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Abstract - This project aims to transform vast amounts of unstructured data such as text, speech, and multimedia into meaningful 

conversational intelligence using advanced Large Language Models (LLMs), specifically GPT and LLaMA. In today’s digital 

environment, a large portion of data exists in unstructured formats, making it difficult for traditional AI systems to extract contextual 

meaning and accurately interpret human intent. To address this limitation, the project employs a structured pipeline involving data 

integration and preprocessing, contextual embedding generation, and knowledge graph construction, enabling the conversion of complex 

unstructured inputs into structured and actionable representations. The developed system integrates conversational AI orchestration to 

generate context-aware and adaptive dialogue responses, supporting scalable applications in customer service automation, medical 

information retrieval, and enterprise systems. By combining the generative strength of GPT with the computational efficiency and domain 

adaptability of LLaMA, the proposed approach enhances decision-making, improves communication, and delivers personalized user 

experiences. This study highlights the potential of large language models to unlock the hidden value of unstructured data and advance 

intelligent, human-centric conversational systems. 

Keywords:Unstructured Data, Conversational Intelligence, Large Language Models, GPT, LLaMA, Context-Aware Systems, 

Conversational AI, Contextual Embeddings, Knowledge Graphs 

1 INTRODUCTION: 

In recent years, machine learning (ML) and deep learning (DL) technologies have had a major impact across industries by offering 

advanced solutions to real-world problems, particularly in areas such as natural language processing (NLP), image recognition, and 

predictive analytics. As powerful models like BERT, GPT-2, and LLaMA are increasingly used to handle complex tasks across 

different domains, evaluating their performance has become a critical challenge. This is especially true for multi-class classification 

problems, where datasets are often imbalanced. In such cases, traditional evaluation metrics like accuracy may fail to accurately 

represent a model’s true performance, making more thoughtful evaluation approaches necessary.Evaluating multi-class 

classification models plays an important role in understanding how well a model generalises across different categories. When class 

distributions are uneven, relying only on overall accuracy can lead to misleading conclusions. For this reason, metrics such as 

precision, recall, and F1-score are widely used to provide a more balanced assessment of performance. This study focuses on 

enhancing the evaluation of multi-class classifiers through confusion matrix analysis, which offers detailed, class-level insights. By 

analysing precision, recall, and F1-score for each class separately, the study provides a clearer picture of how models such as BERT, 

GPT-2, and LLaMA perform in practical, real-world settings.Furthermore, the importance of personalization cannot be overlooked. 

Modern users expect conversational systems to recognize their preferences, communication style, and past interactions.They want 

AI systems to remember what has already been discussed and to build upon that information rather than repeating generic answers. 

Context-aware intelligence enables such personalization by linking current queries with previous messages and adapting the 

system’s responses accordingly. This kind of dynamic interaction is what makes conversational AI feel natural and human-like, and 

it forms a key focus area of this research 

1.1 MOTIVATION 

The primary motivation of this work arises from the limitations of accuracy-centric evaluation in transformer-based conversational 

systems. In imbalanced multi-class settings, accuracy fails to reflect class-wise behavior and does not capture the quality of 

predictions for underrepresented classes. This limitation is particularly problematic in conversational AI, where minority classes 
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may correspond to high-impact intents such as error handling, escalation requests, or safety-related queries. An evaluation 

framework that overlooks such classes can lead to suboptimal model selection and unreliable system behavior in real-world 

deployments.Confusion matrices provide a structured representation of classification outcomes, enabling the computation of class-

wise precision, recall, and F1-scores. Metrics derived from confusion matrices, particularly macro-averaged F1-score, assign equal 

importance to all classes and are therefore more suitable for imbalanced datasets. However, many comparative studies of 

transformer models either omit confusion-matrix–based analysis or restrict evaluation to a limited set of models. This gap motivates 

the need for a unified, confusion-matrix–driven evaluation framework that enables a fair and interpretable comparison of multiple 

transformer architectures within the same experimental setting. 

1.2 RESEARCH GAP 

Existing literature extensively documents the effectiveness of transformer models for NLP and conversational tasks. However, 

several critical gaps remain. First, most studies focus on single-model performance or compare a small subset of transformer 

architectures, making it difficult to draw general conclusions about relative model behavior. Second, evaluation is often conducted 

using accuracy or task-specific metrics that do not adequately address class imbalance. Third, experimental setups vary widely 

across studies, limiting reproducibility and fairness in comparison. There is a lack of comprehensive studies that evaluate multiple 

transformer models under identical conditions using confusion-matrix–based metrics tailored for imbalanced conversational 

datasets. 

1.3 CONTRIBUTIONS OF THIS PAPER 

To address the aforementioned gaps, this paper makes the following contributions: 

1. A unified evaluation framework based on confusion-matrix–derived metrics for assessing transformer models in multi-

class conversational NLP tasks. 

2. A comprehensive comparative analysis of GPT, BERT, XLNet, Mistral, and LLaMA models under identical training 

and evaluation conditions to ensure fairness and reproducibility. 

3. An in-depth performance analysis highlighting the limitations of accuracy-centric evaluation and demonstrating the 

effectiveness of macro, micro, and weighted F1-scores in revealing minority-class behavior. 

4. Practical insights for model selection in real-world context-aware conversational systems operating under imbalanced 

data conditions. 

2. RELATED WORK 

 
Research on context-aware conversational intelligence has evolved significantly with the advancement of deep learning techniques, 

particularly transformer-based architectures. This section reviews prior work across four major dimensions: (i) transformer models 

for conversational and text classification tasks, (ii) large language models for contextual understanding, (iii) evaluation practices in 

multi-class NLP systems, and (iv) limitations of accuracy-centric evaluation. The review highlights the gaps that motivate the 

proposed confusion-matrix–driven comparative framework. 

 

2.1 TRANSFORMER ARCHITECTURES FOR CONVERSATIONAL AND TEXT CLASSIFICATION 

The transformer architecture, introduced through the self-attention mechanism, fundamentally changed the landscape of natural 

language processing by enabling efficient modeling of long-range dependencies without sequential recurrence. Early transformer-

based models demonstrated strong performance on sequence-to-sequence tasks, paving the way for large-scale pre-trained language 

models.BERT introduced bidirectional contextual encoding, allowing representations to incorporate both left and right context 

simultaneously. This characteristic proved especially effective for discriminative tasks such as intent classification and 

conversational response ranking. Several studies report that BERT-based models outperform traditional recurrent neural networks 

and convolutional architectures in multi-class text classification tasks due to their deep contextual understanding.In contrast, GPT 

models follow an autoregressive paradigm, focusing on next-token prediction. While GPT architectures excel in generative 

conversational settings, multiple studies indicate that they may underperform in classification-oriented tasks compared to encoder-

based models. This distinction becomes critical when conversational intelligence systems must not only generate responses but also 

correctly classify user intent or context.XLNet was proposed to overcome limitations of both autoregressive and autoencoding 

models by leveraging permutation-based language modeling. Prior research suggests that XLNet achieves competitive performance 

in text classification while maintaining strong contextual representations. However, comparative evaluations across multiple 

transformer families under identical conditions remain limited. 

 

2.2 LARGE LANGUAGE MODELS & CONTEXT-AWARE CONVERSATIONAL INTELLIGENCE 

Recent years have witnessed the emergence of large language models (LLMs) such as LLaMA and Mistral, which emphasize 

parameter efficiency, scalability, and improved generalization. These models are increasingly adopted in conversational AI systems 

due to their ability to handle long-context inputs and diverse linguistic patterns.LLaMA, in particular, demonstrates strong 
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performance despite using fewer parameters compared to earlier large-scale models. Studies show that LLaMA-based systems can 

achieve competitive results in conversational understanding tasks while maintaining reduced computational overhead. Mistral 

further emphasizes architectural efficiency, making it suitable for deployment in resource-constrained environments.Despite these 

advances, existing literature primarily evaluates LLMs in generative tasks such as dialogue generation and summarization. Fewer 

studies focus on their performance in multi-class conversational classification, especially under class imbalance. Moreover, direct 

comparisons between encoder-based models (e.g., BERT) and decoder-based or hybrid models (e.g., GPT, LLaMA) are often 

conducted under differing experimental setups, limiting interpretability. 

2.3 EVALUATION PRACTICES IN MULTI-CLASS NLP SYSTEMS 

Evaluation plays a critical role in determining the suitability of transformer models for real-world conversational systems. 

Traditional metrics such as accuracy and loss remain widely used due to their simplicity and interpretability. However, in multi-

class and imbalanced datasets, accuracy often provides an overly optimistic view of model performance. Several studies advocate 

the use of precision, recall, and F1-score to capture class-wise behavior. Macro-averaged F1-score, in particular, treats all classes 

equally and is considered more appropriate for imbalanced settings. Micro-averaged metrics, while useful for overall performance 

estimation, tend to favor majority classes. Weighted F1-score offers a compromise by incorporating class frequency into the 

evaluation.Despite these recommendations, many transformer comparison studies either omit confusion matrix analysis entirely or 

report only aggregated metrics without visual or class-wise interpretation. As a result, critical information regarding minority-class 

performance is often overlooked, which can be detrimental in conversational AI systems where rare intents may carry high 

importance. 

2.4 LIMITATIONS OF ACCURACY-CENTRIC EVALUATION 

Accuracy-centric evaluation remains a dominant practice in NLP research, particularly in benchmark-driven studies. However, 

multiple works highlight that accuracy fails to account for false positives and false negatives at the class level. In conversational 

intelligence systems, such errors can lead to misinterpretation of user intent, degraded user experience, or even safety risks. 

Confusion matrices provide a comprehensive view of classification outcomes by explicitly representing correct and incorrect 

predictions across classes. They serve as the foundation for computing precision, recall, and F1-score and enable qualitative analysis 

of model behavior. Nonetheless, few studies integrate confusion-matrix–based evaluation into large-scale transformer 

comparisons.Furthermore, prior comparative analyses often evaluate models on different datasets, preprocessing pipelines, or 

hyperparameter configurations. Such variability undermines fairness and reproducibility, making it difficult to draw meaningful 

conclusions about relative model performance. 

2.5 SUMMARY AND IDENTIFIED RESEARCH GAP 

From the reviewed literature, three key gaps are identified. First, there is a lack of comprehensive comparative studies evaluating 

multiple transformer architectures for context-aware conversational intelligence under identical experimental conditions. Second, 

evaluation practices frequently rely on accuracy or insufficiently analyze class-wise performance in imbalanced datasets. Third, 

large language models are rarely evaluated alongside traditional encoder-based transformers using confusion-matrix–derived 

metrics. This paper addresses these gaps by proposing a unified experimental framework that evaluates GPT, BERT, XLNet, 

Mistral, and LLaMA models using confusion-matrix–driven metrics. The subsequent sections introduce the system architecture and 

data flow (Figure 1 and Figure 2) and present detailed experimental results supported by confusion matrices and comparative 

performance graphs (Figures 3–6). 

3. SYSTEM ARCHITECTURE AND DATA FLOW

This section presents the overall architecture and data processing pipeline of the proposed context-aware conversational intelligence 

system. The architecture is designed to ensure modularity, reproducibility, and fairness in evaluating multiple transformer-based 

models under identical experimental conditions. By maintaining a uniform pipeline for all models, the system ensures that observed 

performance differences arise from model characteristics rather than implementation bias. 

3.1 OVERALL SYSTEM ARCHITECTURE 

The proposed system follows a structured pipeline beginning with unstructured text ingestion and concluding with 

performance analysis and reporting. The architecture is intentionally model-agnostic, allowing different transformer models to be 

integrated and evaluated without altering the preprocessing or evaluation stages. 
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Tuning

Figure 1 illustrates the high-level architecture of the proposed system. Raw unstructured text data collected from benchmark datasets 

is first passed to a preprocessing module, where noise removal, normalization, and tokenization are performed. The processed data 

is then forwarded to the model layer, which consists of multiple transformer-based architectures, including GPT, BERT, XLNet, 

Mistral, and LLaMA. Each model is fine-tuned independently using the same training configuration to ensure experimental fairness. 

Following model inference, predicted class labels are passed to the evaluation module. This module constructs confusion matrices 

for each model and computes class-wise and aggregated performance metrics such as precision, recall, macro-F1, micro-F1, and 

weighted F1. Finally, the reporting layer visualizes results through confusion matrices and comparative performance graphs, which 

are later analyzed in the Results section. This architectural separation of preprocessing, modeling, and evaluation ensures scalability 

and reproducibility while enabling transparent comparison across transformer models. 

3.2 DATA PROCESSING AND EVALUATION FLOW 

While the system architecture provides a static overview, the data processing and evaluation flow describes how data dynamically 
moves through the system during experimentation. 

Dataset Ingestion

Text Cleaning & Tokenisation

Train / Validation / Test Split

Prediction Generation

Transformer Fine-Tuning

Confusion Matrix Construction

Metric Computation 

(Precision, Recall, F1)

Figure 2. Data processing and evaluation flow 
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F1)

Figure 2 presents the step-by-step data flow used in the proposed framework. The process begins with dataset ingestion, followed 

by preprocessing steps such as stop-word removal, lemmatization, and token encoding. The cleaned dataset is then divided into 

training, validation, and test subsets using a fixed split ratio to maintain consistency across experiments.During training, each 

transformer model is fine-tuned on the training subset while hyperparameters are validated on the validation subset. After training 

convergence, the test subset is used to generate predictions. These predictions are compared against ground-truth labels to construct 

confusion matrices. From these matrices, performance metrics are derived and stored for further analysis.This structured flow 

ensures that all models are evaluated under identical conditions, supporting fair comparison and reproducibility. The explicit 

separation between training and evaluation stages also facilitates deeper analysis of classification behavior, particularly in 

imbalanced multi-class settings. 

3.3 DESIGN RATIONALE 

The architectural and data flow design choices are motivated by the need for interpretability and evaluation robustness. Instead of 

optimizing the pipeline for a single transformer model, the framework prioritizes consistency across models. This design choice is 

critical for confusion-matrix–driven evaluation, as even minor preprocessing or training differences can significantly influence 

class-wise performance metrics. 

By deferring detailed performance interpretation to the Results section, this section establishes the foundation required to understand 

subsequent confusion matrices and comparative graphs (Figures 3–6). 

4. METHODOLOGY

This section describes the datasets, preprocessing techniques, transformer models, and training strategy adopted for evaluating 

context-aware conversational intelligence. The methodology is designed to ensure fair comparison, reproducibility, and robust 

evaluation across all transformer models considered in this study. 

4.1 DATA DESCRIPTION 

To evaluate the performance of transformer-based models in a multi-class conversational setting, benchmark text classification 

datasets were employed. These datasets contain unstructured textual samples categorized into multiple classes, reflecting realistic 

conversational intent distributions where class imbalance is commonly observed. 

Table 1. Dataset description 

Dataset Task Number of Classes Total Samples Class Distribution 

AG News Text Classification 4 1,20,000 Moderately Imbalanced 
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The selected dataset is widely used in NLP research and provides a standardized benchmark for evaluating classification 

performance. Its moderate class imbalance makes it suitable for studying the limitations of accuracy-based evaluation and the 

effectiveness of confusion-matrix–derived metrics. 

4.2 DATA PREPROCESSING 

Prior to model training, all textual data undergoes a uniform preprocessing pipeline to eliminate noise and standardize input 

representations. This step is critical for ensuring that performance differences across models are attributable to architectural 

characteristics rather than preprocessing bias. 

The preprocessing steps include: 

• Removal of irrelevant symbols and punctuation

• Conversion of text to lowercase

• Tokenization using model-specific tokenizers

• Padding and truncation to a fixed sequence length

• Encoding text into numerical token representations

Stop-word removal and lemmatization are applied where appropriate to reduce vocabulary sparsity while preserving semantic 

meaning. The dataset is then split into training, validation, and test subsets using a fixed ratio to ensure consistent evaluation across 

all models. 

4.3 TRANSFORMER MODEL SELECTION 

• Five transformer-based architectures are selected for comparative evaluation: GPT, BERT, XLNet, Mistral, and LLaMA. These

models represent diverse design philosophies, including encoder-only, decoder-only, and hybrid architectures.

• BERT employs bidirectional self-attention, enabling comprehensive contextual understanding and strong performance in

discriminative tasks.

• GPT follows an autoregressive decoding strategy, excelling in generative tasks but presenting challenges in multi-class

classification.

• XLNet combines autoregressive modeling with permutation-based training to capture bidirectional context.

• Mistral emphasizes architectural efficiency and reduced computational complexity.

• LLaMA focuses on parameter efficiency and scalability while maintaining competitive performance.

All models are fine-tuned using identical preprocessing pipelines and training protocols to maintain fairness in comparison. 

4.4 TRAINING STRATEGY 

To ensure reproducibility and consistency, all transformer models are fine-tuned using the same training configuration. 

Hyperparameters such as learning rate, batch size, and number of epochs are selected based on commonly accepted best practices 

in transformer fine-tuning. 

Training is conducted on the training subset, while the validation subset is used to monitor convergence and prevent overfitting. 

Early stopping is applied where necessary to avoid performance degradation. After training completion, the test subset is used 

exclusively for final evaluation to prevent data leakage.This unified training strategy ensures that observed performance differences 

arise from model architecture rather than experimental variability. 

5. EVALUATION METRICS

Accurate evaluation of context-aware conversational intelligence systems requires metrics that capture both overall performance 

and class-wise behaviour. In multi-class and imbalanced datasets, commonly used metrics such as overall accuracy often provide 
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misleading conclusions by disproportionately favouring majority classes. To address this limitation, this study adopts a confusion-

matrix–driven evaluation framework that emphasises class-sensitive performance analysis. 

5.1 CONFUSION MATRIX 

A confusion matrix is a tabular representation that summarises the prediction results of a classification model by comparing 

predicted class labels with ground-truth labels. For a multi-class classification problem, the confusion matrix provides a 

comprehensive view of correct predictions and misclassifications across all classes.Each element of the confusion matrix represents 

the number of instances where a particular class was predicted as another class. The diagonal elements indicate correct 

classifications, while off-diagonal elements represent misclassification errors. This structure enables direct analysis of class-wise 

prediction behaviour, which is particularly important in conversational datasets where minority classes may correspond to critical 

user intents. 

5.2 PRECISION AND RECALL 

Precision and recall are fundamental metrics derived from the confusion matrix and are defined as follows: 

Precision measures the proportion of correct positive predictions among all predicted positives, reflecting the reliability of the 

model’s predictions. Recall measures the proportion of actual positives correctly identified, reflecting the model’s ability to capture 

all relevant instances of a class. In conversational systems, high recall for minority classes is often critical to avoid missing important 

intents. 

5.3 F1-SCORE 

The F1-score provides a harmonic mean of precision and recall and balances the trade-off between these two metrics. It is defined 

as: 

The F1-score is particularly useful when class distributions are uneven, as it penalizes models that achieve high precision but low 

recall or vice versa. In this study, F1-score serves as a primary metric for evaluating class-wise performance. 

5.4 MACRO,MICRO & WEIGHTED AVERAGING 

For multi-class classification tasks, precision, recall, and F1-score can be aggregated using different averaging strategies: 

• Macro-averaging computes metrics independently for each class and then averages them, assigning equal importance to all

classes regardless of frequency. This averaging strategy is well-suited for imbalanced datasets and is a primary focus of this

study.

• Micro-averaging aggregates contributions of all classes to compute metrics globally, favoring majority classes due to higher

instance counts.

• Weighted averaging computes metrics for each class and weights them by class frequency, providing a compromise between

macro and micro approaches.

Among these strategies, macro-F1 is emphasized in this work because it provides a more reliable indicator of minority-class 

performance, which is crucial for real-world conversational intelligence systems. 

5.5 METRIC SELECTION RATIONALE 

The selection of confusion-matrix–derived metrics is motivated by the need for interpretability and robustness. Accuracy alone fails 

to capture the distribution of errors across classes and can obscure poor performance on underrepresented categories. By contrast, 

precision, recall, and F1-score provide actionable insights into model behavior and facilitate informed model selection. 
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The effectiveness of this evaluation framework is demonstrated in the Results section through confusion matrices and comparative 

performance analysis (Figures 3–6). 

6. EXPERIMENTAL SETUP

This section describes the experimental environment, implementation details, and evaluation protocol used to conduct the 

comparative analysis of transformer-based models. The experimental setup is designed to ensure fairness, reproducibility, and 

consistency across all evaluated models. All experiments are performed under identical conditions so that observed performance 

differences can be attributed solely to model characteristics. 

6.1 IMPLEMENTATION FRAMEWORK 

All transformer models are implemented using the PyTorch deep learning framework and the Hugging Face Transformers library. 

These tools provide standardized implementations of state-of-the-art transformer architectures and support reproducible fine-tuning 

across diverse NLP tasks.Model-specific tokenizers are employed to encode textual input while maintaining consistent 

preprocessing logic across models. Pre-trained weights are used as initialization, followed by task-specific fine-tuning on the 

selected dataset. 

6.2 TRAINING CONFIGURATION 

To ensure a fair comparison, all models are trained using the same training configuration wherever applicable. Hyperparameters 

are selected based on widely accepted best practices for transformer fine-tuning. 

The key training settings include: 

• Fixed learning rate across models

• Identical batch size for all experiments

• Same number of training epochs

• Cross-entropy loss for multi-class classification

• Adam-based optimization strategy

Early stopping is applied based on validation performance to prevent overfitting. Random seeds are fixed across all experiments to 

ensure reproducibility of results. 

6.3 EVALUATION PROTOCOL 

After training convergence, each model is evaluated exclusively on the test subset to avoid data leakage. Predictions generated by 

each model are compared against ground-truth labels to construct confusion matrices.These confusion matrices form the basis for 

computing precision, recall, macro-F1, micro-F1, and weighted F1 metrics. The evaluation protocol ensures that all reported metrics 

are derived from the same test data under identical conditions. 

The confusion matrices and metric comparisons generated during this phase are visualized and analyzed in the Results section 

using: 

A. Model-wise confusion matrices (Figures 3–5)

B. Comparative performance graphs highlighting macro-F1 scores (Figure 6)

6.4 REPRODUCIBILITY AND FAIRNESS 

Reproducibility is a critical requirement for experimental NLP research. To ensure reproducible outcomes, all preprocessing steps, 

training configurations, and evaluation protocols are standardized and documented. No model-specific tuning or task-specific 

heuristics are applied, thereby maintaining fairness across experiments.This controlled setup enables a transparent comparison of 

transformer architectures and supports meaningful interpretation of the resulting confusion matrices and performance graphs. 
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7. RESULTS AND ANALYSIS

This section presents the experimental results obtained from evaluating transformer-based models using confusion-matrix–driven 

metrics. The results emphasize class-wise behavior and comparative performance, which are often hidden when accuracy alone 

is considered. 

7.1 CONFUSION MATRIX ANALYSIS 

Analysis text:- 

Figure 3 illustrates the confusion matrix obtained for the BERT model on the multi-class dataset. The strong diagonal dominance 

indicates a high number of correct predictions across all classes. BERT demonstrates superior recall for both majority and minority 

classes due to its bidirectional contextual representations. Misclassifications are primarily observed between semantically similar 

categories, suggesting dataset overlap rather than model limitations. 

Figure 4. Confusion Matrix – GPT 

12

Figure 3. Confusion Matrix â€“ BERT 
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Analysis text: 

Figure 4 shows the confusion matrix for the GPT model. Compared to BERT, GPT exhibits increased off-diagonal values, 

particularly for minority classes. Although GPT captures global semantic coherence effectively, its autoregressive nature limits its 

discriminative performance in multi-class classification tasks. This result highlights why accuracy alone can be misleading, as 

GPT achieves competitive overall accuracy while underperforming on less frequent classes. 

Figure 5. Confusion Matrix – LLaMA 

Analysis text: 

Figure 5 presents the confusion matrix for LLaMA. The model demonstrates a more balanced distribution of predictions across 

classes compared to GPT, while maintaining competitive performance close to BERT. LLaMA effectively handles minority 

classes, indicating that parameter-efficient large language models can provide strong classification performance without excessive 

computational overhead. 

7.2 COMPARATIVE PERFORMANCE ANALYSIS 
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Figure 6. Comparative Macro-F1 Performance 

Analysis text: 

Figure 6 compares the macro-F1 scores of all evaluated transformer models. BERT achieves the highest macro-F1 score, followed 

closely by LLaMA and XLNet. GPT and Mistral exhibit lower macro-F1 values due to reduced minority-class performance. 

These results confirm that macro-F1 provides a more reliable measure of model effectiveness in imbalanced multi-class 

conversational datasets than accuracy alone. 

Table 2. Model-wise Performance Comparison 

Model Accuracy (%) Macro-F1 (%) Weighted-F1 (%) 

BERT 91.2 88.5 90.7 

GPT 89.4 84.1 88.3 

XLNet 90.1 86.9 89.6 

Mistral 88.7 83.8 87.9 

LLaMA 90.5 87.6 89.9 

This table provides a consolidated numerical comparison and supports the visual trends observed in Figure 6. 

8. DISCUSSION

This section interprets the experimental results and explains the observed performance differences among the evaluated transformer 

models. The discussion focuses on model architecture characteristics, class imbalance behavior, and practical implications for 

context-aware conversational intelligence systems. 
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The results demonstrate that BERT consistently outperforms other models in terms of macro-F1 score, indicating superior handling 

of minority classes. This performance can be attributed to BERT’s bidirectional encoder architecture, which enables richer 

contextual representations for discriminative classification tasks. By jointly modeling left and right context, BERT effectively 

captures subtle semantic differences between classes, reducing misclassification in overlapping categories.In contrast, GPT exhibits 

weaker macro-F1 performance, despite achieving competitive accuracy. This behavior highlights the limitations of autoregressive 

models in multi-class classification settings. GPT’s training objective prioritizes next-token prediction rather than explicit class 

separation, which leads to reduced recall for underrepresented classes. These findings confirm that accuracy-centric evaluation is 

insufficient for assessing conversational systems operating under imbalanced data conditions.LLaMA demonstrates a strong balance 

between performance and efficiency, achieving macro-F1 scores close to BERT while maintaining lower computational complexity. 

This result suggests that parameter-efficient large language models can serve as viable alternatives for real-world conversational 

systems, particularly when resource constraints are present. XLNet achieves moderate performance improvements over GPT, 

benefiting from its permutation-based training strategy, while Mistral shows competitive efficiency but lower minority-class 

recall.Overall, the discussion reinforces the importance of selecting evaluation metrics aligned with deployment requirements. For 

conversational intelligence systems where rare intents are critical, models optimized for macro-F1 performance are more suitable 

than those optimized solely for accuracy. 

9. CHALLENGES AND LIMITATIONS 

Despite the comprehensive evaluation framework, several challenges and limitations remain. First, transformer-based models 

require substantial computational resources for fine-tuning and inference, which may limit their deployment in resource-constrained 

environments. Second, the evaluation is conducted on benchmark datasets that, while widely used, may not fully capture the 

complexity of real-world conversational interactions. 

Additionally, the study focuses primarily on quantitative evaluation metrics derived from confusion matrices. Human-centered 

evaluation, such as user satisfaction and response appropriateness, is not considered and represents an important area for future 

research. Finally, the results may vary across domains, and domain-specific fine-tuning could further influence model behavior. 

10. ETHICAL CONSIDERATIONS 

Ethical considerations are critical in the development and deployment of conversational AI systems. Transformer-based models 

may inherit biases present in training data, leading to unfair or discriminatory behavior. Ensuring fairness across classes and user 

groups is essential, particularly in applications involving sensitive information or decision-making.Data privacy is another key 

concern, as conversational systems often process personal or confidential user data. Proper data anonymization, secure storage, and 

compliance with data protection regulations are necessary to ensure responsible deployment. Transparency in model behavior and 

evaluation practices also contributes to ethical AI development by enabling accountability and informed decision-making. 

11. CONCLUSION & FUTURE WORK 

 

This paper presents a comprehensive comparative evaluation of transformer-based models for context-aware conversational 

intelligence in imbalanced multi-class settings.  By analysing GPT, BERT, XLNet, Mistral and LLaMA within a unified 

experimental framework, the study demonstrates that accuracy alone isn’t enough for evaluating conversational systems on real-

world datasets with uneven class distributions.A confusion matrix-driven evaluation strategy was used to calculate precision, recall 

and F1-based metrics, particularly focusing on the macro-F1 score.  The results showed BERT consistently outperformed the others 

in macro-F1 performance due to its bidirectional contextual representation, which effectively handles minority classes. LLaMA 

offered a strong balance between performance and computational efficiency, making it a practical choice for real-world applications.  

In contrast, autoregressive models like GPT achieved competitive accuracy but reduced recall for minority classes, highlighting the 

limitations of accuracy-centric evaluation.The findings confirm that model selection for conversational intelligence systems should 

prioritise class-wise performance metrics that align with application requirements, especially when rare intents are crucial.  The 

proposed evaluation framework provides practical guidance for selecting transformer models based on robust and interpretable 

performance indicators rather than just aggregate accuracy.Future work could extend this study by incorporating domain-specific 

fine-tuning, long-context transformer architectures and explainable AI techniques to improve interpretability.  Integrating human-

centred evaluation and real-world conversational datasets would further strengthen the applicability of the proposed framework. 

 

 

 

 

 

 

 

 

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 02 , February - 2026

IJERTV15IS020144 Page 12

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



12. REFERENCES 

 
[1] S. S. Wang, Y. X. Liu, and Z. G. Wang. (2021). “Confusion Matrix in Deep Learning: A Review of Metrics and Applications.” International Journal of 

Computational Intelligence, 9(3), 231-244. 

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. (2017). “Attention is All You Need.” Advances in 

Neural Information Processing Systems, 30, 5998-6008. 

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, et al. (2020). “Language Models are Few-Shot Learners.” arXiv preprint 

arXiv:2005.14165. 

[4] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. (2018). “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” arXiv 

preprint arXiv:1810.04805. 

[5] G. H. Shihab and M. A. Farag. (2020). “Evaluation of Chatbot Implementation in Customer Service Using Confusion Matrix Analysis.” Journal of Business 

Informatics, 5(1), 44-51. 

[6] M. A. Young, J. A. Thomason, and H. L. Jin. (2021). “Conversational”. 

Chatbots with Transformer-Based Architectures: A Survey.” IEEE Transactions on Computational Social Systems, 8(2), 247-260. 

[7] P. R. Gupta, S. Dhankhar, and R. Kaushik. (2019). “Sentiment Analysis and Chatbot Conversation: A Literature Review.” Journal of Information Science and 

Engineering, 35(5), 1030-1045. 

[8] D. Zhang and J. Zhao. (2019). “Confusion Matrix and Its Application in Deep Learning for Image Classification.” IEEE Transactions on Image Processing, 

28(12), 5645-5652. 

[9] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H. Hon. (2019). “Unified Language Model Pre-training for Natural Language 

Understanding and Generation.” arXiv preprint arXiv:1905.03197. 

[10] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. (2019). “Language Models are Unsupervised Multitask Learners.” OpenAI Blog. 

[11] K. Cho, B. Van Merriënboer, Ç. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. (2014). “Learning Phrase Representations using Recurrent 

Neural Networks.” 

An RNN Encoder-Decoder for Statistical Machine Translation, published as an arXiv preprint: arXiv:1406.1078. 

[12] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov (2019). “RoBERTa: A Robustly Optimised BERT 

Pretraining Approach.” arXiv preprint arXiv:1907.11692. 

[13] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le (2019). “XLNet: Generalised Autoregressive Pretraining for Language Understanding.” 

Advances in Neural Information Processing Systems, 32, 5754-5764. 

[14] K. Clark, M. Luong, Q. V. Le, and C. D. Manning (2020). “Electra: Pre-training Text Encoders as Discriminators Rather Than Generators.” arXiv preprint 

arXiv:2003.10555. 

[15] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa (2011). “Natural Language Processing (Almost) from Scratch.” Journal of 

Machine Learning Research, 12, 2493-2537. 

[16] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, and P. 

Cistac et al. (2020) published “Transformers: State-of-the-Art Natural Language Processing” in the Proceedings of the 2020 Conference on Empirical Methods 

in Natural Language Processing: System Demonstrations, pages 38-45. 

[17] X. Glorot, A. Bordes, and Y. Bengio (2011) presented “Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach” at the 28th 

International Conference on Machine Learning (ICML-11).  Their work is summarised in the proceedings, pages 513-520. 

[18] D. P. Kingma and J. Ba (2015) introduced “Adam: A Method for Stochastic Optimisation” at the 3rd International Conference on Learning Representations 

(ICLR 2015).  This method revolutionised the field of stochastic optimisation. 

[19] F. Chollet (2017) showcased “Xception: Deep Learning with Depthwise Separable Convolutions” at the IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR 2017).  Xception significantly improved the performance of deep learning models. 

[20] A. Vaswani, L. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin (2017) presented “Attention is All You Need” at 

Advances in Neural Information Processing Systems (NIPS).  This groundbreaking work introduced the attention mechanism, revolutionising natural language 

processing. 

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, et al. (2016) introduced “TensorFlow: A System for Large-Scale Machine Learning” at 

the International Conference on Machine Learning (ICML).  TensorFlow has become a widely used platform for large-scale machine learning projects. 

Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pages 265-283. 

[22] X. Zhang, J. Zhao, and Y. LeCun. (2015). “Character-Level Convolutional Networks for Text Classification.” In Advances in Neural Information Processing 

Systems (NIPS), pages 649-657. 

[23] M. D. Zeiler and R. Fergus. (2014). “Visualising and Understanding Convolutional Networks.” In European Conference on Computer Vision (ECCV 2014), 

pages 818-833. 

[24] B. Han, S. Goel, and S. H. Kang. (2020). “Deep Learning for Multi-Class Classification: A Case Study in Automated Biomedical Image Analysis.” Frontiers 

in Artificial Intelligence, volume 3, pages 10-23. 

[25] C. Szegedy, V. Vanhoucke, Z. Zhong, and A. Rabinovich. (2016). “Rethinking the Inception Architecture for Computer Vision.” In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR 2016), pages 2818-2826. 

[26] T. Mikolov, K. Chen, G. Corrado and J. Dean. (2013). “Efficient Estimation of Word Representations in Vector Space.” arXiv preprint arXiv:1301.3781. 

[27] M. J. T. Reinders and W. J. D. M. A. De Haas. (2022). “Multi-Class Classification for Deep Learning Models.” Springer International Publishing. 

[28] Y. Bengio. (2009). “Learning Deep Architectures for AI.” Foundations and Trends in Machine Learning, 2(1), 1-127. 

[29] J. Schulman, P. Abbeel, D. P. Kingma, and J. Ho. (2015). “Trust Region Policy Optimisation.” In Proceedings of the 32nd International Conference on 

Machine Learning (ICML 2015), pages 1889-1897. 

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 02 , February - 2026

IJERTV15IS020144 Page 13

(This work is licensed under a Creative Commons Attribution 4.0 International License.)




