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Abstract— In this paper an area efficient approach is 

presented to design and implement a high speed Fast Fourier 

Transform for DSP applications. The design has been 

implemented using Modified Coordinate Rotation Digital 

Computer (CORDIC) algorithm which uses two elementary 

angles and ROM to store number of microrotation.The 

proposed design is synthesized and simulated with Quartus II 

software and implemented on FPGA. Using proposed CORDIC 

algorithm, enhanced performance is achieved in terms of speed, 

area and dynamic power constraints.  

Key Words: CORDIC, DSP application, FPGA, FFT, Micro 

rotation, Twiddle factor 

I. INTRODUCTION 

CORDIC (COordinate Rotation Digital Computer) which 

was introduced in 1959 by Jack E. Volder. It is a Hardware 

Efficient iterative Algorithm for Circular Rotation and to 

compute trigonometric functions, hyperbolic functions, 

multiplications, divisions and data type conversions. 

Compared to other approaches, CORDIC is utilized where 

hardware multiplier is unavailable. (eg.microcontroller) where 

the Delay/Hardware cost is comparable to division or square 

rooting. Two basic CORDIC modes are: the rotation mode and 

the vectoring mode. For both modes the CORDIC algorithm 

can be realized as an iterative sequence of 

additions/subtractions and shift operations, which are rotations 

by a fixed rotation angle but with variable rotation direction 

[1]. Due to this simplicity, this algorithm is well suited for 

VLSI implementation. In this paper modified CORDIC 

algorithm is used to generate angle for twiddle factor on FFT 

computation. For FFT applications θ is known in advance 

which  will be used again and again. In these situations, the 

angle updating equation is evaluated in advance (off line), and 

the corresponding set of micro rotation is stored; instead of, in 

the memory. A particular advantage is that there will be no 

need to implement the angle updating formula, resulting in a 

cost saving of hardware. This paper is organized as follows: 

Section II gives the basics of CORDIC algorithm. Section III 

gives FFT computation and prior work. Section IV explains 

about the modified CORDIC based algorithm. Section V 

explains about scaling free CORDIC. Section VI shows the 

performance of proposed technique and the last section VII 

concludes the paper followed by references. 

II.CORDIC ALGORITHM 

 
The basic CORDIC algorithm can be explained as follows: 

 
Fig.1 CORDIC rotation 

As shown in Fig. 1, the rotation of a vector P0=[x0 y0] 
through an angle θ, to obtain a rotated vector Pn= [xn yn] 
could be performed by the matrix product Pn=RP0, where R is 
the rotation matrix [3]. 

Each iteration, the matrix product is expressed as   

and the new coordinate is calculated by: 

 

      --- (1) 
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The rotation matrix will be:                                                                                                                                                                   

           --- (2) 

 

Equation 1 can be rewritten as 

              --- (3) 

                    --- (4) 

 

 

It allows only iterative rotations so that  

 
 

Then equation 3 and 4 becomes 

 --- (5) 

--- (6) 

Depending on the direction of rotation, di =±1, which is 

determined by 

                                 --- (7) 
 

Here arctan (2-i)  values are pre computed (a0, a1, ...) and it 
can be scaled to binary number range, e.g. 2π=256.If  Zi <0, di 
=-1.otherwise  di =+1; to evaluate Zi, simply use the Zi sign 
bit (MSB).It will be iteratively repeated for n times to get 
[xnyn]. 

By factoring out the cosine term in Eq.2, the rotation matrix R 
can be rewritten as 

        --- (8) 
 

And can be interpreted as a product of a scale-factor 

K=[(1+tan2 )-1/2] with a pseudo rotation matrix Rc,given by 

                                 --- (9) 
 

The pseudo rotation operation rotates the vector P0 by an 

angle  and changes its magnitude by a factor K= cos , 
which is equivalent to cos (tan-1(2-i)) to produce a pseudo-
rotated vector Pn=RcP0. 

 

The cosine is symmetric:  

    --- (10) 

Then  

-- (11) 
We can compute K offline for all n iterations. It approaches 
0.6037, if n goes to infinity. In order to compensate the gain, 
we have to scale the result with the reciprocal value of the 
gain: 

                                              --- (12) 

 
We can compute “A” offline for all n iterations. “A” 
approaches 1.647, if n goes to infinity. The corresponding 
architecture for this algorithm is shown below: 

 
The key ideas used in CORDIC to achieve simplicity are: (i) 
decomposition of the rotations into a sequence of elementary 
rotations through predefined angles and (ii) avoidance of 
scaling. The purpose of scaling [2] is to make the final 
coordinate has the same m-norm as the initial coordinate after 
rotation. A main research issue is to reduce the computation 
overhead due to the scaling operation. 

 

 
 

Fig.2 Bit parallel Iterative CORDIC Hardware 

 III. FAST FOURIER TRANSFORM 

An FFT computation is implemented with a complex 
multiplier but due to demand of higher point FFTs, the size of 
ROM in this implementation for the twiddle factors becomes 
the major concern with larger chip area [4, 5]. The aim of this 
paper is to design an FFT with modified CORDIC algorithms 
in order to replace complex multipliers through reduced ROM 
size.  

The Fourier transform for N-point is expressed by 

                     --- (13) 

Where 

is the “twiddle factor”. As shown in Eq. 
13, the key operation of FFT is  “Rotation of  input x(n) by an 
angle corresponds to twiddle factor to get an output  X(K)” .It 
can be related to the CORDIC algorithm without any complex 
multiplications where old coordinate is rotated by elementary 
angle corresponds to target angle to get new coordinate. An 
FFT processor stores the twiddle factors in memory. 
CORDIC-based FFT doesn’t have twiddle factors but stores 
the rotation angle in a memory bank. For radix-2, N Point, m-
bit FFT, mN/2 bits memory needed to store N/2 angles [6]. 
But the modified CORDIC FFT design needs to store only 
number of shifts corresponding to micro rotation which is 
presented in next section where CORDIC uses only two 
elementary angles [7]. 
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IV. PROPOSED CORDIC ALGORITHM 

 
In FFT, cosine and sine of angles have to be found which 

lies in the range of 0o to 180. The conventional CORDIC 
algorithms are used to handle rotations only in the range of 
angles [-99°, 99°]. Moreover, they are serial in nature and 
require a ROM to store the lookup table and hardware 
expensive barrel shifters. So we go for a reduced hardware 
CORDIC. Our objective is to reduce the complexity which is 
expected to result in considerable savings in FPGA resources 
(in comparison to conventional CORDIC). This is designed 
for rotation mode. The key idea in this is representing all the 
angles in the range of [0o, 180°] using combinations of two 
elementary angles 450 and 7.125o. 

In CORDIC computation, the basic idea is to decompose 
the desired angle into sum of predefined elementary angles 
such that the rotation can be accomplished with simple shift-
and-add operations. For twiddle factor, predefined elementary 
angles are considered as 45˚ and 7.125˚[8].Then the number of 
shifts which are stored in ROM are the rotation values 
corresponding to angles 22.5o, 45o, 67.5o, 90o, 112.5o,135o, 
157.5o, 180o. The set of predefined angles for target angle is 
represented by m0,m1,m2,m3,m4,m5 if six micro rotations are 
used where m0,m1,m2,m3,m4,m5 are  integers which depend 
on the value of  target angle [1]. Instead of storing rotation 
angles we only need to store values of number of shifts. Then 
the corresponding rotations provide architecture for 16 point 
FFT butterfly with merely shifters and adder. 

 
 The following table shows micro rotation values 

corresponding to the above given angles for FFT. 

 
Table.1.Optimized rotation with six micro rotations 

 

angle 
m0, 

c0 

m1 

,c1 

m2 

,c2 
m3,c3 m4,c4 

m5 

,c5 

22.5 3,1 3,1 3,1 --- --- --- 

45 0,1 --- --- --- --- --- 

67.5 0,1 3,1 3,1 3,1 --- --- 

90 0,1 0,1 --- --- --- --- 

112.5 0,1 0,1 3,1 3,1 3,1 --- 

135 0,1 0,1 0,1 --- --- --- 

157.5 0,1 0,1 0,1 3,1 3,1 3,1 

 
The architecture for modified CORDIC [1] is as shown below 

in the figure 3. 

 

 
 

Fig.3.Optimized rotation with micro rotation 

Scaling 

Other simplifications performed by the Volder’s algorithm 
[2] is the removal of scaling from the iterative micro rotations 
leads to a pseudo-rotated vector instead of the desired rotated 
vector .Since the scale-factor  does not depend on   the 
direction of micro rotations, the final scale-factor converges to 
some value depending on number of micro rotation. 
Therefore, instead of scaling during each micro rotation, the 
magnitude of final output could be scaled by K. 

        --- (15) 
Where ‘n’ is the number of micro rotation. 

V. SCALING FREE CORDIC 
The details of the scaling free CORDIC algorithm are 

provided in the reference [9, 10]. The working equation of the 
scaling free CORDIC is given as 

  --(16) 
 

Each of the elementary rotational stages of the scaling free 
CORDIC costs two adders and two shifters more compared to 
that of the conventional CORDIC. But it is performed in an 
alternate cycle to increase the speed. Furthermore, since this 
formulation completely eliminates the requirement of scale 
factor compensation circuit, the overall hardware complexity 
of the scaling free CORDIC is less than the conventional one. 
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Fig.4.Scaling free CORDIC 

 
VI. SYNTHESIS AND SIMULATION RESULTS 

 
Figure 5, 6 and 7 shows the RTL view for the proposed 

architecture, conventional CORDIC and scaling free CORDIC 
respectively. Figure 8 shows the simulation result of proposed 
architecture followed by scaling free CORDIC simulation 
result. 

Table.2.Result Analysis 
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Fig.5.RTL View for proposed architecture 
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Fig.6.RTL View for conventional CORDIC 
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Fig.7.RTL View for scaling free CORDIC 

 

  
 

Fig.8 Simulation waveform for proposed architecture 

 

 

Design Area Speed 

Conventional 
CORDIC 

192 (LEs) 170.24MHz 

Scaling free CORDIC 99 (LEs) 174.03MHz 

Modified CORDIC 

(Proposed) 
82 (LEs) 185.94MHz 
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Fig.9 Simulation waveform for scaling free CORDIC 

VII. CONCLUSION 

 

In this paper, a modified CORDIC algorithm based design 
of twiddle factor angle generation for Fast Fourier Transform 
in DSP is presented. From the table 2, it is found that the 
Modified CORDIC algorithm based design shows better 
results with 2.34% lesser area and 1.09 times faster in FFT 
calculation than conventional one. Although it is used only for 
fixed angle, it is suitable for scaling free CORDIC by 
approximating sin ɸi=2-i and cos ϕi=1-2-i. The proposed 
design operates at a maximum frequency of 185.94 MHz for 
micro rotation along with efficient speed and area utilization 
than the conventional CORDIC which requires separate 
scaling architecture to provide cost effective solution. With 
reduced ROM size, dynamic power dissipation is reduced 
without delay penalties.   
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