

Transforming Business Requirements into IT

Application Solutions & System Implementations

Rohit Parashar1,

 M. Tech,

Department of Computer Science and Engineering,

 Ganga Institute of Technology and Management,

 MD University, Haryana, India

Dr. Yashpal Singh2

 2Associate Professor,

 Department of Computer Science and Engineering,

 Ganga Institute of Technology and Management,

 MD University, Haryana, India

 Each company’s business has its own specific or unique

requirements to implement; and no one application software

system can meet and satisfy the business requirements of

organizations. Organizations have involved major of its IT

taskforce to integrate other party Vendor’s software products

or customizable commercial products into their own

requirement specific computer systems. Understanding the

business requirements bit by bit is the base for creating an

application solution. This study delivers a course roadmap for

developing system solutions that satisfy business requirements

via business requirements analysis, systemdesign&

architecture, developing &implementation, testing and

validation, and system deployment. It is not specific to any

specific system production. However, the motivations behind

this paper are the practical issues faced by the industry and

what should be done as pre-step to incorporate system

solutions.

I. INTRODUCTION

As briefed before, one of the critical challenge for any

organization is always been how to design and build

software application to meet a company’s business

requirements. Long term Factors to be considered

importantly. Factors such as - long term company goals

and vision, budget, time, resource constraints, and degree

of utilizing off-the-shelf software products to decrease both

development cost and time have increased the complexity

of building the systems.

Organizations like pharmaceutical, biotech or computer

software systems which are primarily and heavily built on

the regulatory norms and regulations, have helped

companies to enhance productivity, accuracy, reliability,

consistency, authenticity, and compliance with regulatory

agencies to such a high level that was never achieved

before. Building the system from scratch is not required. It

reduces lot of personnel’s efforts if the business

requirements are analyzed and managed effectively. There

are lots of commercial products or software solutions that

can meet some or most of your potential business needs.

For Example Software like SAS, Regulatory companies

like biotech/pharmaceutical Company are using it and

integrating their software products in the total architecture

system. Though, it is still the most prominent challenge to

meet the all business requirements from such integrated

architectures. As per the standard practice, IT Companies

create utilities and tools to streamline the business process

and requirements. Using off-the-shelf software products is

advantageous because most of these products are generally

compliant with the relevant regulatory code. The important

factor always remains the effective business requirements

analysis. Any gap or failure in identifying the problem to

be solved accurately and completely becomes root cause of

system development failures in later stages. Therefore

system development shall comply with all business

requirements. Business problems should be studied and

evaluated carefully in the context of long term strategic

planning apart from the system solution being developed

for any specific business criteria. Implementing solutions

to immediate business purposes might cause considerable

loss to the organization in the long run. This majorly

happens when the business expands so fast that it triggers

the discarding of legacy system or overhauls it.

This article is justifying the plan of software system project

management by building the clinical data analysis and

reporting system for biotech/pharmaceutical companies

from the viewpoint of system development life cycle,

which covers business requirements analysis, system

architecture, system design, implementation, testing and

validation, and system deployment, and in this order. The

development life cycle schema described in the paper is not

specific and can be referred to all scales and types of

software development extending from small utility tools to

large systems.

II. BUSINESS REQUIREMENTS ANALYSIS

Understanding the targeted business is the foundation to

implement any system solution for its business

requirements. A business requirement is what the

application needs to do for business; what it takes to

continue running the business through the IT application;

and what can be improved to application solution to run the

business better.

Requirements analysis is an amalgamation of business and

information technology. Business analysts are responsible

in both business and IT area to bridge the gap between the

different domains. The main tasks of business analysts are:-

1. Identifying key stakeholders,

2. Expertise on business process,

3. Leading and coordinating the communications needed to

manage the business needs

4. Documenting and organizing the business process and

needs,

5. Analyzing the business needs and defining the business

requirements

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

1

6. Communicating the business requirements to an entire

team for agreement.

Stakeholder Analysis

The business analysts have to understand the sources of

requirements and how to access them to produce

information and analyze business requirements. The

stakeholders being the primary source are individuals,

team, or organization with interests in or concerns about

the business. Examples of stakeholders are customers, end

users, partners, management, business policies, regulatory

agencies, and others such as business domain experts who

understand the business. Concerns are drawing interests in

parallel that are specific to the system’s development, its

operation or any other aspects that are important to

stakeholders.

The stakeholder analysis focuses at understanding the

responsibilities and needs, achieving agreement on

business problems and solutions. The stakeholder analysis

is considered as the first step at an organizational level in

strategic planning activities. An initial stakeholder can be

based and decided as per the business process. However

identifying stakeholders' interests, impact level, and

relative priority is not an easy task. The stakeholder

generally belongs to a business group. It is recommended

to identify representatives of stakeholders. The

representatives are accountable for providing the opinions

of the groups they represent.

It is important to measure and access stakeholders’

importance and influence. Only after the understanding of

stakeholders’ needs and expectations, System analysts can

manage the expectations to ensure a successful project

implementation. Failing to meet any need or expectation of

any stakeholder at a critical time of Software Development

Life Cycle may ruin a project. Analysis requires skills to

develop alliances with the stakeholders for agreement on

what the problems and the proposed solutions are. Usually

you have to compromise to reach agreement. Both internal

project entities and external interfaces should be measured.

For example - To build a statistical analysis and reporting

system for clinical trial studies - the key stakeholders will

depend upon organizational structures and corporate

culture. Typically the stakeholder group may include:

statistical programmers, biostatisticians, clinicians, medical

writers, IT groups, and regulatory bodies. The other

internal stakeholders include the management members in

the statistical programming team. Base on the business

process which is discussed in the next section, the external

stakeholders could cover the clinical database management

team, report publishing team, and other teams who may

request data analysis such as scientists. Although external,

the database management team and publishing team are

important stakeholders. Any inappropriate data

inconsistency or exotic formatted data from the database

management team could cause troubles to the statistical

programmers. Similarly disagreed analysis reports

produced by the statistical programmers would be rejected

by the publishing team.

Business Process Analysis

Understanding the business process is an important process

in the business requirements analysis. The aim of business

process analysis is to create solutions of problems to

improve the processes for effectiveness and efficiency.

Business process presents how a company delivers

products. Management hierarchy shows the responsibilities

and reporting relationships within the company on the

other hand. Compare to the static administrative

organizations, business process is dynamic and often cross

departmental lines. Thus the efforts to improve the quality

and efficiency of a business process are likely to depend on

the collaboration of stakeholders from different

departments.

The business process may include business activities and

the relationships among them such as dependencies.

Gathering the data necessary for business process analysis

requires a great deal of efforts. This is especially the case

when a cross-functional collaboration becomes necessary.

While collecting business process data people start to learn

a lot more about how their business is actually done and

begin to think about how to do it better. The data gathered

are used to create a process map or flowchart, which is a

graphic representation of the sequence of activities. The

process map may be in the form of a cross-functional

flowchart that includes relations among these activities.

The business process of clinical data management,

analysis, and reporting in the biotech/pharmaceutical

industry can be described as collecting and processing Case

Report Form (CRF) data (and other supporting data),

storing data in a database, analyzing the data, and

generating reports. The process can be illustrated as a

business model. A top level view of the business process is

shown in Figure 1.

Based on the business process of clinical data management,

analysis, and reporting, some biotech/pharmaceutical

companies organize their business management teams

under one umbrella. Multiple departments can be found

under the same management, such as database

management, biostatistics, and programming teams. The

administrative organization like this would make it easier

to reach agreement on interfaces among business models

and acceptance of business processes and requirements

across the teams. This is easy to understand because

administrative organizations should align with business

process at least at certain degree or level.

Analysis of the relationships among the business models

facilitates the system architecture and design. The CRF

data source affects both the data management system and

the database system which in turn affects the analysis

system.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

2

Collecting and Documenting Business Needs

Identifying the stakeholders and analyzing the business

process are the initial steps for understanding the business

requirements and it should be documented. Various

practices exist for requirements elicitation, gathering, and

documentation. Major techniques for collecting business

needs include

1. Interviews,

2. Brainstorming,

3. Questionnaires,

4. Prototyping,

5. Informal Use Case Analysis,

6. User stories/ Change Requests.

Discussing requirements with users, going through relevant

documents, knowledge of the stakeholders’ vision about

the long term, developing alternative approach, and

designing process diagrams serves well for your business

requirements collection. Any sample business process can

be affected by multiple business conditions. These

conditions detail the efforts to gather the requirements for

supposed business requirements and specifications.

There may be just an idea at beginning to start the business,

Data might need to be collected by asking questions such

as how well does this part of the business process operates;

what could lead to setbacks from the proposed process, is

there any redundancy that is not adding any value to the

process instead consuming the project budget; Can the

better results be achieved with less cost and with alternate

approach; are the business process or technology better

serving and meeting feasibility of business requirements?

There are two major reasons for conducting business

requirements analysis. Firstly is to increase and advance

the quality and efficiency of the business. Secondly is to

reduce the cost of accomplishing the suitable outcome. No

matter what the goal is there to achieve, the result is always

weighed against the costs of obtaining it. The businesses

requirements are constantly changing constantly with new

or advanced technologies are emerging. Sometimes it is

necessary to bring an outsider business analyst to help with

constantly changing business requirements analysis in case

that specific department has not been able to absorb the

external resources or knowledge.

In the regulated industry, business rules must be taken into

consideration during the requirements analysis. Business

rules are the specialized form of logic that expresses a

constraint about the way that a system or the people using

it behave. These rules are guided by a variety of elements

including regulatory agencies, industry standards, business

expertise, or common sense. The activities in each of the

business models should be depicted as much in detail as

possible, including the business rules. The result of

requirements elicitation is a list of requests or needs that

are described textually and graphically with given priority

relative to one another. A description of when and how the

requirements need to be addressed is recommended.

WRITING BUSINESS REQUIREMENTS DOCUMENT

A BRD or business requirements document may consist of,

but not limited to, the following:

1. Objectives of Business

2. Stakeholders

3. Organizational Processes

4. Scope of Problem or identified business

requirements

5. Scope of Improvements

6. Suggested Solutions

This document forms kind of the legal contract between the

client and the software developer in commercial software

development. The document should be well organized,

Comprehensive and rich sufficiently. The business

requirements document must be agreed to by all the

stakeholders most importantly. There is no standard about

the context and volume the document should detail. The

level of the detail requested in a requirements document

depends on the size of the software to be built, the interface

to other systems, the stage in requirements gathering, the

level of domain and the technology expertise, the cost, and

so on. The business requirements document for huge

applications or large systems is arranged in a hierarchy or

phase wise generally. It may contain sub-business

requirements, and many functional requirements and non-

functional requirements. Functional requirements illustrate

what the system should perform and non-functional

requirements describe conditions that must be satisfied.

The specification in the business requirements document

should be categorized built on priorities, long and short

term vision, budget, time taken to implement, and others.

Some functional requirements may be mandatory and

others may be optional. This stands true especially when

there are lists of requirements and only few are taken for

implementation due to budget or development time

constraint. The goal of prioritization of the requirements is

to serve the business purpose aligning with the department

and corporate goals. When business requirements are

conveyed to and agreed by the entire project team, the

stakeholders, mainly business analysts, management,

system architects may decide to calculate software alternate

approach. The major decision is generally based on build

vs. buy. The reasons for buying a software package are less

time to implement, proven reliability and performance, less

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

3

technical development staff, lower cost, and future

upgrades provided by the vendor. The reasons for in-house

development include meeting unique requirements,

meeting constraints of existing systems and technology,

minimizing changes in business procedures and policies,

and developing internal resources and capabilities.

Practical Example – Statistical Estimation: It is a common

practice that statisticians and statistical programmers write

specifications for programming; and then write programs

for generating statistical analysis results based on the

specifications. Before the results can be used for any

estimation or specification the programs must be validated

as illustrated in Figure 3.

SAS is an excellent software system for data analysis and

reporting for statistical programmers. However, the

following is a list of identified requirements that

programmers have to handle by themselves:

 Data definition table (DDT). Programmers and

statisticians should specify specifications to define

data before can be programmed using SAS.

 Program version control. Versioning the programs

becomes the best choice for tracking the changes and

preventing accidental change or loss of the programs.

Programmers write programs and modify the programs

several times during the process of SAS program

development.

 Program validation or verification. Programmers need

tools to manage the process of validating the programs

to make sure that the programs they write do what they

are supposed to do and do it correctly.

 Standard programs. Many programs that programmers

write for analyzing data for one case can be used for

another case with or without modification. It would be

a great saving of resource and risk reduction if these

programs can be standardized.

It is appropriate from the viewpoint of management to

establish a dedicated group for dealing with issues like

those listed above. These are just examples of business

needs that statistical programmers require.

Data Definition Table (DDT): The DDT is a specification

document that defines all datasets and variables to be

included in BRD or case report tabulations (CRT) and

analysis. Sometimes variable definition table (VDT) is

used as synonym. The variables in the DDT are defined

based on the type of case report form (CRF), statistical

analysis plan (SAP) and data schema. Figure 4 shows

simple process of defining data.

DDT is used as the basis for both generating and validating

CRTs and analysis data sets. Statisticians define the DDT

usually; but programmers are the owner of DDT. The

requirements for the DDT usually include data set names

and labels, and variable names, labels, types, formats, Sign

off on the algorithms and derivations and derivation

methods. Designing and architecting the DDT make a great

difference and challenging in meeting the programmers

prerequisites in terms of flexibility, accuracy, and

reusability.

Program Version Control: Program version control

supports programmers tracking program changes. The

minimum functionalities for version control need tracking

when a program is changed and what is changed thus,

preventing accidental change to the program. A more

powerful requirement should contain the program modified

before or on a specific date as the new version. It is not

required to write the own software to meet your version

control business need. Several different companies offer

adequate version control software products. A full version

of version control software allows for functionalities such

as branching, merging, and comparison in addition to the

basic functionalities.

Program Validation: Program validation is a quality control

process of clinical trial data analysis. It verifies that a

program complies with required quality control procedures

e.g. SOPs and guidelines; and it also attempts to prove that

a program produces correct results. Although there are

several ways to verify a program, one of the most

commonly used processes in the biotech/pharmaceutical

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

4

industry is double programming, which is also, called

independent programming. A validation programmer

writes his/her own statistical program independently based

on the same specifications used by the original

programmer, and compares the result with that of the

original programmer. Although this kind of validation

cannot absolutely guarantee the correctness of the

statistical program, it reduces the risk of making mistakes

to the minimum. Practically there is no other better way or

good tools to use to do it at this time. For each trial data,

programmers may write from dozens to several hundreds

of statistical programs. These programs are often modified

and validated several times before they can be finalized for

production. How do the programmers and validators track

the modifications and validations and get the most updated

summary of the validation status for a specific clinical

study during this process?

Standard Programs: There are at least two ways to write

standard programs. The simplest way is to write standard

program templates. You copy a template program and

modify it to fit your program need. This is a good practice

when your needs for different clinical trials are similar but

not exactly same and the difference varies among trials.

However a lot programs such as those required for

generating demographic or disposition tables don’t change

among trials; and they may be incorporated into your

system as true standard programs. To use a true standard

program each time you just call the program for generating

required table, listing, or graph. The advantages of using

the standard programs over using templates are that

standard programs are easier to use; and they are validated

hence saving a lot of resource writing validation programs

each time it is used. Your business needs, resource

availability, long term commitment, and other factors may

be taken into consideration for an effort to standardize your

programs.

III. SYSTEM ARCHITECTURE

To define the system means to translate stakeholder needs

into a meaningful description of the system to be built

based on business requirements. In fact a key factor in the

success of the system architecture is the extent to which it

is linked to business requirements. It is a good practice to

derive the characteristics of the architecture directly from

the high-level business requirements.

The system architecture defines the structure of a system,

which covers its software elements, their external visible

properties, and the relationships among them. This means

that architecture specifically exclude certain information

about those elements that are not related to their

interaction. Thus, architecture is an abstraction of a system

that omits details of elements that do not affect how they

use, are used by, and relate to other elements. In large

projects, the system elements are almost certainly

subdivided. Every software system has architecture

because it consists of elements and relations among them.

The behavior of each element is part of the architecture as

the behavior can be observed from the viewpoint of another

element. The behavior is what allows elements to interact

with each other. This does not mean that the exact behavior

and performance of every element must be documented in

all circumstances; but to the extent that an element’s

behavior influences how another element must be written

to interact with it or influences the acceptability of the

system as a whole. The system architecture forms the

backbone for building a successful software system.

Architecture represents a common vehicle for

communication among the system's stakeholders.

Conflicting goals and requirements are mediated during

system architecting. The system architecture must be based

on the business requirements, which is called the

requirement-driven architecture. During the system

architecture and design, the business analysts and system

designers have to investigate the pros and cons of different

interactions among the systems from a business

perspective, especially from the viewpoint of the cost and

user’s requirements. A view is a representation of a whole

system from the perspective of a related set of concerns. A

viewpoint is a specification of the conventions for

constructing and using a view; a pattern or template from

which to develop individual views. The relationship

between viewpoint and view is analogous to that of a

template and an instance of that template. Each stakeholder

of a software system such as user, project manager, coder,

analyst, tester, and so on is concerned with different

characteristics of the system that are affected by its

architecture. Each of their views provides a different

perspective and design handle on a system. The chosen set

of views together show the entire architecture and all of its

relevant properties.

The typical progression of system architecting is from

business to technology, using business requirements

analysis to properly align with all pertinent concerns from

high level overview to lower level detail. The concerns and

requirements of the stakeholders are continually referred

throughout the process. In case of improving the existing

system, each of these progressions has to be made

distinctively for the existing environment and the target

environment. The architect may choose to develop

pertinent business and technical architecture views of both

the existing system and the target system, which establishes

what elements of the current system must be carried

forward and what must be removed or replaced. The final

product of the system architecture is a system architecture

document which contains the viewpoints, relevant views,

and information that applies to more than one view to give

a description of the system. Both natural and graphical

languages are used to depict the architecture.

IV. SYSTEM DESIGN

System architecture and system design have different

focuses. Often people are confused about them; and the

two terms have been used interchangeably. System

architecture is concerned about the system’s structures

dealing with system elements, their external visible

properties, and the relationships among them omitting

details of elements known to them. Functional

requirements are partitioned during the architecture phase;

whereas the functional requirements are accomplished

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

5

during the design phase. Every property or attribute of each

element of the system is described in detail in the system

design. However system design is based on the framework

of the system architecture document.

The output of the system design is the software design

description (SDD). The SDD is a representation of a

software system created to facilitate analysis, planning,

implementation, and decision making. It is a blueprint or

model of the software system. The components are usually

classified as user interface component, problem-domain

component, task-management component, data-

management component, and others so that they can be

considered, implemented, changed, and tested. Decisions

are made about what programming language(s), tools and

libraries, database models, data structures, and major

algorithms will be used for the system solution during the

system design phase. The design description model used to

represent a software system can be expressed as a

collection of design entities; each possesses properties and

relationships. Entities can exist as a system, subsystems,

data stores, modules, programs, and processes.

Organization of the SDD into separate design views

facilitates information access. The decomposition

description view shows the partition of the system into

design entities; dependency description view reveals the

relationships among entities and system resources;

interface description view lists everything a designer,

programmer, or tester needs to know to use the design

entities that make up the system; and the detail description

view depicts the internal design details of an entity.

Again for illustration purpose, the status manager is used as

an entity. Its attributes are:

1. Identification: status manager.

2. Type: process.

3. Purpose of existence: to establish communication

channel with users; and process users’ inputs and

return results.

4. Function: serving as the processing center for the

system to be built, status manager takes inputs from

program manager, programmer, or validator; and

parses them and commands the entity messenger to

perform its clients’ requests; and then it processes the

data returned by messenger and sent the results to its

clients.

5. Subordinates: entity status manager does not have any

child entity.

6. Dependencies: entity status manager depends on entity

messenger to store information to or retrieve

information from entity validation database; it also

depends on the messenger to obtain program

information from the file system.

7. Interface: the entity interacts with program manager,

programmer, validator, and messenger. The method of

interfacing is to be determined (TCP/IP).

8. External resources: operating system and network.

9. Data and data structure: the entity mainly uses arrays

as its data structure

10. Processing: the entity uses program date, validation

program date, and most recent validation completion

date to make decision on a program validation status.

If the most recent validation completion date is

missing the status is “validation needed”; else if the

most recent validation completion date is greater or

equal to program date the status is “completed”; else if

the most recent validation completion date is less than

program date the status is “revalidation needed”. The

programs validation status for a clinical study in terms

of percentage of completion for each type of programs

such as data sets, tables, listings and graphs is

computed by number of programs completed divided

by total number of programs in the category. A

summary of overall status and detailed status for each

program is computed and sent to program manager.

11. Designing and planning integration testing at design

phase allows risks to be addressed early in the

development cycle. The output from software design

phase should ensure their testability. Integration testing

(also called module testing) addresses modules’

interfacing together in a correct, stable, and coherent

manner.

V. IMPLEMENTATION

Software implementation is governed by software

architecture and design documents ensuring meeting

business requirements. During coding and testing,

developers must validate that all requirements are satisfied

and all features are implemented. Good naming convention

makes it easier to maintain source code; and it also reduces

confusion during software development and testing. For

variable, method, class, package, database and other

naming conventions for coding, software engineers are

recommended to follow relevant coding conventions.

Forgetting initializing data is quite common in coding. The

good practice is checking input parameters for validity,

initializing variables as they declared, paying special

attention to counters and accumulators, and checking the

need for re-initialization. Unit testing is typically

conducted by the development team and specifically by the

programmer who coded the unit.

VI. TESTING AND VALIDATION

Testing is any activity aimed at evaluating an attribute or

capability of a program or system and determining that it

meets its required results. It not only carries intent of

finding defects but also explores the status of the benefits

and the risk associated with release of a software system.

Validation is a newer concept. It ensures that the system is

implemented according to the relevant requirement

documents such as business requirements, system

architecture, design, etc. Testing applies to all applications

including their components, modules, and subsystems.

Testing includes unit, integration, system, system

integration, and user acceptance testing.

Each development phase is linked to a corresponding

testing phase. The testing phases are given the same level

of management attention and commitment as the

corresponding development phases in terms of planning,

allowing any risks to be addressed early in the development

cycle. The output from the development phases can be

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

6

viewed by the testing team to ensure their testability.

Acceptance testing is considered during business and

system requirements analysis phase; system testing is

considered during system architecture; integration testing is

planned during system design; and unit testing is planned

and implemented during system implementation.

UNIT TESTING: Unit testing represents the lowest level

of testing. It is conducted to ensure that reliable program

units (or software components) are produced that meet

their requirements. Unit testing is typically conducted by

the development team and specifically by the programmer

who coded the unit. “Independent” observation of the

testing process is likely to be performed by the project

leader or by another member of the project team who will

be expected to countersign the appropriate test result record

form to confirm that the correct procedures were followed

during the testing.

INTEGRATION TESTING: The purpose of integration

testing (also called module testing) is to demonstrate that

the modules which comprise the Application Under Test

(AUT) interface and interact together in a correct, stable,

and coherent manner prior to system testing. Integration

testing is typically a black box testing conducted by the

development team and involves independent observation of

the testing process. Testing issues associated with

integration testing such as test planning and review of

testing requirements and high-level test design should be

considered during the design phase.

SYSTEM TESTING: The objective of system testing is to

establish confidence that the AUT will be accepted by its

users. System testing is conducted by the test team. System

testing should employ black box testing techniques and

will test the high level requirements of the system without

considering the implementation details of the component

modules.

SYSTEMS INTEGRATION TESTING: Systems

integration testing is to provide confidence that the AUT is

able to interoperate successfully with other specified

software systems and does not have an adverse effect on

other system in the live environment, or vice versa. It is

possible that the testing tasks performed during system

integration testing may be combined with system testing,

particularly if the AUT has little or no requirement to

interoperate with other systems. System integration testing

should deploy black box techniques.

USER ACCEPTANCE TESTING: The purpose of the user

acceptance testing is to confirm that the AUT meets its

business requirements and to provide confidence that the

system works correctly and is usable before it is formally

released to the end user. User acceptance testing is

conducted by one or more user representatives with the

assistance of the test team. User acceptance testing should

employ a black box approach and the user representative

will test the AUT by performing typical tasks that they

would perform during their normal usage.

VII. SYSTEM DEPLOYMENT

To install a system and maintain and support it, a

description of how the parts of the system fit together is a

must. It is a good practice to develop some form of

deployment model. Deployment models force you to think

about important deployment issues long before you must

deliver the actual system. When determining how to model

the deployment architecture for a system, try to consider

fundamental technical issues such as existing systems that

your system needs to integrate with, robustness of your

system, connection and interaction between your system

and existing system, middleware including the operating

system and communications approaches that your system

uses, hardware and software your users directly interact

with, approaches to monitor the system once it has been

deployed, security of your system; collect critical

information for anyone involved in development,

installation, or operation of the system; and plan and

perform training on deploying, maintaining, and supporting

the system.

The system installation information shall include the

required hardware and other constraints (e.g., minimum

memory requirements), detailed instructions for the

installer, and any additional steps that are required prior to

the operation of the system (e.g., registering the software).

The type of software to be installed and the expected level

of expertise of the installer shall be considered when

writing installation instructions. In some cases, the

installation planning shall include defining the order of

installation at several sites. It could also define one or more

configurable options that are to be handled in the

installation process.The system release manager is

responsible for packing the system for deployment, testing,

and actually deploying the system. It is not the end of the

system development after the system is deployed. Many

issues will rise when it is put in use; and they will be put

back into the software development life cycle. The

development life cycle for the system ends when the

system is obsolete and uninstalled.

VIII. CONCLUSION

The goal of system development is to meet the business

requirements. A development effort is initiated with the

identification of business requirements for a system to be

developed, whether it is a new effort or a change to all or

part of an existing application. Potential approaches shall

be based upon the business requirements and any data

pertinent to the decision to develop or acquire the system,

using resource information, budget data, the availability of

third party or existing reusable software products, and

others. This phase in the development lifecycle is the most

critical an often the most overlooked. Without adequate

attention paid to stakeholder and business needs the

subsequent steps may and will likely be inappropriately

directed.

Software project management planning requires the

collection and synthesis of a great deal of information into

coherent and organized software project management

planned information (SPMPI) based on the software life

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

7

cycle process (SLCP). This activity details the project

organization and assign responsibilities. Standards,

methodologies, and tools for management, quality,

evaluation, training, documentation, and development shall

be specified; project budget and staffing shall be allocated;

and procedures for scheduling, tracking, and reporting shall

be defined. Issues such regulatory approvals, required

certifications, user involvement, subcontracting, and

security shall be considered.

An iteration of the system development includes

requirements analysis, system architecture, design,

implementation, testing and validation, and system

deployment. The system architecture must be a

requirement-driven architecture. The system development

life cycle includes maintenance of the system. It never

stops until the system is obsolete and uninstalled.

REFERENCES

[1] ANSI/IEEE Std 1471-2000. IEEE Recommended Practice

for Architectural Description of Software-Intensive Systems

–Description. The Institute of Electrical and Electronics

Engineers, Inc.

[2] Bass, Len; Clements, Paul; &Kazman, Rick. 2003. Software

Architecture in Practice, Second Edition. Boston, MA:

Addison-Wesley.

[3] Carnegie Mellon Software Engineering Institute. How Do

You Define Software Architecture?

http://www.sei.cmu.edu/architecture/definitions.html. Last

Modified: 15 February 2006.

[4] Chang, Tony and Soloff, Dana. 2005. “A Simple Solution for

Managing the Validation of SAS® Programs That Support

Regulatory Submissions”. SAS Conference Proceedings:

SUGI30.

[5] Clements, Paul; Garlan, David; Little, Reed; Nord, Robert

and Stafford, Judith. 2003. “Documenting Software

Architectures: Views and Beyond”. Proceedings of the 25th

International Conference on Software Engineering

(ICSE.03).

[6] IEEE Std 1016-1998. IEEE Recommended Practice for

Software Design Descriptions. The Institute of Electrical and

Electronics Engineers, Inc.

[7] Smith, Larry. 2000. “Project Clarity through Stakeholder

Analysis”. CrossTalk, The Journal of Defense Software

Engineering. Vol.13 No.12 Pages 4-9.

[8] Sommerville, Ian, and Sawyer, Pete. Requirements

Engineering: A Good Practice Guide. New York: Wiley,

1998. 64.

[9] Weinberg, Gerald M. Quality Software Management, Vol. 1,
Systems Thinking. New York: Dorset House, 1992. 155.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

8

