \rightarrow$ Temperature of fluid and particle phase respectively
- $(T_w, T_\infty) \longrightarrow$ Temperature at the wall and free-stream respectively
- $(v, v_p) \rightarrow$ Kinematic coefficient of viscosity of fluid and particle phase respectively
- $(\rho, \rho_p) \rightarrow$ Density of fluid and particle phase respectively
- $(\rho_{sp}, \rho_m) \rightarrow$ Material density of particle and mixture respectively
- $(\mu, \mu_p) \rightarrow$ Coefficient of viscosity of fluid and particle phase respectively
- $(\tau_p, \tau_T) \rightarrow$ Velocity and thermal

		equilibrium time		$1/\tau_p = 18\mu/\rho_p d^2 \big)$		
(c_p, c_s)	\rightarrow	Specific heat of fluid and SPM respectively	$L \longrightarrow$	Reference / Characteristic length		
$\vec{g}(0,g)$	\rightarrow	Gravitational acceleration	$U \longrightarrow$	Free stream velocity		
		vector	$A \longrightarrow$	δ/L		
Re	\rightarrow	Fluid phase Reynolds number	Subscripts:			
Pr	\rightarrow	Prandtl number	1	Values at free stream		
Ec	\rightarrow	Eckret number	\sim \rightarrow	Values at free stream		
Nu	\rightarrow	Nusselt number	w →	values on the plate/ wall		
Gr	\rightarrow	Grassoff number				
Fr	\rightarrow	Froud number	1. Introduction			
C _f	\rightarrow	Skin friction coefficient	The study of a flow situation where free a			
р	\rightarrow	Pressure of fluid phase	forced convention effects are of comparable ord finds application in several industrial and techni			
arphi	\rightarrow	Volume fraction of Suspended	processes such a	as nuclear reactors cooled during		
		particulate matter (SPM)	winds, electronics	on, solar central receivers exposed to s devices cooled by fans and heat		
d	\rightarrow	Diameter of the particle	exchanges placed in a low-velocity environment.			
а	\rightarrow	Radius of each particle	dimensional laminar mixed convection flow is the two dimensional laminar mixed convection flow along vertical flat plate and extensive studies have been conducted on this type flow [1-4]			
δ	\rightarrow	Boundary layer thickness				
а	\rightarrow	Thermal diffusivity				
κ	\rightarrow	Thermal conductivity	transfer is usually	y ignored when a forced convection		
α	\rightarrow	Concentration parameter	flow over a cooled	l or heated surface is studied. But it is buoyancy forces influences the flow		
γ	\rightarrow	Loading ratio $(= \rho_{sp} / \rho)$	and temperature functions despite the presence forced convention flow.			
β	\rightarrow	Coefficient of volume				
		expansion	The stea	ady, laminar, free convective two		
E	\rightarrow	Diffusion parameter	fluid with suspend	ded particulate matter along a semi-		
ϵ_p	\rightarrow	Particle mass fraction	infinite vertical flat plate is considered.			
$ ho_0$	\rightarrow	$M_h \times M_g \times 2.69 \times 10^{19} cm^{-3}$	It has sh	own Rudinger [5], that the particle		
		,the fluid density at STP	at extremes of the	e density ratio and mass fraction as		
M_h	\rightarrow	1.67×10^{-27} mass of hydrogen	long as the partic	le diameter "d" is larger than a few $1-1/3$		
		at STP	hundredths of a	micron i.e. $d \ge \left[\left(\frac{1-\epsilon}{\epsilon_p} \right) \left(\frac{\rho_{sp}}{\rho_0} \right) \right]^{-1/3} \times$		
M_g	\rightarrow	Molecular weight of fluid	1.92198×10^{-6} Fu	rther the particle volume fraction		
F	\rightarrow	Friction parameter between the	$\varphi = \left(\frac{p}{1-\epsilon_p}\right) \left(\frac{p}{\rho_{sp}}\right) \mathbf{m}$	ay become significant, if the density		
		fluid and the particle $(F =$	large. If we consi	der the gravitational force as a body		

force, we should also include buoyancy force as a part of the interaction force between the pseudo-fluid and gas phases. Buoyancy force on pseudo-fluid is $-\varphi\rho g$. If we combine buoyancy force with the corresponding body force due to gravitational acceleration, we get for the pseudo-fluid, the total force due to gravitational acceleration as $\varphi(\rho_{sp} - \rho)g$.

Soo[6] has clarified the condition under which the gravity effect is negligible. the conditions are the gravity effect on the fluid phase must be small, compared with the effect of friction. In addition to the above conditions one of the following conditions:

- 1. The density of the material of the fluid phase and the particle phase are equal
- 2. In case of Turbulent flow, the Intensity of the random particle motion due to fluid drag is much greater than that due to the gravity effect.
- 3. In case of Turbulent flow of electrically charged particles, the intensity of the particle motion due to electrostatic force is greater than g/F.

2. Mathematical Formulation

In the present problem, to show the free convections effects, we have considered a very long and wide plane perpendicular to the floor, which is either heated or cooled. In either case the mathematical solution is same. The x-coordinate and y-coordinate are chosen along and perpendicular to the plate. Further the temperature of the heated or cooled surface be taken as T_w and the temperature decreases asymptotically to the value of ambient fluid T_{∞} far away. The fluid viscosity on the plate increases from zero at the plate surface to a maximum value in the immediate vicinity of the surface and there after decreases asymptotically to a zero value far away. The velocity and temperature of the particle phase differs from fluid velocity on the plate and approaches asymptotically to the fluid velocity and temperature.

Assuming the boundary layer flow laminar, and since the flow is two dimensional in the present consideration and steady the boundary layer simplification gives the following governing equations for the present flow problems. Here in free convection the buoyancy force sustains the fluid motion, and hence the gravity term $-(1 - \varphi)\rho g$ must be included in momentum integral equations.

The boundary layer equations for two dimensional two phase flow after simplifications are given by

$$\frac{\partial}{\partial x}[(1-\varphi)u] + \frac{\partial}{\partial y}[(1-\varphi)v] = 0$$
(1)

$$\frac{\partial}{\partial x} \left(\varphi \rho_{sp} u_p \right) + \frac{\partial}{\partial y} \left(\varphi \rho_{sp} v_p \right) = 0 \tag{2}$$

$$(1-\varphi)\rho\left(u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}\right) = -(1-\varphi)\frac{\partial p}{\partial x} +\mu(1-\varphi)\frac{\partial^2 u}{\partial y^2} + \frac{\varphi\rho_{sp}}{\tau_p}\left(u_p-u\right) - (1-\varphi)\rho g (3)$$

$$\begin{aligned} \frac{\partial p}{\partial y} &= o(\delta) \\ \varphi \rho_{sp} \left(u_p \frac{\partial u_p}{\partial x} + v_p \frac{\partial u_p}{\partial y} \right) &= \varphi \mu_{sp} \frac{\partial^2 u_p}{\partial y^2} \end{aligned}$$
(4)

$$+\frac{\varphi\rho_{sp}}{\tau_p}(u-u_p)+\varphi(\rho_{sp}-\rho)g\qquad(5)$$

$$(1 - \varphi)\rho c_p \left(u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y}\right) = (1 - \varphi)k\frac{\partial^2 T}{\partial y^2} + \frac{\varphi \rho_{sp} c_s}{\tau_T} (T_p - T) + (1 - \varphi)\mu \left(\frac{\partial u}{\partial y}\right)^2$$
(6)

$$\varphi \rho_{sp} c_s \left(u_p \frac{\partial T_p}{\partial x} + v_p \frac{\partial T_p}{\partial y} \right) = \frac{\varphi \rho_{sp} c_s}{\tau_T} \left(T - T_p \right) \tag{7}$$

In free convection, outside the boundary layer $y \rightarrow \delta$ as $\rho \rightarrow \rho_{\infty}$, where as *u* and *v* approaches to zero, equation (3) becomes

$$0 = -(1 - \varphi)\frac{\partial p}{\partial x} - (1 - \varphi)\rho_{\infty}g$$

Or, $\frac{\partial p}{\partial x} = -\rho_{\infty}g$ (8)

Putting (8) in (3), we get

$$(1-\varphi)\rho\left(u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}\right) = \mu(1-\varphi)\frac{\partial^2 u}{\partial x^2}$$
$$-(1-\varphi)(\rho-\rho_{\infty})g + \frac{\varphi\rho_{sp}}{\tau_p}(u_p-u) \qquad (9)$$

The coefficient of thermal expansion β is given by $\beta = -\frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_n$

Or,
$$\beta = -\frac{1}{v} \frac{v - v_{\infty}}{T - T_{\infty}} = \frac{\rho_{\infty} - \rho}{\rho(T - T_{\infty})}$$

Or, $\rho_{\infty} - \rho = \beta \rho (T - T_{\infty})$ (10)

Substituting (10) in (9), we get

$$(1 - \varphi)\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = \mu(1 - \varphi)\frac{\partial^2 u}{\partial x^2} + (1 - \varphi)\rho g\beta(T - T_{\infty}) + \frac{\varphi\rho_{sp}}{\tau_p}(u_p - u)$$

Or, $\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = v\frac{\partial^2 u}{\partial y^2} + g\beta(T - T_{\infty}) + \left(\frac{\varphi}{1 - \varphi}\right)\frac{\rho_{sp}}{\rho}\frac{(u_p - u)}{\tau_p}$ (11)

Hence the governing equations for the present problem are

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{12}$$

$$\frac{\partial(\rho_{p}u_{p})}{\partial x} + \frac{\partial(\rho_{p}v_{p})}{\partial y} = 0$$
(13)

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^{2}u}{\partial y^{2}} + \gamma \frac{\varphi}{1-\varphi} \frac{1}{\tau_{p}} (u_{p} - u) + g\beta(T - T_{x})$$
(14)

$$u_{p} \frac{\partial u_{p}}{\partial x} + v_{p} \frac{\partial u_{p}}{\partial y} = v_{sp} \frac{\partial^{2}u_{p}}{\partial y^{2}} + \frac{1}{\tau_{p}} (u - u_{p}) + \left(1 - \frac{\rho}{\rho_{sp}}\right)g$$
(15)

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k}{\rho c_{p}} \frac{\partial^{2}T}{\partial y^{2}} + \frac{v}{c_{p}} \left(\frac{\partial u}{\partial y}\right)^{2} + \gamma \frac{\varphi}{1-\varphi} \frac{c_{s}}{c_{p}} \frac{1}{\tau_{T}} (T_{p} - T)$$
(16)

$$u_p \frac{\partial T_p}{\partial x} + v_p \frac{\partial T_p}{\partial y} = \frac{1}{\tau_T} \left(T - T_p \right)$$
(17)

We need one more auxiliary condition to make the system consistent. Here we use the condition that flux of the particulate mass across any control volume is zero

i.e
$$\rho_{p\infty}U\delta = \int_0^\delta \rho_p u_p dy$$
 (18)

Boundary condition for dimensional quantities

At
$$y = 0$$
: $u = 0$, $u_p = u_{pw}$, $\rho_p = \rho_{pw}$,
 $T = T_w$, $T_p = T_{pw}$
At $y = \delta$: $u = 0$, $u_p = 0$, $\rho_p = \rho_{p\infty}$,
 $T = T_\infty$, $T_p = T_\infty$ (19)

Also, for smooth velocity and temperature profiles we assume at $y = \delta$, $\frac{\partial T}{\partial y} = 0$, $\frac{\partial u}{\partial y} = 0$.

Integrating (14) to (17) between the limit y = 0 to $y = \delta$, we get

$$\frac{d}{dx}\int_{0}^{\delta}u^{2}dy = \nu \left(\frac{\partial u}{\partial y}\right)_{y=0} dy + g\beta \int_{0}^{\delta}(T - T_{\infty})dy + \frac{\varphi}{(1-\varphi)}\frac{1}{\tau_{p}}\gamma \int_{0}^{\delta}(u_{p} - u)dy$$
(20)

$$\frac{d}{dx}\int_{0}^{\delta}\rho_{p}u_{p}^{2}dy = \varphi\mu_{sp}\left[\frac{\partial u_{p}}{\partial y}\right]_{0}^{\delta} + \frac{1}{\tau_{p}}$$
$$\int_{0}^{\delta}\rho_{p}(u-u_{p})dy + g\int_{0}^{\delta}\rho_{p}\left(1-\frac{\rho}{\rho_{sp}}\right)dy \qquad (21)$$

$$\frac{d}{dx}\int_0^\delta u(T-T_\infty)d\eta = -\frac{k}{\rho c_p} \left(\frac{\partial T}{\partial y}\right)_{y=0}$$

$$+\frac{\varphi}{1-\varphi}\frac{c_s}{c_p}\frac{1}{\tau_T}\gamma\int_0^\delta (T_p-T)dy + \int_0^\delta \frac{\nu}{c_p} \left(\frac{\partial u}{\partial y}\right)^2 dy \quad (22)$$

$$\frac{d}{dx}\int_0^\delta (\rho_p u_p) \left(T_p - T_\infty\right) dy = -\frac{1}{\tau_T} \int_0^\delta \rho_p \left(T_p - T\right) dy \quad (23)$$

By introducing non-dimensional quantities

$$\overline{x} = \frac{x}{L}, \overline{y} = \frac{y}{\delta}, \overline{u} = \frac{u}{U}, \ \overline{v} = \frac{v}{U}, \overline{u}_p = \frac{u_p}{U}, \overline{v}_p = \frac{v_p}{U},$$
$$\overline{\rho}_p = \frac{\rho_p}{\rho_{px}}, \ \theta = \frac{T - T_{\infty}}{T_w - T_{\infty}}, \ \theta_p = \frac{T_p - T_{\infty}}{T_w - T_{\infty}}$$
(24)

In equations (20) to (23), we get after dropping bars

$$\frac{d}{dx} \left[\int_0^1 A u^2 dy \right] = \frac{1}{A} \frac{1}{Re} \left[\frac{\partial u}{\partial y} \right]_{y=0} + \frac{GrA}{Re^2} \int_0^1 \theta \, dy + \frac{\varphi}{1-\varphi} \frac{FL}{U} A\gamma \int_0^1 (u_p - u) dy \qquad (25)$$

$$\frac{d}{dx} \left[A \int_0^1 \rho_p u_p^2 dy \right] = \frac{1}{Rep A} \left[\frac{\partial u_p}{\partial y} \right]_{y=0}$$

$$+ A \frac{FL}{U} \int_0^1 \rho_p \left(u - u_p \right) dy + \frac{A}{Fr} \left(1 - \frac{\rho}{\rho_{sp}} \right) \int_0^1 \rho_p dy \quad (26)$$

$$\frac{d}{dx} \left[\int_0^1 A u \theta dy \right] = -\frac{1}{Pr.Re} \frac{1}{A} \left[\frac{\partial \theta}{\partial y} \right]_{y=0}$$

$$+ \frac{2}{3} \frac{\varphi}{1-\varphi} \gamma \frac{FL}{U} \frac{1}{Pr} \int_0^1 \left(\theta_p - \theta \right) dy + \frac{Ec}{Re} \frac{1}{A} \int_0^1 \left(\frac{\partial u}{\partial y} \right)^2 dy \quad (27)$$

$$\frac{d}{dx} \left[A \int_0^1 \rho_p u_p \theta_p dy \right] = -A \frac{FL}{U} \int_0^1 \rho_p \left(\theta_p - \theta \right) dy \quad (28)$$

Further the equation (18) reduces to

$$\frac{d}{dx} \left[\int_0^1 \rho_p u_p dy \right] = 0 \tag{29}$$

and the boundary condition are

At
$$y = 0$$
: $u = 0, u_p = a_2(x), \rho_p = a_3(x),$
 $\theta = 1, \ \theta_p = a_4(x)$ (30)

At $y = 1: u = 0, u_p = 0, \rho_p = 1, \theta = 0, \theta_p = 0,$

$$\frac{\partial \theta}{\partial y} = 0, \quad \frac{\partial u}{\partial y} = 0$$
 (31)

Selecting the velocity profiles subjected to the boundary conditions (30) and (31) as

$$u = u_1 y (1 - y)^2
 u_p = a_2 (1 - y)^3
 \rho_p = 1 - (1 - a_3)(1 - y)^3
 \theta = (1 - y)^2
 \theta_p = a_4 (1 - y)^2$$
(32)

and substituting (32) in (25) to (29), we get

$$\frac{1}{105} \frac{d}{dx} [Au_1^2] = \frac{u_1}{ARe} + \frac{1}{3} \frac{GrA}{Re^2} + \frac{\varphi}{1-\varphi} \frac{FL}{U} A\gamma \left[\frac{a_2}{4} - \frac{u_1}{12}\right]$$
(33)
$$\frac{d}{dx} \left[A \left\{\frac{a_2^2}{7} - \frac{a_2^2(1-a_3)}{10}\right\}\right] = \frac{-3a_2}{ARep} + A \frac{FL}{U} \left[\frac{u_1}{12} - \frac{a_2}{4} - \frac{u_1(1-a_3)}{42} + \frac{a_2(1-a_3)}{7}\right] + \frac{A}{Fr} \left(1 - \frac{\rho}{\rho_{sp}}\right) \left(\frac{3+a_3}{4}\right)$$
(34)

$$\frac{1}{30} \frac{d}{dx} [Au_1] = \frac{2}{\Pr Re} \frac{1}{A} + \frac{2}{3} \frac{\varphi}{1-\varphi} \gamma \frac{FL}{U} \frac{1}{pr} A \left[\frac{a_4}{3} - \frac{1}{3} \right] + \frac{4}{3} \frac{EC}{Re} \frac{1}{A} u_1^2 \qquad (35)$$

$$\frac{d}{dx} \left[A \left\{ \frac{a_2 a_4}{6} - \frac{a_2 a_4 (1 - a_3)}{9} \right\} \right]$$
$$= -A \frac{FL}{U} \left[\frac{a_4}{3} - \frac{1}{3} - \frac{a_4 (1 - a_3)}{6} + \frac{(1 - a_3)}{6} \right]$$
(36)

$$\frac{d}{dx}\left[\frac{a_2}{4} - \frac{(1-a_3)a_2}{7}\right] = 0 \tag{37}$$

Simplifying equations (33) to (37), we get

$$\frac{du_1}{dx} = \frac{1}{2Au_1} \begin{bmatrix} \frac{105u_1}{ARe} + \frac{35\ GrA}{Re^2} \\ +105\ \frac{\varphi}{1-\varphi}\ \frac{FL}{U} A\gamma\left(\frac{a_2}{4} - \frac{u_1}{12}\right) - u_1^2 \frac{dA}{dx} \end{bmatrix}$$
(38)

$$\frac{da_2}{dx} = \frac{1}{2Aa_2(3+7a_3)} \left[AP + CP + \frac{70 A}{Fr} \left(1 - \frac{\rho}{\rho_{sp}} \right) \left(\frac{3+a_3}{4} \right) \right]$$
(39)

Where
$$AP = 70 A \frac{FL}{U} \left[\frac{u_1}{12} - \frac{a_2}{4} - \frac{u_1(1-a_3)}{42} + \frac{a_2(1-a_3)}{7} \right]$$

and $CP = \frac{-210a_2}{A Rep} - 7Aa_2^2 \frac{da_3}{dx} - a_2^2 (3 + 7a_3) \frac{dA}{dx}$
$$\frac{dA}{dx} = \frac{1}{u_1} \left[\frac{\frac{60}{PrRe} \frac{1}{A} + 20 \frac{\varphi}{1-\varphi} \gamma \frac{FL}{U} \frac{1}{pr} A \left(\frac{a_4}{3} - \frac{1}{3} \right)}{+ \frac{4 Ec}{3 Re} \frac{1}{A} u_1^2 - A \frac{du_1}{dx}} \right]$$
(40)
$$\frac{da_4}{dx} = \frac{1}{(1+2a_3) \left(a_2 a_4 \frac{dA}{dx} + Aa_4 \frac{da_2}{dx} \right)}{+ 2Aa_2 a_4 \frac{da_3}{dx}} \right]$$

$$\left[+ \frac{18AFL}{U} \left(\frac{a_4}{3} - \frac{1}{3} - \frac{a_4(1-a_3)}{6} + \frac{(1-a_3)}{6} \right) \right]$$
(41)

$$\frac{da_3}{dx} = -\frac{1}{a_2} \left(a_3 + \frac{3}{4} \right) \frac{da_2}{dx}$$
(42)

3. Discussion of Results and conclusion

The 1st order differential equation (38) to (42) are solved by using 4th order Runge-Kutta method for various values of the non-dimensional parameters, Reynolds number(Re), Grassoff number(Gr), Volume fraction (φ), Species density of the particle (ρ_{sp}), density of the particle(ρ), Prandtl number(*Pr*), Froud number(*Fr*), Eckert number(*Ec*).

Fig.1 depicts the pattern of the carrier fluid phase u and temperature T. From Table-1, it can be observed that the presence of SPM results in increase in magnitude of the carrier fluid velocity. The diffusion and concentration parameter has a little effect on velocity, temperature of the carrier fluid and as well as particle phase.

From Figs.2, 3, 4; it is observed that magnitude of the carrier fluid velocity u increase with the increase of Gr where as particle phase velocity and temperature decreases with the increase of Pr. From Table-2, it is observed that the Nusselt number(Nu) decreases with the increase of Pr. Further heat is transferred from plate to fluid in case of air (Pr = 0.71) and from fluid to plate in case of electrolyte solution (Pr = 1.0) and water (Pr = 7.0).

Table-3 depicts the presence of SPM increase the skin

Figure 1: Variation of u & T with y with SPM

friction and decrease the Nusselt number.

Figure 3: Variation of particle velocity with y for different Gr

Figure 4: Variation of particle temperature with y for different Gr.

у	With out SPM	With SPM
0.00E+00	0.00E+00	0.00E+00
2.00E-01	2.22E+01	6.27E+02
6.00E-01	6.00E+01	1.69E+03
1.00E+00	8.95E+01	2.53E+03
1.40E+00	1.11E+02	3.14E+03
1.80E+00	1.26E+02	3.57E+03
2.20E+00	1.35E+02	3.81E+03
2.60E+00	1.38E+02	3.91E+03
3.00E+00	1.37E+02	3.86E+03
3.40E+00	1.31E+02	3.71E+03
3.80E+00	1.22E+02	3.45E+03
4.20E+00	1.11E+02	3.13E+03
4.60E+00	9.71E+01	2.74E+03
5.00E+00	8.22E+01	2.32E+03
5.40E+00	6.67E+01	1.88E+03
5.80E+00	5.13E+01	1.45E+03
6.20E+00	3.67E+01	1.04E+03
6.60E+00	2.36E+01	6.67E+02
7.00E+00	1.28E+01	3.61E+02
7.40E+00	4.87E+00	1.37E+02
7.80E+00	5.71E-01	1.61E+01
8.00E+00	1.63E-10	4.59E-09

Table 1: Magnitude of carrier fluid velocity with and without SPM

x	Variation of	Skin friction	c_f) with SPM	Variation Nu	sselt number (A	(u) with SPM
	Pr=0.71	Pr=1.0	Pr=7.0	Pr=0.71	Pr=1.0	Pr=7.0
1.01E-01	5.17E-06	-8.40E-06	-2.07E-06	5.80E-04	-9.42E-04	-2.32E-04
5.05E+00	1.24E-05	-9.18E-05	-7.36E-08	6.94E-02	-5.15E-01	-4.13E-04
1.00E+01	1.32E-05	-1.71E-04	-4.56E-08	1.47E-01	-1.90E+00	-5.06E-04
1.49E+01	1.33E-05	-2.24E-04	-4.24E-08	2.20E-01	-3.72E+00	-7.05E-04
1.99E+01	1.33E-05	-2.64E-04	-4.12E-08	2.93E-01	-5.83E+00	-9.11E-04
2.48E+01	1.33E-05	-2.96E-04	-4.05E-08	3.66E-01	-8.16E+00	-1.12E-03
2.98E+01	1.33E-05	-3.23E-04	-4.01E-08	4.39E-01	-1.07E+01	-1.33E-03
3.47E+01	1.33E-05	-3.47E-04	-3.97E-08	5.12E-01	-1.34E+01	-1.53E-03
3.97E+01	1.33E-05	-3.68E-04	-3.95E-08	5.85E-01	-1.62E+01	-1.74E-03
4.46E+01	1.33E-05	-3.87E-04	-3.93E-08	6.58E-01	-1.92E+01	-1.95E-03
4.96E+01	1.33E-05	-4.04E-04	-3.91E-08	7.31E-01	-2.23E+01	-2.16E-03
5.45E+01	1.33E-05	-4.18E-04	-3.90E-08	8.04E-01	-2.54E+01	-2.36E-03
5.95E+01	1.33E-05	-4.31E-04	-3.89E-08	8.77E-01	-2.85E+01	-2.57E-03
6.44E+01	1.33E-05	-4.41E-04	-3.88E-08	9.50E-01	-3.16E+01	-2.78E-03
6.94E+01	1.33E-05	-4.49E-04	-3.87E-08	1.02E+00	-3.46E+01	-2.98E-03
7.43E+01	1.33E-05	-4.56E-04	-3.86E-08	1.10E+00	-3.77E+01	-3.19E-03
7.93E+01	1.33E-05	-4.61E-04	-3.85E-08	1.17E+00	-4.06E+01	-3.39E-03
8.42E+01	1.33E-05	-4.65E-04	-3.85E-08	1.24E+00	-4.35E+01	-3.60E-03
8.92E+01	1.33E-05	-4.68E-04	-3.84E-08	1.31E+00	-4.64E+01	-3.81E-03
9.41E+01	1.33E-05	-4.70E-04	-3.83E-08	1.39E+00	-4.92E+01	-4.01E-03
9.91E+01	1.33E-05	-4.72E-04	-3.83E-08	1.46E+00	-5.20E+01	-4.22E-03

Table 2: Variation of Skin friction & Nusselt number

Table 3: Variation of Skin friction & Nusselt number with and without SPM

x	Skin Friction (c_f)		Nusselt number(Nu)	
	Without SPM	With SPM	Without SPM	With SPM
1.01E-01	0.00E+00	5.17E-06	0.00E+00	5.80E-04
5.05E+00	1.18E-05	1.24E-05	2.77E-01	6.94E-02
1.00E+01	1.01E-05	1.32E-05	4.74E-01	1.47E-01
1.49E+01	9.13E-06	1.33E-05	6.43E-01	2.20E-01
1.99E+01	8.50E-06	1.33E-05	7.99E-01	2.93E-01
2.48E+01	8.04E-06	1.33E-05	9.44E-01	3.66E-01
2.98E+01	7.68E-06	1.33E-05	1.08E+00	4.39E-01
3.47E+01	7.38E-06	1.33E-05	1.21E+00	5.12E-01
3.97E+01	7.14E-06	1.33E-05	1.34E+00	5.85E-01
4.46E+01	6.93E-06	1.33E-05	1.46E+00	6.58E-01
4.96E+01	6.75E-06	1.33E-05	1.58E+00	7.31E-01
5.45E+01	5.66E-06	1.33E-05	2.66E+00	8.04E-01
5.95E+01	5.11E-06	1.33E-05	3.60E+00	8.77E-01
6.44E+01	4.72E-06	1.33E-05	4.55E+00	9.50E-01
6.94E+01	4.47E-06	1.33E-05	5.35E+00	1.02E+00
7.43E+01	4.27E-06	1.33E-05	6.12E+00	1.10E+00
7.93E+01	4.11E-06	1.33E-05	6.85E+00	1.17E+00
8.42E+01	3.98E-06	1.33E-05	7.57E+00	1.24E+00
8.92E+01	3.86E-06	1.33E-05	8.25E+00	1.31E+00
9.41E+01	3.85E-06	1.33E-05	8.32E+00	1.39E+00

9.91E+01 3.84E-06 1.33E-05 8.39E+00 1.46E+00

References:

- [1] Jain A.C. & Gupta. A.K., "proceedings of short term course on (Dec.1to Dec.13)", *Engineering and Environmental Fluid Mechanics (Under quality Improvement programme)*, (1975).
- [2] Saffmann,P.G, "The lift on a small sphere in a slow shear flow", *Journal of fluid mechanics*. vol. 22, No. 2, pp 385-400, (1965).
- [3] Saffman P.G., "On the stability of laminar flow of a dusty gas", JFM, Vol. 13, pp. 120-128,(1962).
- [4] Michael D.H, "The stability of plane poiseuille flow of a dusty gas", *JFM*, Vol. 18, pp.1932, (1965)
- [5] Rudinger,G., "Some effects of finite particle volume on the dynamics of gas particle mixtures", *AIAA journal*, Vol. 3, pp 1217-1222, (1965).
- [6] Soo. S.L., "Pipe flow of suspension" *Applied Sci.Res.*, Vol. 21, pp. 64-84,(1969).
- [7] Otterman B., "particle migration of laminar mixing of a suspension with a clear fluid", *ZAMP*, Vol-20, pp. 730-749, (1969).
- [8] Mishra S.K. & Tripathy P. K., "Approximate solution of two phase thermal boundary layer flow", *Reflections des ERA*, Vol. 6, No.2, pp.113-148, (2011).
- [9] Mishra,S.K. & Tripathy P. K., "Mathematical and Numerical modeling of two phase flow and heat transfer using non-uniform grid", *Far East journal of Applied Mathematics*, Vol. 54, No. 2, pp. 107-126, (2011).
- [10] Mishra.S.K. & Bishoyi S.S., "Numerical Modeling of Combined free and forced convection flow with SPM past a vertical plate", Vol.38M, No 2, pp. 301-315,(2012).
- [11] Mishra.S.K. & Bishoyi.S.S., "Numerical Modeling of free convection two -phase flow past a vertical plate", *Far East journal of Applied Mathematics*, Vol 59, No2, pp75-103,(2011).