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Abstract 
 
 
  This paper deals with the theoretical investigation of the triple-diffusive convection in a micropolar ferrofluid 
layer heated and soluted below subjected to a transverse uniform magnetic field in thev presence of uniform 
vertical rotation. For a flat fluid layer contained between two free boundaries, an exact solution is obtained. A 
linear stability analysis theory and normal mode analysis method have been carried out to study the onset 
convection. The influence of various parameters like rotation, solute gradients, and micropolar parameters (i.e. 
coupling parameter, spin diffusion parameter and micropolar heat conduction parameter) has been analyzed on 
the onset of stationary convection. The critical magnetic thermal Rayleigh number for the onset of instability is 
also determined numerically   for sufficiently large value of buoyancy magnetization parameter M1(ratio of the 
magnetic to gravitational forces). The principle of exchange of stabilities is found to hold true for the micropolar 
fluid heated from below in the absence of micropolar viscous effect, microinertia, solute gradient and rotation. 
The oscillatory modes are introduced due to the presence of the micropolar viscous effect, microinertia , solute 
gradient and rotation, which were non-existent in their absence. In this paper, an attempt is also made to obtain 
the sufficient conditions for the non-existence of overstability. 
 

 Keywords: Triple- diffusive convection; Micropolar ferrofluid; Thermal convection; Solute gradient; 

Vertical magnetic field; Rotation; Magnetization. 
 
 
1. Introduction   
 
 
    Micropolar fluids are fluids with internal structures in which coupling between the spin 
of each particle and the microscopic velocity field is taken into account. They represent 
fluids consisiting of rigid, randomly oriented or spherical particles suspended in viscous 
medium, where the deformation of fluid particles is ignored (e.g. polymeric suspension, 
animal blood, liquid crystal). Micropolar fluids have been receiving a great deal of research 
focus and interest due to their application in a number of processes that occur in industry. 
Such applications include the extrusion of polymer fluids, solidification of liquid crystal, 
cooling of metallic plate in a bath, exotic lubricants and colloidal suspension solutions.   
Micropolar fluid theory was introduced by Eringen [1] in order to describe some physical 
systems, which do not satisfy the Navier- Stokes equation. The equations governing the 
micropolar fluid involve a spin vector and microinertia tensor in addition to the velocity 
vector. The theory can be used to explain the flow of colloidal fluids, liquid crystals, animal 
blood etc. The generalization of the theory including thermal effects has been developed by 
Kazakia and Ariman [2] and Eringen [3]. The theory of thermomicropolar convection began 
with Datta and Sastry[4] and interestingly continued by Ahmadi[5], Lebon and Perez- 
Garcia[6],Bhattacharya and Jena[7], Payne and Straughan [8], Sharma and Kumar  [9,10] 
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and Sharma and Gupta [11]. The above works give a good understanding of thermal 
convection in micropolar fluids. 
   In many situations involving suspensions, as in the magnetic fluid case, it might be 
pertinent to demand an Eringen micropolar description. This was suggested, in fact, by 
Rosenweig [12] in his monograph. An interesting possibilities in a planer micropolar  
ferrofluid flow with an AC magnetic field  has been considered by Zahn and Greer [13].They 
examined a simpler case where the applied magnetic fields along and transverse to the 
duct axis are spatially uniform and varying sinusoidally with time. In a uniform magnetic 
field, the magnetization characteristic depends on particle spin but does not depend on 
fluid velocity. Micropolar ferrofluid stabilities have become an important field of research 
these days. A particular stability problem is Rayleigh-Bénard instability in a horizontal thin 
layer of fluid heated from below. A detailed account of thermal convection in a horizontal 
thin layer of Newtonian fluid heated from below has been given by Chadrasekhar [14]. For 
a ferrofluid, a thermo-mechanical interaction is predicted by Finlayson [15] in the presence 
of a uniform vertical magnetic field provided the magnetization is a function of 
temperature and magnetic field, and a temperature gradient is established across the fluid 
layer. The thermal convection in Newtonian ferro fluid has been studied by many authors 
[16-25]. 
  Rayleigh-Bénard convection in a micropolar ferrofluid layer permeated by a uniform, 
vertical magnetic field with free-free, isothermal, spin-vanishing, magnetic boundaries has 
been considered by Abraham [26]. She observed that the micropolar ferro fluid layer 
heated from below is more stable as compared with the classical Newtonian ferrofluid.The 
effect of rotation on thermal convection in a micropolar fluids is important in certain 
chemical engineering and biochemical situations. Qin and Kaloni [27] have considered a 
thermal instability problem in a rotating micropolar fluid. They found that, depending upon 
the values of various micropolar parameters and the low values of the Taylor number, the 
rotation has a stabilizing effect. The effect of rotation on thermal convection in micropolar 
fluids has also been studied by Sharma and Kumar [28] , whereas the numerical solution of 
thermal instability of rotating micropolar fluid has been discussed by Sastry and Rao[29] 
without taking into account the rotation effect in angular momentum equation. But we also 
appreciate the work of Bhattacharyya and Abbas [30] and Qin and Kaloni ,they have 
considered the effect of rotation in angular momentum equation.   More recently, Sunil et 
al., [31-33] ] have studied the effect of rotation  on the thermal convection problems in 
ferrofluid.  . 
  In the standard Bénard problem, the instability is driven by a density difference caused by 
a temperature difference between the upper and lower planes bounding the fluid. If the 
fluid, additionally has salt dissolved in it , then there are potentially two destabilizing 
sources for the density difference, the temperature field and salt field. The solution 
behavior in the double-diffusive convection problem is more interesting than that of the 
single component situation in so much as new instability phenomena may occur which is 
not present in the classical Bénard problem. When temperature and two or more 
component agencies, or three different salts, are present then the physical and 
mathematical situation becomes increasingly richer. Very interesting results in triply 
diffusive convection have been obtained by Pearlstein et al., [34]. The results of Pearlstein 
et al., are remarkable. They demonstrate that for triple diffusive convection linear 
instability can occur in discrete sections of the Rayleigh number domain with the fluid 
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being linearly stable in a region in between the linear instability ones. This is because for 
certain parameters the neutral curve has a finite isolated oscillatory instability curve lying 
below the usual unbounded stationary convection one. Straughan and Walker [35] derive 
the equations for non-Boussinesq convection in a multi- component fluid and investigate 
the situation analogous to that of Pearlstein et al., but allowing for a density non linear in 
the temperature field. Lopez et al., [36] derive the equivalent problem with fixed boundary 
conditions and show that the effect of the boundary conditions breaks the perfect 
symmetry. In reality the density of a fluid is never a linear function of temperature, and so 
the work of Straughan and Walker applies to the general situation where the equation of 
state is one of the density quadratic in temperature. This is important, since they find that 
departure from the linear Boussinesq equation of state changes the perfect symmetry of 
the heart shaped  neutral curve of Pearlstein et al.,. Suresh [37, 38] has studied the triple-
diffusive convection in Walters’(Model B’) fluid in the porous medium in hydromagnetics 
and effect of rotation on triple-diffusive convection in a magnetized ferrofluid with internal 
angular momentum saturating a porous medium.  
      In view of the recent increase in the number of non iso-thermal situations wherein 
magnetic fluid are put to use in place of classical fluids, we intend to extend our work to the 
problem of thermal convection in Eringen,s micropolar fluid to the triple-diffusive 
convection in a mocropolar  ferrofluid in the presence of rotation. In the present analysis, 
for mathematically simplicity, we have not considered the effect of rotation in angular 
momentum equation. 
 
2. Mathematical formulation of the problem 
 
   Here we consider an infinite, horizontal layer of thickness d of an electrically non-
conducting incompressible thin micropolar ferromagnetic fluid heated and salted from 
below. The temperature T and solute concentrations C1 and C2 at the bottom and top 

surfaces z =  d are T0 and T1 ; C01 and C11; and C02 and C12 respectively, and a uniform 

temperature gradient ) and uniform solute gradients  )   and   

) are maintained. Both the boundaries are taken to be free and perfect conductors 

of heat. The fluid layer is assumed to occupy the layer z (-d/2,d/2) with gravity acting in 

the negative z- direction and magnetic field , H =H0ext  , where   = (0,0,1), acts outside the 
layer. The whole system is assumed to rotate with angular velocity  = (0,0,  ) along the 
vertical axis,which is taken as z-axis. 
The mathematical equations governing the motion of incompressible  micropolar 
ferrofluids (utilizing Boussinesq approximation )  the  for the above model are as follows: 

 The continuity equation for an incompressible fluid is 
 

                                                                                                                                                           (1)                                                                                                                                                                      
The momentum and internal angular momentum equations are 

 0 q = -  + g + 0 (M.   + (   ∇2q +2 (  +  0 (q  ,             (2) 

 0I   =2 (  + 0 (M  +(λ + η ) + η  ∇2
                    (3) 
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The temperature and solute concentration equations for an incompressible micropolar 

ferromagnetic fluid are 

[  0 CV, H - 0H (  ) V, H   ]  + 0T (  ) V, H   = K1∇2
T +  (  .                            (4)                                                     

[  0 CV, H - 0H (  ) V, H   ]  + 0 (  ) V, H   = K 1∇2C 1                                                                                      (5)                                                                                                               

[  0 CV, H - 0H (  ) V, H   ]     + 0  (  ) V, H   = K1 ∇2 C 2                                                   (6)                    

In terms of temperature T and the concentrations C
 1

 and C
 2
, we suppose the density of the 

mixture is given by (known as density equation of state)  

  =   0 [1-  (T- Ta
 
) + α  ( C

 1
 – Ca

1
 ) + α  ( C

 2
 – Ca

2
 ) ]                                                           (7) 

                                                                

Where  0, q,  , t, p, , , η , , I, 0, B, CV, H, M, K1, K 1, K1 ,  α , α  are the fluid 

density ,reference density, velocity, microrotation, time, pressure, shear kinematic viscosity 

coefficient, coupling viscosity coefficient or vortex viscosity, bulk spin viscosity coefficient, 

shear spin  viscosity coefficient, micropolar heat conduction  coefficient , moment of inertia 

(microinertia constant),magnetic permeability, magnetic induction, heat capacity at constant 

volume and magnetic field, magnetization, thermal conductivity, solute conductivity, thermal 

expansion coefficient and concentration expansion coefficient analogous to the thermal 

expansion coefficient respectively. Tais the average temperature given by  

 Ta = (T0+T1)/2     where T0
 
and T1 are the constant average temperatures of the lower and upper 

surfaces of the layer and Ca
1
 and Ca

2
are the average concentrations given by Ca

1
 = (C0

1
+C1

1
)/2  

and  Ca
2
 = (C0

2
+C1

2
)/2 , where C0

1 
, C1

1
 and C0

2
, C1

2
are the constant average concentrations of 

the lower and upper surfaces of the layer. The partial derivatives of M are the material properties 

that can be evaluated once the magnetic equation of state, such as (10) below is known. In 

writing equation (2), we also use the Boussinesq approximation by allowing the density to 

change only in the gravitational body force term. 

Maxwell
 ,

s equation, simplified for a non-conducting fluid with no displacement currents, 

become 
 
. B

   
= 0,                                                                                                                                     (8a)                                                                                                                                                             

 
 H

  
= 0,                                                                                                                                   (8b)                                                                                                                                                        

where the magnetic induction is given by 

B = 0 (H + M). 
We assume that the magnetization is aligned with the magnetic field, but allow a dependence on 

the magnitude of the magnetic field, temperature and salinity, so that 

M =   M( H,T,C1
 ,C

2).                                                                                                                                               (9) 

The magnetic equation of state is linearized about the magnetic field, H0, an average 

temperature,  

Ta , and average concentrations, Ca
1
and Ca

2 
to become 

M = M0 + (H- H0) - K2 (T- Ta)+K3(C
 1 – Ca

1) + K4( C
 2 - C a 

2).                                                                                (10) 

where magnetic susceptibility, pyromagnetic coefficient and salinity magnetic coefficients are 

defined by 

 χ  (  ) H0 , Ta 
  ;    K2   - (  ) H0 , Ta ;   K3   (  ) H0, ca

1  and  K4   (  ) H0 , ca 
2 respectively.      (11) 

 

Here H0 is the uniform magnetic field of the fluid layer when placed in an external magnetic 

field H =H0
ext

  , where   is a unit vector in the z direction, 

H =|H|, M = |M|and  M0 = M ( H0, Ta, Ca
1 
, Ca

2
 ).  
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   The effect of rotation contributes two terms: (a) Centrifugal force – 0 /2) grad| |
2
 and  

(b) Coriolis force 2 0 ( ). In equation (2), p = pf - 0| |
2
 is the reduced pressure, 

where pf stands for fluid pressure.  

 The basic state is assumed to be quiescent state and is given by  
q = qb = (0,0,0),  b = (0,0,0),  = ρb(z)  , p = pb (z),  T = Tb (z) = - Ta ,  C

1
 =  C1

b (z) = - 1
a 

C2
 = C2

b (z) = - 2
a ,     β =(T0 - T1)/d  ,        β  = (C1

1- C0
1)/d,      β  = (C1

2- C0
2)/d,    

Hb = [ H0  -  +  ] ,   Mb = [ M0  +  -  ]  and H0 + MO = H0
ext,     (12 ) 

where the subscript 
‘
 b 

‘
 denotes the basic state. 

 

3. The perturbation equations and normal mode analysis method 
 
We now examine the stability of the basic state, and assume that the perturbation quantities are 

small. We write 
q = qb + q  , b + ω  ,  = ρb + ρ    , p = pb (z)+ p ,  T = Tb (z) +  , C1

 =  C1
b (z) + , C2

 =  C2
b (z) + , 

 H = H b(z)+ H  and M = Mb (z) + M                                                                                                                     (13) 

where q  = (u, v, w),  ω =( ω1,  ω2, ω3 ),  ρ   ,  ,  M  are perturbation in velocity q, 

spin ω, pressure p, temperature T, concentrations  C
1
 and   C

2
 , magnetic field intensity H, and 

magnetization M, respectively. The change in density ρ  , caused mainly by the perturbation  

 in temperature and concentrations, respectively, is given by 
ρ   = - ρ0 (  ).                                                                                                                            (14) 

 Then, the linearized perturbation equations (by neglecting second-order small quantities) of the 

micropolar ferromagnetic fluid become 

ρ0  = -   + 0(M0 + H0)  + (  ∇2u + 2 1 +  0 ΩV,                                                                     (15) 

ρ0 = -   + 0(M0 + H0)  + (  ∇2v + 2 2  0 Ωu , (16)  

ρ0  = -   + 0(M0 + H0)  + (  ∇2w + 2 - 0  H3 ( )- K2 } ,                                           

           + 0 { H3 ( )+ K3 } + 0   { H3 ( )+ K4  }  - 0 ( β  + β  )            

            + 0  (β  + β  ) - 0 ( β  + β  ) + ρ0g (  - α  - α ,                                              (17) 

 0I    =2 (  + 0 (Mb  +(λ + η ) + η  ∇2                               (18) 

  +   +   = 0,                                                                                                                                                   (19) 

ρC1  - 0 T0K2 (  =K1∇2  + [ρC1β - 0T0K2
2β /( ]  - β Ω3 ,                                                (20) 

ρC1   - 0 C0
1K3 (  =K1 ∇2  + [ρC1  β  - 0C0

1K3
2β  /  )]  ,                                                    (21)   

ρC1   - 0 C0
2K2 (  =K1 ∇2 + [ρC1 β  - 0C0

2K2
2β  /  ]  ,                                               (22) 

 
where ρC1 = ρ0 CV, H + 0 K2H0;  ρC1  = ρ0 CV, H - 0 K3H0;  ρC1  = ρ0 CV, H -  0 K4H0,                                        
Equation (9) and Equation (10) yield 
 H3  + M3  = ( ) H3  – K2 ,                                                                                                                              (23) 
H3  + M3  = ( ) H3  – K3   ,                                                                                                                             (24) 
H3  + M3  = ( ) H3  – K4                                                                                                                                                                                                        (25)                                                                                                                                                                                     
Hi  + Mi  = (1+ M0/H0)Hi    i=1,2,3 .                                                                                                                        (26) 

 
where, we have assumed K2 ( Tb – Ta)<< (1+  H0;   K3 β  d << (1+  H0;  K4 β d << (1+  H0;  
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Ω  = (Ω1  Ω2 3  ) = (∇ x ω ) 

Thus the analysis is restricted to physical situation in which the magnetization induced by 

temperature and concentration variations is small compared to that induced by the external 

magnetic field. Eq. (7b) means that we can write H  =∇   (  1  -  2  -  3  ), where  1  is the 
perturbed magnetic potential and  2   3   are the perturbed magnetic potentials analogous to 

solute.  

 Eliminating u, v, p  between Eq. (15)- (17), using Eq. (18), and taking curl once on Eq. (3) and 

considering only kth component, we obtain 
 

( ρ0   - (   ) ∇2 ) =    - 0  ∇1
2 {(1+  (   1  -  2  -  3  ) – K2 }  

                                         0  ∇1
2 {(1+  (   1  -  2  -  3  ) – K3 } 

                                         +   0  ∇1
2 {(1+  (   1  -  2  -  3  ) – K4 }  

                                        - 0 ∇1
2 ( β  + β  )  + 0   ∇1

2 (β  + β  )  

                                         - 0 ∇1
2 (β  + β  ) + ρ0g ∇1

2 (  - α  – α  

                                          +2  ∇2 Ω3  0 Ω                                                                                             (27) 

 0 I    = -2  (∇2  + 2Ω3  ) +  ∇2 Ω3 .                                                                                                     (28) 

The vertical component of the vorticity equation is  

 0    = 2 ρ0 Ω  + (   ∇2                                                                                                                    (29) 

Where =   stands for the z-component of the vorticity 

From Eq. (20), we have 

(1+  + (1+   ∇2
 1  - K2  = 0,                                                                                                     (30) 

(1+    + (1+  ∇2
 2  - K3  = 0,                                                                                                    (31) 

(1+  + (1+   ∇2
 3  - K4  = 0,                                                                                                   (32) 

We analyze the normal mode technique. This can be written  
 f (  x, y, z, t) = f ( z, t ) expi( kx x + ky y),                                                                                                             (33) 

where f (z, t ) represent   W(z, t),   Z(z,t),  ,   1 (z, t),   2 (z, t),           

 3 (z, t ), Ω3 (z, t ); kx ,ky are the wave numbers along the x- and y-directions, respectively  

 and k  kx
2
 + ky

2
) is the resultant wave number. 

 

Following the normal mode analysis, the linearized perturbation dimensionless equations are 

 { -(1+N1)(D
2 – a2) }(D2 – a2)W = a  [(M1 – M4) D 1

*-(1+M1- M4)T*] 

 

                   +a [(M1 –M4 )D 2
*+(1-M1 +M4 )C1*]+a [(M1 –M4 )D 3

* 

 

                  + (1-M1 +M4 ) C2*]+2N1(D2–a2)Ω3
* -  DZ*                                                                        (34) 

 { -(1+N1) (D
2 – a2) } Z* =  DW*                                                                                                             (35) 

I   =  - 2N1 { (D2 – a2)W* + 2 Ω3
*}  + N3(D

2 – a2) Ω3
*,                                                                                 (36) 
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Pr - Pr M2  (D 1*) = (D2 – a2)  +a  (1- M2) W
* - a  N5 Ω3

*,                                                 (37) 

P  - P   M2    (D 2* ) = (D2 – a2)  +a  (1- M  2) W
* ,                                                         (38) 

P - P M2     (D 3
* ) = (D2 – a2)  +a  (1- M2  ) W* ,                                                        (39) 

 D2 1
*  - a2 M3 1

*  - D  = 0,                                                                                                                           (40) 

 D2 2*  - a2 M3 2*  - D  = 0,                                                                                                                           (41) 

D2 3
*  - a2 M3 3

*  - D  = 0,                                                                                                                          (42) 
 

Where the following non dimension quantities and non dimensionless parameters are introduced:  

 

  t  =   ,   W* =   ,   1
* =  1,    2

* =   2,      3
* =   3,    

  R1 = ,  S1 = = ,  S2 =  ,  T* =     , 

   ,   a = k d,  z  =  ,    D =  ,     Pr =   ,        =  ,              

   =   , TA =  ( )2  ,     M1    =   ,     M1     =   , M1   =   , 

M2 =   M2  = ,  M2  =    ,   M3 =   ,    M4 =   ,  

 M4  =   , M4  =   , M5 =     , N1 =   ,    

N3 =  , N5 = , I’ =  , and Ω3*=  . 

 
 
 
 
4. Exact solution for free boundaries 

 

 Here the simplest boundary conditions chosen, namely free-free, no- spin, isothermal with 

infinite magnetic susceptibility  in the perturbed field keep the problem analytically tractable 

and serve the purpose of providing a qualitative insight in to the problem. The case of two free 

boundaries is of little physical interest, but it is mathematically important because one can derive 

an exact solution, whose properties guide our analysis. Thus the exact solution of Eqs. (34)- (42) 

subject to the boundary conditions are 

W* = D2W = T* =  =  = Ω3* = D 1* = D 2* = D 3* =0   at z =    ,                                                (43)    

is written in the form 

W* = A1 cos  ,   T* = B1 cos  , D  1* = C1 cos , Ω3* =D1 cos ,   

 D  2* = E1 cos ,   1 * = (  ) sin ,  2 * = (  )  = = F1 cos  

= = G1 cos ,   D  3* = H1 cos  ,  3* = (  )                                                   (44) 

Where A1, B1, C1, D1, E1, F1, G1, and H1 are constants and  is the growth rate, in, general, a 

complex constant.  Substituting eq. (49) in equations. (40)- (47) and dropping asterisks for 

convenience, we get following equations: 
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 {  + (1+N1)(
2+ a2)} (  2 + a2) A1 + a  [(M1 – M4) C1 -(1+ M1- M4) B1]+a [(M1  – M4  ) E1   

           +(1-M1 +M4 ) F1]+a  [(M1 –M4 ) H1 +(1-M1 +M4 ) G1] - 2N1(
 2+a2) D1 

          + A1  = 0,                                                                                                             (45)                                  

- 2N1 (
2 +a2) A1 + I N1 + N3 (

 2+ a2)} D1 = 0,                                                                                          (46) 

 (1- M2) a  A1   - (
 2+ a2 + Pr  B1 + (Pr M2  C1 - a  N5 D1 = 0,                                                           (47) 

 (1- M2  ) a   A1   - (
 2+ a2 +  F1 + (P  M2  E1   = 0,                                                                    (48) 

 (1- M2 ) a   A1   - (
 2+ a2 +  G1 + (P  M2  H1   =0,                                                                  (49) 

   B1
 + 2 + a2 M3) C1 = 0,                                                                                                                                (50) 

 2 F1
 + 2 + a2 M3) E1 = 0,                                                                                                                                (51) 

 2G1
 + 2+ a2 M3) H1 = 0.                                                                                                                                (52) 

For existence of non-trivial solutions of the above equations, the determinant of the 
coefficients of A1, B1, C1, D1, E1, F1, G1, and H1 in equations (45) – (52) must vanish. This 

determinant on simplification yields 

 

iT5 + T4  – iT3  –T2  + iT1  +T0=0.                                                                                                   (53) 
Here 

        T5 = b    I1,  

       T4 =   b [    ) I1 + { (1 +  )b I1 + 4  +  }    +   ], 

       T3 =  b3  [    ) (1 +  ) +  +  ] I1  + b2 [ (  )      

               +  {(1 +  )  +  } I1] + b [   ] +    

              { (1 +  )  + -  }  + [-    (1- ) (x   

               +  (1-  M2  ) (x  + { +  - }  ( x )( x )]I1,  

      T2 = b4 [(  + )(1 +  )I1 + b3 [   4  + )  +   (1 +  ) I1] 

              + b2 [     +b[  (1- M2  )( x - (1-  )  } I1  

               + -  (1- M2 ) -1)} (x )( x )  +   (2 )  

              [    

              + -           

              + (1- M2  )  {  + I1} (x ) . 

      T1   =           b
4    

              +b2[{(1- M2  )I1 -(1- M2 )I1 } (x )+{2 (  +  ) - (1- M2) } ]       

             + b [ (  +   +  ) {   

             --(1- M2 )  }  +(   +  )  

              { (1- M2  )  -(1-  )  +  ) ]. 

      T0 =     b
3[ (2  + b2{ 

] +  [(1- M2  )   

          – (1- M2 )  } - (1- M2)   ]} .                (54)                        
    where  

 R1 =   , =     S1 =   , S2 =   , x =  ,I1 =
 ‘

  i  =  , =  N3 , =  N5, b = 1+x, 

  = (1+xM3),   = P  (1+x M3), = [1+xM3 + xM3 M1 (1- M5)],  = Pr [(1- M2) + xM3 ], 

  = [1+x M3 + x M3 M1 (  -1)],   = P ( 1 – M2  + x M3 ),  =[1+x M3+ x M3 M1 ( -1)],  

 = (1 – M2  + x M3), = Pr (1- M2  ).  
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 5. Results and discussion   
 
5.1 The case of stationary convection 

 

 When the instability sets in as stationary convection in the case M2  0,   M2  0, the marginal 

state will be characterized by = 0 [14], then the Rayleigh number R1 is given by  

 

  R1=    

                      
 

which expresses the modified Rayleigh number R1 as a function of dimension less wave number 

x, buoyancy magnetization parameter M1, the non-buoyancy magnetization parameter M3 , solute 

gradient parameters S1 and S2, ratio of the salinity effect on magnetic field to pyromagnetic 

coefficient M5, coupling parameter N1( coupling between vorticity and spin effects), spin 

diffusion parameter N3 and micropolar  heat conduction parameter N5 (coupling between spin 

and heat fluxes). The parameters N1 and N3  measure the micropolar viscous effect and 

micropolar diffusion effect, respectively.  

 The classical results in respect of Newtonian fluids can be obtained as the limiting case of 

present study. Setting N1 = 0 and S1 = 0, and keeping N3  arbitrary in equation (55), we get 

R1                                                                                                                                        (56) 

which is the expression for the Rayleigh number of ferromagnetic fluids (Finlayson [15]). 

Setting M3 = 0 in equation (56), we get  

R1  ,                                                                                                                                                 (57)  

the classical Rayleigh Bénard result [14], for the Newtonian fluid case. 

Before we investigate the effects of various parameters, we first make some comments on the 

parameters N1, N3  and N5  arising due to suspended particles. Assuming the Clausius- Duhem 

inequality, Eringen [31] presented certain thermodynamic restrictions which lead to non-

negativeness of N1, N3  and N5 . It is obvious that couple stress comes into play at small values 

of N3 . This supports the condition that 0  N1   1 and that N3 is small positive real number. 

The parameter N5  has to finite because the increasing of concentration has to be practically stop 

somewhere and hence it has to positive, finite real number. The range of the values for the other 

parameters is as in classical ferroconvection problem involving Newtonian ferromagnetic fluid 

[28-30]. M1 M1 is the effect of magnetization due to salinity. This is allowed to vary 0.1 to 

0.5 taking values less than the magnetization parameter M3. M5 represents the ratio of the salinity 

effects on the magnetic field to pyromagnetic coefficient. This is varied between 0.1 to 0.5. The 

salinity Rayleigh numbers S1 and S2 varied from 0 to 500.  

    To investigate the effect of solute gradients, non-buoyancy magnetization coefficient, coupling 

parameter, spin parameter, and micropolar heat conduction parameter, we examine the behavior 

of   analytically. Equation (55) gives 

 

 =                                                                                                                
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which is positive if  
,                                                                                                                                                    (58)  

 

which shows that the rotation has a stabilizing effect when condition (58) holds. In the absence 

of micropolar viscous effect (  the rotation always has a stabilizing effect on the system. 

 =    ,                                                                                                        (59) 

 

 =   ,                                                                                                        (60) 

 This shows that,for a stationary convection,the stable solute gradients have stabilizing effect, if  

 .                                                                                                                        (61) 

In the absence of micropolar viscous effect (coupling parameter   ), stable solute gradients 

always have stabilizing effect, on the system. Equation (55) also yields 

 

= , (62)                   

Which is negative, if 

 ,    and   .                                                             (63) 

This shows that the non-buoyancy magnetization has a destabilizing effect when conditions (63) 

hold. In the absence of micropolar viscous effect ( = 0) and the effect on magnetization due to 

salinity ( = 0 and = 0), the non-buoyancy magnetization always has a destabilizing effect 

on the system. 

It follows from equation (55) that 

 

 =           (64)                   

which is positive if  
 1  and                                                                                                                                               (65) 

This shows that coupling parameter always has a stabilizing effect when condition (65) hold. In 

the absence of rotation = 0), (65) yield that  is always positive, implying thereby the 

stabilizing effect of coupling parameter. Thus , the stabilizing behavior of coupling parameter is 

virtually unaffected by magnetization parameters but it is significantly affected by micropolar 

heat conduction  and by Taylor .  

Equation (55) gives number  

,                                                                                              (66)                                                                                             

which is negative if  . 

This shows that the spin diffusion has a stabilizing effect when condition (66) holds. 

Equation (55) also gives 

 = ,       (67)             

which is always positive. 
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This shows that the micropoalr heat conduction always has a stabilizing effect.  

For sufficiently large values of M1 [15], we obtain the results for the magnetic mechanism 

 

Rm = R1 M1  

    =    ,   (68) 

where Rm is the magnetic thermal Rayleigh number.  

As a function of x, Rm given by equation (70) attains its maximum when 
P6x

6 +P5x
5+P4x

4 +P3x
3+ P2x

2 +P1x+ P0 =0.                                                                                                               (69) 

The coefficients P0, P1, P2,  P3, P4,  P5, P6 being quite lengthy , have not been written here and are 

evaluated numerical calculation. 

The values of critical wave number for the onset of instability are determined numerically using 

Newtonian Raphson method by the condition   = 0. With x1 determined as a solution of 

equation (69), equation (68) will give the required critical magnetic thermal Rayleigh number Nc 

which depend upon M3, S1, S2 and micropolar parameters N1, N
’
3 and N5

’ 
.  

 
5.2 Principle of exchange of stabilities  
Here we examine the possibility of oscillatory modes, if any, on stability problem due to the 

presence of micropolar parameters and solute gradients. Equating the imaginary parts of equation 

(53), we obtain 
  [{b    I1}  - { b

4
 [(  + )(1 +  )I1 + b

3
 [   4  + )  +   (1 +  ) I1] 

        + b
2
 [     +b[  (1- M2  )( x - (1-  )  } I1  

        + -  (1- M2 ) -1)} (x )( x )  +   (2 )  

        [    

        + -           

        + (1- M2  )  {  + I1} (x )} +{ b
4

   

        +b
2
[{(1- M2  )I1 -(1- M2 )I1 } (x )+{2 (  +  ) - (1- M2) } ]       

       + b [ (  +   +  ) {   

       --(1- M2 )  }  +(   +  )  

        { (1- M2  )  -(1-  )  +  ) } = 0,                                         (70)     
                                                      

It is evident from equation (70) that  may be either zero or non-zero, meaning that the modes 

may be either oscillatory or oscillatory. In the absence of micropolar viscous effect (N1=0), 

microinertia (I1= 0 ) and solute gradients (S1=0, S2 =0    ), we obtain the 

result as 

 [ +  ) = 0.                                                                                                                                                        (71) 
Here the quantity inside the bracket is positive definite because the typical values of M2 are 

 +10
- 6

 [15].Hence 

   =0,                                                                                                                                        (72) 

 which implies that the oscillatory modes are not allowed and the principle of exchange of 

stabilities is satisfied for micropolar ferromagnetic fluid heated from below, in the absence of 

micropolar viscous effect, microinertia and solute gradients. Thus from equation (71), we 

conclude that the oscillatory modes are introduced due to the presence of the micropolar viscous 

effect, microinertia and solute gradient, which are non-existent in their absence. Thus, it is 
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important to note that the Taylor number  , gives significant  contribution in developing the 

oscillatory modes in the stability analysis.  

 

 

 

5.2 The case of overstability 

 

The present section is devoted to find the possibility that the observed instability may really be 

overstability. Since we wish to determine the Rayleigh number for the onset of instability 

through state of pure oscillations, it is suffices to find conditions for which (53) will admit of 

solutions with  real.  

Equating real and imaginary parts of (53) and eliminating R1 between them, we obtain 

A3c1
3
 +A2c1

2
 +A1c1 +A0 =0,                                                                                                        (73) 

Where, c1 = , Since  is real for overstability, the three values of c1( =  ) are positive. The 

product of roots of equation (73) is  , where  

A3= – b I1 { + (1 + ) ] (1- ) + (2N1  )  },                                                                       (74) 

A0  ={ b3 (2 ) – b2(1- M2)   }{b
4

 +b2[{(1- M2  )I1 -(1- M2 )I1 

} (x ]+ b{ [(  +   + ) ] 

         --(1- M2 )  }  +(   +  )  

       {(1- M2  ) ]} –b
2{[  ] 

      +[{(1- M2  )     – (1- M2 )   } ]} 

      {b
2
[2  (  +  ) - (1-M2) ]   – b (1-  )  +  ) ]}.                  (75) 

                                                                                      

The coefficients A2 and A1 being quite lengthy and not needed in the discussion of overstability , 

has not been written here.  

Since  is real for overstability, the three values of c1( =  ) are positive. The product of roots 

of equation (73) is   , and if this is to be negative, then A3 and A0 are of the same sign. Now, 

the product is negative if  

  (1- )  4 , (1- )  ,    I1 ,  N1  ,  and      

 (1+   ),   (1+   ),  

i.e. if     ,   ,     N1 ,   ( 1+  ) 

 and   ( 1+  )+  ,  (1+  ) and  ( 1+  )+  , 

which implies that 

  max  {  , },    K1 < K1
’ [ ] and  K1 < K1

’’ 

[ ],   ,  

However   (1+   ) and  (1+  )  are already satisfied in above condition 

because the typical values of  are + 10
—6

 [15].  
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Thus, for    max  {   ,  },        , 

K1 < K1
’
 [ ]  and  K1 < K1

’’
 [ ], 

 

overstability cannot occur and the principle of the exchange of stabilities is valid. Hence the 

above conditions are the sufficient conditions for the non existence of overstability, the violation 

of which does not necessarily imply the occurrence of overstability. Rotation contributes two 

more conditions i.e. 

   , 

for the non-existence of overstability. In rotating non-magnetic fluid and in the absence of 

microrotation, above condition reduces to  , which is in good agreement with the result 

obtained earlier [14]. 

 

5. Conclusions 
 
    In this paper, the effect of rotation on triple –diffusive convection in a micropolar ferrofluid 
layer heated and soluted from below subjected to a transverse uniform magnetic field has been 
investigated. The behavior of various parameters like rotation parameter,solute gradients, non-
buoyancy magnetization, coupling parameter, spin diffusive parameter and micropolar heat 
conduction on the onset of convection has been analyzed analytically and numerically. The 
results show that for the state of stationary convection, the non-buoyancy magnetization, spin 
diffusive parameter have destabilizing effect under certain condition(s), whereas the rotation, 
coupling parameter and solute gradients have a stabilizing effect under certain condition(s). 
However, the micropolar heat conduction always has a stabilizing effect. The principle of 
exchange of stabilities is found to hold true for the micropolar ferrofluid heated from below in 
the absence of micropolar viscous effect, microinertia, rotation and solute gradient. Thus 
oscillatory modes are introduced due to the presence of the micropolar viscous effect, 
microinertia, rotation and solute gradients, which were non-existent in their absence. In 
addition the presence of rotation, solute gradients, coupling between vorticity and spin effect 
(micropolar viscous effect) and microinertia may bring overstability in the system. Finally, we 
conclude that the rotation and  micropolar parameters have a profound influence on triple- 
diffusive convection in a micropolar ferrofluid layer heated and soluted from below.The 
micropolar rotating ferrofluid stabilities do deserve a fresh look as related microgravity 
environment applications.   
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