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Abstract - This project aims to transform vast amounts of unstructured data such as text, speech, and multimedia into meaningful
conversational intelligence using advanced Large Language Models (LLMs), specifically GPT and LLaMA. In today’s digital
environment, a large portion of data exists in unstructured formats, making it difficult for traditional AI systems to extract contextual
meaning and accurately interpret human intent. To address this limitation, the project employs a structured pipeline involving data
integration and preprocessing, contextual embedding generation, and knowledge graph construction, enabling the conversion of complex
unstructured inputs into structured and actionable representations. The developed system integrates conversational Al orchestration to
generate context-aware and adaptive dialogue responses, supporting scalable applications in customer service automation, medical
information retrieval, and enterprise systems. By combining the generative strength of GPT with the computational efficiency and domain
adaptability of LLaMA, the proposed approach enhances decision-making, improves communication, and delivers personalized user
experiences. This study highlights the potential of large language models to unlock the hidden value of unstructured data and advance
intelligent, human-centric conversational systems.
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1 INTRODUCTION:

In recent years, machine learning (ML) and deep learning (DL) technologies have had a major impact across industries by offering
advanced solutions to real-world problems, particularly in areas such as natural language processing (NLP), image recognition, and
predictive analytics. As powerful models like BERT, GPT-2, and LLaMA are increasingly used to handle complex tasks across
different domains, evaluating their performance has become a critical challenge. This is especially true for multi-class classification
problems, where datasets are often imbalanced. In such cases, traditional evaluation metrics like accuracy may fail to accurately
represent a model’s true performance, making more thoughtful evaluation approaches necessary.Evaluating multi-class
classification models plays an important role in understanding how well a model generalises across different categories. When class
distributions are uneven, relying only on overall accuracy can lead to misleading conclusions. For this reason, metrics such as
precision, recall, and F1-score are widely used to provide a more balanced assessment of performance. This study focuses on
enhancing the evaluation of multi-class classifiers through confusion matrix analysis, which offers detailed, class-level insights. By
analysing precision, recall, and F1-score for each class separately, the study provides a clearer picture of how models such as BERT,
GPT-2, and LLaMA perform in practical, real-world settings.Furthermore, the importance of personalization cannot be overlooked.
Modern users expect conversational systems to recognize their preferences, communication style, and past interactions.They want
Al systems to remember what has already been discussed and to build upon that information rather than repeating generic answers.
Context-aware intelligence enables such personalization by linking current queries with previous messages and adapting the
system’s responses accordingly. This kind of dynamic interaction is what makes conversational Al feel natural and human-like, and
it forms a key focus area of this research

1.1 MOTIVATION

The primary motivation of this work arises from the limitations of accuracy-centric evaluation in transformer-based conversational
systems. In imbalanced multi-class settings, accuracy fails to reflect class-wise behavior and does not capture the quality of
predictions for underrepresented classes. This limitation is particularly problematic in conversational Al, where minority classes
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may correspond to high-impact intents such as error handling, escalation requests, or safety-related queries. An evaluation
framework that overlooks such classes can lead to suboptimal model selection and unreliable system behavior in real-world
deployments.Confusion matrices provide a structured representation of classification outcomes, enabling the computation of class-
wise precision, recall, and F1-scores. Metrics derived from confusion matrices, particularly macro-averaged F1-score, assign equal
importance to all classes and are therefore more suitable for imbalanced datasets. However, many comparative studies of
transformer models either omit confusion-matrix—based analysis or restrict evaluation to a limited set of models. This gap motivates
the need for a unified, confusion-matrix—driven evaluation framework that enables a fair and interpretable comparison of multiple
transformer architectures within the same experimental setting.

1.2 RESEARCH GAP

Existing literature extensively documents the effectiveness of transformer models for NLP and conversational tasks. However,
several critical gaps remain. First, most studies focus on single-model performance or compare a small subset of transformer
architectures, making it difficult to draw general conclusions about relative model behavior. Second, evaluation is often conducted
using accuracy or task-specific metrics that do not adequately address class imbalance. Third, experimental setups vary widely
across studies, limiting reproducibility and fairness in comparison. There is a lack of comprehensive studies that evaluate multiple
transformer models under identical conditions using confusion-matrix—based metrics tailored for imbalanced conversational
datasets.

1.3 CONTRIBUTIONS OF THIS PAPER
To address the aforementioned gaps, this paper makes the following contributions:

A unified evaluation framework based on confusion-matrix—derived metrics for assessing transformer models in multi-
class conversational NLP tasks.

A comprehensive comparative analysis of GPT, BERT, XLNet, Mistral, and LLaMA models under identical training
and evaluation conditions to ensure fairness and reproducibility.

An in-depth performance analysis highlighting the limitations of accuracy-centric evaluation and demonstrating the
effectiveness of macro, micro, and weighted F1-scores in revealing minority-class behavior.

Practical insights for model selection in real-world context-aware conversational systems operating under imbalanced
data conditions.
2. RELATED WORK

Research on context-aware conversational intelligence has evolved significantly with the advancement of deep learning techniques,
particularly transformer-based architectures. This section reviews prior work across four major dimensions: (i) transformer models
for conversational and text classification tasks, (ii) large language models for contextual understanding, (iii) evaluation practices in
multi-class NLP systems, and (iv) limitations of accuracy-centric evaluation. The review highlights the gaps that motivate the
proposed confusion-matrix—driven comparative framework.

2.1 TRANSFORMER ARCHITECTURES FOR CONVERSATIONAL AND TEXT CLASSIFICATION

The transformer architecture, introduced through the self-attention mechanism, fundamentally changed the landscape of natural
language processing by enabling efficient modeling of long-range dependencies without sequential recurrence. Early transformer-
based models demonstrated strong performance on sequence-to-sequence tasks, paving the way for large-scale pre-trained language
models.BERT introduced bidirectional contextual encoding, allowing representations to incorporate both left and right context
simultaneously. This characteristic proved especially effective for discriminative tasks such as intent classification and
conversational response ranking. Several studies report that BERT-based models outperform traditional recurrent neural networks
and convolutional architectures in multi-class text classification tasks due to their deep contextual understanding.In contrast, GPT
models follow an autoregressive paradigm, focusing on next-token prediction. While GPT architectures excel in generative
conversational settings, multiple studies indicate that they may underperform in classification-oriented tasks compared to encoder-
based models. This distinction becomes critical when conversational intelligence systems must not only generate responses but also
correctly classify user intent or context.XLNet was proposed to overcome limitations of both autoregressive and autoencoding
models by leveraging permutation-based language modeling. Prior research suggests that XL Net achieves competitive performance
in text classification while maintaining strong contextual representations. However, comparative evaluations across multiple
transformer families under identical conditions remain limited.

2.2 LARGE LANGUAGE MODELS & CONTEXT-AWARE CONVERSATIONAL INTELLIGENCE

Recent years have witnessed the emergence of large language models (LLMs) such as LLaMA and Mistral, which emphasize
parameter efficiency, scalability, and improved generalization. These models are increasingly adopted in conversational Al systems
due to their ability to handle long-context inputs and diverse linguistic patterns.LLaMA, in particular, demonstrates strong
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performance despite using fewer parameters compared to earlier large-scale models. Studies show that LLaMA-based systems can
achieve competitive results in conversational understanding tasks while maintaining reduced computational overhead. Mistral
further emphasizes architectural efficiency, making it suitable for deployment in resource-constrained environments.Despite these
advances, existing literature primarily evaluates LLMs in generative tasks such as dialogue generation and summarization. Fewer
studies focus on their performance in multi-class conversational classification, especially under class imbalance. Moreover, direct
comparisons between encoder-based models (e.g., BERT) and decoder-based or hybrid models (e.g., GPT, LLaMA) are often
conducted under differing experimental setups, limiting interpretability.

2.3 EVALUATION PRACTICES IN MULTI-CLASS NLP SYSTEMS

Evaluation plays a critical role in determining the suitability of transformer models for real-world conversational systems.
Traditional metrics such as accuracy and loss remain widely used due to their simplicity and interpretability. However, in multi-
class and imbalanced datasets, accuracy often provides an overly optimistic view of model performance. Several studies advocate
the use of precision, recall, and F1-score to capture class-wise behavior. Macro-averaged F1-score, in particular, treats all classes
equally and is considered more appropriate for imbalanced settings. Micro-averaged metrics, while useful for overall performance
estimation, tend to favor majority classes. Weighted Fl-score offers a compromise by incorporating class frequency into the
evaluation.Despite these recommendations, many transformer comparison studies either omit confusion matrix analysis entirely or
report only aggregated metrics without visual or class-wise interpretation. As a result, critical information regarding minority-class
performance is often overlooked, which can be detrimental in conversational Al systems where rare intents may carry high
importance.

2.4 LIMITATIONS OF ACCURACY-CENTRIC EVALUATION

Accuracy-centric evaluation remains a dominant practice in NLP research, particularly in benchmark-driven studies. However,
multiple works highlight that accuracy fails to account for false positives and false negatives at the class level. In conversational
intelligence systems, such errors can lead to misinterpretation of user intent, degraded user experience, or even safety risks.
Confusion matrices provide a comprehensive view of classification outcomes by explicitly representing correct and incorrect
predictions across classes. They serve as the foundation for computing precision, recall, and F1-score and enable qualitative analysis
of model behavior. Nonetheless, few studies integrate confusion-matrix—based evaluation into large-scale transformer
comparisons.Furthermore, prior comparative analyses often evaluate models on different datasets, preprocessing pipelines, or
hyperparameter configurations. Such variability undermines fairness and reproducibility, making it difficult to draw meaningful
conclusions about relative model performance.

2.5 SUMMARY AND IDENTIFIED RESEARCH GAP

From the reviewed literature, three key gaps are identified. First, there is a lack of comprehensive comparative studies evaluating
multiple transformer architectures for context-aware conversational intelligence under identical experimental conditions. Second,
evaluation practices frequently rely on accuracy or insufficiently analyze class-wise performance in imbalanced datasets. Third,
large language models are rarely evaluated alongside traditional encoder-based transformers using confusion-matrix—derived
metrics. This paper addresses these gaps by proposing a unified experimental framework that evaluates GPT, BERT, XLNet,
Mistral, and LLaMA models using confusion-matrix—driven metrics. The subsequent sections introduce the system architecture and
data flow (Figure 1 and Figure 2) and present detailed experimental results supported by confusion matrices and comparative
performance graphs (Figures 3-6).

3. SYSTEM ARCHITECTURE AND DATA FLOW

This section presents the overall architecture and data processing pipeline of the proposed context-aware conversational intelligence
system. The architecture is designed to ensure modularity, reproducibility, and fairness in evaluating multiple transformer-based
models under identical experimental conditions. By maintaining a uniform pipeline for all models, the system ensures that observed
performance differences arise from model characteristics rather than implementation bias.

3.1 OVERALL SYSTEM ARCHITECTURE

The proposed system follows a structured pipeline beginning with unstructured text ingestion and concluding with
performance analysis and reporting. The architecture is intentionally model-agnostic, allowing different transformer models to be
integrated and evaluated without altering the preprocessing or evaluation stages.
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Figure 1. Architecture of the Context-Aware Conversational Intelligence System

- i

Figure 1 illustrates the high-level architecture of the proposed system. Raw unstructured text data collected from benchmark datasets
is first passed to a preprocessing module, where noise removal, normalization, and tokenization are performed. The processed data
is then forwarded to the model layer, which consists of multiple transformer-based architectures, including GPT, BERT, XLNet,
Mistral, and LLaMA. Each model is fine-tuned independently using the same training configuration to ensure experimental fairness.
Following model inference, predicted class labels are passed to the evaluation module. This module constructs confusion matrices
for each model and computes class-wise and aggregated performance metrics such as precision, recall, macro-F1, micro-F1, and
weighted F1. Finally, the reporting layer visualizes results through confusion matrices and comparative performance graphs, which
are later analyzed in the Results section. This architectural separation of preprocessing, modeling, and evaluation ensures scalability
and reproducibility while enabling transparent comparison across transformer models.

3.2 DATA PROCESSING AND EVALUATION FLOW
While the system architecture provides a static overview, the data processing and evaluation flow describes how data dynamically
moves through the system during experimentation.

v
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Figure 2. Data processing and evaluation flow
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Figure 2 presents the step-by-step data flow used in the proposed framework. The process begins with dataset ingestion, followed
by preprocessing steps such as stop-word removal, lemmatization, and token encoding. The cleaned dataset is then divided into
training, validation, and test subsets using a fixed split ratio to maintain consistency across experiments.During training, each
transformer model is fine-tuned on the training subset while hyperparameters are validated on the validation subset. After training
convergence, the test subset is used to generate predictions. These predictions are compared against ground-truth labels to construct
confusion matrices. From these matrices, performance metrics are derived and stored for further analysis.This structured flow
ensures that all models are evaluated under identical conditions, supporting fair comparison and reproducibility. The explicit
separation between training and evaluation stages also facilitates deeper analysis of classification behavior, particularly in
imbalanced multi-class settings.

3.3 DESIGN RATIONALE

The architectural and data flow design choices are motivated by the need for interpretability and evaluation robustness. Instead of
optimizing the pipeline for a single transformer model, the framework prioritizes consistency across models. This design choice is
critical for confusion-matrix—driven evaluation, as even minor preprocessing or training differences can significantly influence
class-wise performance metrics.

By deferring detailed performance interpretation to the Results section, this section establishes the foundation required to understand
subsequent confusion matrices and comparative graphs (Figures 3—6).
4. METHODOLOGY

This section describes the datasets, preprocessing techniques, transformer models, and training strategy adopted for evaluating
context-aware conversational intelligence. The methodology is designed to ensure fair comparison, reproducibility, and robust
evaluation across all transformer models considered in this study.

4.1 DATA DESCRIPTION

To evaluate the performance of transformer-based models in a multi-class conversational setting, benchmark text classification
datasets were employed. These datasets contain unstructured textual samples categorized into multiple classes, reflecting realistic
conversational intent distributions where class imbalance is commonly observed.

Table 1. Dataset description

Dataset Task Number of Classes | Total Samples Class Distribution
AG News | Text Classification 4 1,20,000 Moderately Imbalanced
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The selected dataset is widely used in NLP research and provides a standardized benchmark for evaluating classification
performance. Its moderate class imbalance makes it suitable for studying the limitations of accuracy-based evaluation and the
effectiveness of confusion-matrix—derived metrics.

4.2 DATA PREPROCESSING

Prior to model training, all textual data undergoes a uniform preprocessing pipeline to eliminate noise and standardize input
representations. This step is critical for ensuring that performance differences across models are attributable to architectural
characteristics rather than preprocessing bias.

The preprocessing steps include:

* Removal of irrelevant symbols and punctuation

* Conversion of text to lowercase

» Tokenization using model-specific tokenizers

* Padding and truncation to a fixed sequence length

* Encoding text into numerical token representations

Stop-word removal and lemmatization are applied where appropriate to reduce vocabulary sparsity while preserving semantic

meaning. The dataset is then split into training, validation, and test subsets using a fixed ratio to ensure consistent evaluation across
all models.

4.3 TRANSFORMER MODEL SELECTION

» Five transformer-based architectures are selected for comparative evaluation: GPT, BERT, XLNet, Mistral, and LLaMA. These
models represent diverse design philosophies, including encoder-only, decoder-only, and hybrid architectures.

* BERT employs bidirectional self-attention, enabling comprehensive contextual understanding and strong performance in
discriminative tasks.

* GPT follows an autoregressive decoding strategy, excelling in generative tasks but presenting challenges in multi-class
classification.

* XLNet combines autoregressive modeling with permutation-based training to capture bidirectional context.

* Mistral emphasizes architectural efficiency and reduced computational complexity.

* LLaMA focuses on parameter efficiency and scalability while maintaining competitive performance.

All models are fine-tuned using identical preprocessing pipelines and training protocols to maintain fairness in comparison.

4.4 TRAINING STRATEGY

To ensure reproducibility and consistency, all transformer models are fine-tuned using the same training configuration.
Hyperparameters such as learning rate, batch size, and number of epochs are selected based on commonly accepted best practices
in transformer fine-tuning.

Training is conducted on the training subset, while the validation subset is used to monitor convergence and prevent overfitting.
Early stopping is applied where necessary to avoid performance degradation. After training completion, the test subset is used
exclusively for final evaluation to prevent data leakage.This unified training strategy ensures that observed performance differences
arise from model architecture rather than experimental variability.

5. EVALUATION METRICS

Accurate evaluation of context-aware conversational intelligence systems requires metrics that capture both overall performance
and class-wise behaviour. In multi-class and imbalanced datasets, commonly used metrics such as overall accuracy often provide
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misleading conclusions by disproportionately favouring majority classes. To address this limitation, this study adopts a confusion-
matrix—driven evaluation framework that emphasises class-sensitive performance analysis.

5.1 CONFUSION MATRIX

A confusion matrix is a tabular representation that summarises the prediction results of a classification model by comparing
predicted class labels with ground-truth labels. For a multi-class classification problem, the confusion matrix provides a
comprehensive view of correct predictions and misclassifications across all classes.Each element of the confusion matrix represents
the number of instances where a particular class was predicted as another class. The diagonal elements indicate correct
classifications, while off-diagonal elements represent misclassification errors. This structure enables direct analysis of class-wise
prediction behaviour, which is particularly important in conversational datasets where minority classes may correspond to critical
user intents.

5.2 PRECISION AND RECALL
Precision and recall are fundamental metrics derived from the confusion matrix and are defined as follows:
.. TP
Precision = ———
TP + FP
TP
Recall = ————
TP + FN

Precision measures the proportion of correct positive predictions among all predicted positives, reflecting the reliability of the
model’s predictions. Recall measures the proportion of actual positives correctly identified, reflecting the model’s ability to capture
all relevant instances of a class. In conversational systems, high recall for minority classes is often critical to avoid missing important
intents.

5.3 F1-SCORE
The F1-score provides a harmonic mean of precision and recall and balances the trade-off between these two metrics. It is defined
as:

Precision x Recall

Fl- =2 X
seore Precision + Recall

The F1-score is particularly useful when class distributions are uneven, as it penalizes models that achieve high precision but low
recall or vice versa. In this study, F1-score serves as a primary metric for evaluating class-wise performance.

5.4 MACRO,MICRO & WEIGHTED AVERAGING
For multi-class classification tasks, precision, recall, and F1-score can be aggregated using different averaging strategies:

* Macro-averaging computes metrics independently for each class and then averages them, assigning equal importance to all
classes regardless of frequency. This averaging strategy is well-suited for imbalanced datasets and is a primary focus of this
study.

* Micro-averaging aggregates contributions of all classes to compute metrics globally, favoring majority classes due to higher
instance counts.

* Weighted averaging computes metrics for each class and weights them by class frequency, providing a compromise between
macro and micro approaches.

Among these strategies, macro-F1 is emphasized in this work because it provides a more reliable indicator of minority-class
performance, which is crucial for real-world conversational intelligence systems.

5.5 METRIC SELECTION RATIONALE

The selection of confusion-matrix—derived metrics is motivated by the need for interpretability and robustness. Accuracy alone fails
to capture the distribution of errors across classes and can obscure poor performance on underrepresented categories. By contrast,
precision, recall, and F1-score provide actionable insights into model behavior and facilitate informed model selection.
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The effectiveness of this evaluation framework is demonstrated in the Results section through confusion matrices and comparative
performance analysis (Figures 3—6).

6. EXPERIMENTAL SETUP

This section describes the experimental environment, implementation details, and evaluation protocol used to conduct the
comparative analysis of transformer-based models. The experimental setup is designed to ensure fairness, reproducibility, and
consistency across all evaluated models. All experiments are performed under identical conditions so that observed performance
differences can be attributed solely to model characteristics.

6.1 IMPLEMENTATION FRAMEWORK

All transformer models are implemented using the PyTorch deep learning framework and the Hugging Face Transformers library.
These tools provide standardized implementations of state-of-the-art transformer architectures and support reproducible fine-tuning
across diverse NLP tasks.Model-specific tokenizers are employed to encode textual input while maintaining consistent
preprocessing logic across models. Pre-trained weights are used as initialization, followed by task-specific fine-tuning on the
selected dataset.

6.2 TRAINING CONFIGURATION

To ensure a fair comparison, all models are trained using the same training configuration wherever applicable. Hyperparameters
are selected based on widely accepted best practices for transformer fine-tuning.

The key training settings include:

* Fixed learning rate across models

* Identical batch size for all experiments

» Same number of training epochs

* Cross-entropy loss for multi-class classification

* Adam-based optimization strategy

Early stopping is applied based on validation performance to prevent overfitting. Random seeds are fixed across all experiments to

ensure reproducibility of results.

6.3 EVALUATION PROTOCOL

After training convergence, each model is evaluated exclusively on the test subset to avoid data leakage. Predictions generated by
each model are compared against ground-truth labels to construct confusion matrices.These confusion matrices form the basis for
computing precision, recall, macro-F1, micro-F1, and weighted F1 metrics. The evaluation protocol ensures that all reported metrics
are derived from the same test data under identical conditions.

The confusion matrices and metric comparisons generated during this phase are visualized and analyzed in the Results section
using:

A. Model-wise confusion matrices (Figures 3-5)

B. Comparative performance graphs highlighting macro-F1 scores (Figure 6)

6.4 REPRODUCIBILITY AND FAIRNESS

Reproducibility is a critical requirement for experimental NLP research. To ensure reproducible outcomes, all preprocessing steps,
training configurations, and evaluation protocols are standardized and documented. No model-specific tuning or task-specific
heuristics are applied, thereby maintaining fairness across experiments.This controlled setup enables a transparent comparison of
transformer architectures and supports meaningful interpretation of the resulting confusion matrices and performance graphs.
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7. RESULTS AND ANALYSIS

This section presents the experimental results obtained from evaluating transformer-based models using confusion-matrix—driven
metrics. The results emphasize class-wise behavior and comparative performance, which are often hidden when accuracy alone

1s considered.

7.1 CONFUSION MATRIX ANALYSIS
Figure 3. Confusion Matrix a€“ BERT
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Figure 3 illustrates the confusion matrix obtained for the BERT model on the multi-class dataset. The strong diagonal dominance
indicates a high number of correct predictions across all classes. BERT demonstrates superior recall for both majority and minority
classes due to its bidirectional contextual representations. Misclassifications are primarily observed between semantically similar

categories, suggesting dataset overlap rather than model limitations.

Figure 4. Confusion Matrix — GPT
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Analysis text:

Figure 4 shows the confusion matrix for the GPT model. Compared to BERT, GPT exhibits increased off-diagonal values,
particularly for minority classes. Although GPT captures global semantic coherence effectively, its autoregressive nature limits its
discriminative performance in multi-class classification tasks. This result highlights why accuracy alone can be misleading, as
GPT achieves competitive overall accuracy while underperforming on less frequent classes.

Figure 5. Confusion Matrix — LLaMA
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Figure 5 presents the confusion matrix for LLaMA. The model demonstrates a more balanced distribution of predictions across
classes compared to GPT, while maintaining competitive performance close to BERT. LLaMA effectively handles minority
classes, indicating that parameter-efficient large language models can provide strong classification performance without excessive
computational overhead.

7.2 COMPARATIVE PERFORMANCE ANALYSIS
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Figure 6. Comparative Macro-F1 Performance
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Figure 6 compares the macro-F1 scores of all evaluated transformer models. BERT achieves the highest macro-F1 score, followed
closely by LLaMA and XLNet. GPT and Mistral exhibit lower macro-F1 values due to reduced minority-class performance.
These results confirm that macro-F1 provides a more reliable measure of model effectiveness in imbalanced multi-class

conversational datasets than accuracy alone.

Table 2. Model-wise Performance Comparison

Model Accuracy (%) Macro-F1 (%) Weighted-F1 (%)
BERT 91.2 88.5 90.7
GPT 89.4 84.1 88.3
XLNet 90.1 86.9 89.6
Mistral 88.7 83.8 87.9
LLaMA 90.5 87.6 89.9

This table provides a consolidated numerical comparison and supports the visual trends observed in Figure 6.

8. DISCUSSION

This section interprets the experimental results and explains the observed performance differences among the evaluated transformer
models. The discussion focuses on model architecture characteristics, class imbalance behavior, and practical implications for

context-aware conversational intelligence systems.

1JERTV15IS020144

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Page 11



Published by : International Journal of Engineering Research & Technology (IJERT)
https://lwww.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 02, February - 2026

The results demonstrate that BERT consistently outperforms other models in terms of macro-F1 score, indicating superior handling
of minority classes. This performance can be attributed to BERT’s bidirectional encoder architecture, which enables richer
contextual representations for discriminative classification tasks. By jointly modeling left and right context, BERT effectively
captures subtle semantic differences between classes, reducing misclassification in overlapping categories.In contrast, GPT exhibits
weaker macro-F1 performance, despite achieving competitive accuracy. This behavior highlights the limitations of autoregressive
models in multi-class classification settings. GPT’s training objective prioritizes next-token prediction rather than explicit class
separation, which leads to reduced recall for underrepresented classes. These findings confirm that accuracy-centric evaluation is
insufficient for assessing conversational systems operating under imbalanced data conditions.LLaMA demonstrates a strong balance
between performance and efficiency, achieving macro-F1 scores close to BERT while maintaining lower computational complexity.
This result suggests that parameter-efficient large language models can serve as viable alternatives for real-world conversational
systems, particularly when resource constraints are present. XLNet achieves moderate performance improvements over GPT,
benefiting from its permutation-based training strategy, while Mistral shows competitive efficiency but lower minority-class
recall.Overall, the discussion reinforces the importance of selecting evaluation metrics aligned with deployment requirements. For
conversational intelligence systems where rare intents are critical, models optimized for macro-F1 performance are more suitable
than those optimized solely for accuracy.

9. CHALLENGES AND LIMITATIONS

Despite the comprehensive evaluation framework, several challenges and limitations remain. First, transformer-based models
require substantial computational resources for fine-tuning and inference, which may limit their deployment in resource-constrained
environments. Second, the evaluation is conducted on benchmark datasets that, while widely used, may not fully capture the
complexity of real-world conversational interactions.

Additionally, the study focuses primarily on quantitative evaluation metrics derived from confusion matrices. Human-centered
evaluation, such as user satisfaction and response appropriateness, is not considered and represents an important area for future
research. Finally, the results may vary across domains, and domain-specific fine-tuning could further influence model behavior.

10. ETHICAL CONSIDERATIONS

Ethical considerations are critical in the development and deployment of conversational Al systems. Transformer-based models
may inherit biases present in training data, leading to unfair or discriminatory behavior. Ensuring fairness across classes and user
groups is essential, particularly in applications involving sensitive information or decision-making.Data privacy is another key
concern, as conversational systems often process personal or confidential user data. Proper data anonymization, secure storage, and
compliance with data protection regulations are necessary to ensure responsible deployment. Transparency in model behavior and
evaluation practices also contributes to ethical Al development by enabling accountability and informed decision-making.

11. CONCLUSION & FUTURE WORK

This paper presents a comprehensive comparative evaluation of transformer-based models for context-aware conversational
intelligence in imbalanced multi-class settings. By analysing GPT, BERT, XLNet, Mistral and LLaMA within a unified
experimental framework, the study demonstrates that accuracy alone isn’t enough for evaluating conversational systems on real-
world datasets with uneven class distributions.A confusion matrix-driven evaluation strategy was used to calculate precision, recall
and F1-based metrics, particularly focusing on the macro-F1 score. The results showed BERT consistently outperformed the others
in macro-F1 performance due to its bidirectional contextual representation, which effectively handles minority classes. LLaMA
offered a strong balance between performance and computational efficiency, making it a practical choice for real-world applications.
In contrast, autoregressive models like GPT achieved competitive accuracy but reduced recall for minority classes, highlighting the
limitations of accuracy-centric evaluation.The findings confirm that model selection for conversational intelligence systems should
prioritise class-wise performance metrics that align with application requirements, especially when rare intents are crucial. The
proposed evaluation framework provides practical guidance for selecting transformer models based on robust and interpretable
performance indicators rather than just aggregate accuracy.Future work could extend this study by incorporating domain-specific
fine-tuning, long-context transformer architectures and explainable Al techniques to improve interpretability. Integrating human-
centred evaluation and real-world conversational datasets would further strengthen the applicability of the proposed framework.
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