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Abstract— This paper deals with transfer functions of agents 

in a linear multi-agent consensus system where every agent in the 

system has the same dynamics described by a common transfer 

function. Depending on network topology, the transfer function 

of an agent in a consensus system varies in a highly complicated 

way and analytic methods for specifying the orders of transfer 

functions are yet unavailable except for some special cases. This 

paper presents a table of transfer functions of agents in a 

consensus system composed of less than five agents under all 

possible network topologies. 
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I.  INTRODUCTION 

Consensus multi-agent systems composed of a number of 
identical dynamical agents have attracted much attention in 
various fields of science and engineering.  

A typical approach for changing overall behaviors of a 
consensus system is to directly control only a small number of 
agents and to let remaining uncontrolled agents follow a certain 
predefined consensus protocol. The leader-follower approach 
[1,2,3], the single agent control (SAC) [4,5,6] and the pinning 
control [7,8] share the same idea. Among those approaches, 
only the SAC is a frequency domain approach where a transfer 
function description of agents is critically important. 

One key issue of the SAC is how to choose a controlled 
agent in a given consensus system and a network topology. In 
favor of an easy controller synthesis, it is desirable to select a 
controlled agent whose transfer function order is the smallest 
among all agents in a given consensus system. Unfortunately, 
however, there is no analytic methods which can characterize 
an agent with the smallest transfer function order, except a 
special case where a consensus system has a hub agent which 
has direct connections with all other agents [9].  

Motivated by this difficulty, from numerical computations, 
this paper gives a complete description of transfer functions of 
consensus systems with less than five agents under all possible 
(connected) network topology.  

An obvious contribution of this work is to serve an easy 
reference for transfer function representation of small 
consensus systems under the SAC scheme. Additionally our 
results provide useful inspiration on interesting, but 
theoretically unsubstantiated yet, correlations between transfer 
function order and agent location in a given network. For 
instances, our numerical results suggests that agents located at 
more symmetric positions in a given network topology, have 
smaller transfer function orders. 

II. PRELIMINARY 

This section gives a short summary on the transfer function 
representation of a consensus system in [9]. 

In the SAC, every agent in a consensus system composed 
of n ∈ N identical agents is assumed to have a common linear 
time-invariant dynamics described by a SISO (single-input 
single-output) transfer function 

 𝑔𝑎(𝑠) =
𝑦𝑖(𝑠)

𝑢𝑖(𝑠)
=

𝑏(𝑠)

𝑎(𝑠)
 (1) 

where 𝑦𝑖(s) and 𝑢𝑖(s) denote the Laplace transforms of output 
and input of agent labelled i ∈ [1, n]. The polynomials b(s) 
and a(s)  are coprime and a(s)  is a monic polynomial. 
Moreover, we assume that every agent i ∈ [1, n]  follows a 
linear consensus protocol given by 

 𝑢𝑖 = ∑ (𝑦𝑘 − 𝑦𝑖)
𝑘∈𝑁𝑖

 (2) 

where 𝑁𝑖 ⊂ [1, 𝑛]  denotes the set of neighbor agents of the 
agent i ∈ [1, 𝑛]. In contrast, only one agent, call it j ∈ [1, 𝑛],  is 
to be actively controlled by an exogenous controller and thus 

has an external input 𝑢𝑗
𝑒𝑥𝑡 , i.e., 

 𝑢𝑗 = ∑ (𝑦𝑘 − 𝑦𝑗) +
𝑘∈𝑁𝑗

𝑢𝑗
𝑒𝑥𝑡  (3) 

The neighbor sets {𝑁𝑖  ; 𝑖 ∈ [1, 𝑛]} of a given network 
topology can be completely described with a Laplacian matrix 
of a mathematical graph corresponding to the network 
topology;  

 𝐿 = (𝑙𝑖𝑗) = [
𝑑1 ⋯ 𝑙1𝑛

⋮ ⋱ ⋮
𝑙1𝑛 ⋯ 𝑑𝑛

] , 𝑑𝑖 = − ∑ 𝑙𝑖𝑗

𝑛

𝑗=1

≥ 0 (4) 

 
𝑙𝑖𝑗 = {

−1 if 𝑖 is directly connected to 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(5) 

Let 𝜇1 > ⋯ > 𝜇𝑚 (𝑚 ≤ 𝑛) be the distinct eigenvalues of 
the Laplacian matrix L. Then from a spectral factorization 
𝐿 = 𝜇1𝑃1 + ⋯ + 𝜇𝑚𝑃𝑚 where P𝑘 (𝑘 = 1,  … , 𝑚)  is the 
orthogonal projection onto   𝜇𝑘− eigenspace ℇ(𝜇1𝑘) ,  the 

transfer function 𝑔𝑗(𝑠) between the external input  𝑢𝑗
𝑒𝑥𝑡  and 

output 𝑦𝑗   can be shown to be 

 𝑔𝑗(𝑠) =
𝑦𝑗(𝑠)

𝑢𝑗
𝑒𝑥𝑡(𝑠)

= ∑
𝑏(𝑠)

𝑎(𝑠) + 𝜇𝑘𝑏(𝑠)
 𝛼𝑗𝑘

2
𝑚

𝑘=−1
 (6) 

 𝛼𝑗𝑘
2 =< 𝑒𝑗 , 𝑃𝑘𝑒𝑗 > (7) 

Vol. 5 Issue 03, March-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS030065

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

16



denotes the cosine of an angle between the eigenspace ℇ(𝜇1𝑘), 
and the standard orthonormal basis {𝑒𝑖; 𝑖 = 1, … , 𝑛} of ℝ𝑛. We 
call 𝛼𝑗𝑘  the Laplacian graph angle or graph angle in short. 

Suppose the isolated agent transfer function 𝑔𝑎(𝑠) in (1) 
has a transfer function order O(𝑔𝑎) ∈ ℕ. Then, the following 
fact holds [9]; 

Lemma 1: The transfer function 𝑔𝑗(𝑠)  of agent j of a 

consensus system in (6)  has an order |𝜙𝑗| × 𝑂(𝑔𝑎) ∈ ℕ where 

 𝜙𝑗: = {𝑘 ∈ [1, 𝑚]; 𝛼𝑗𝑘
2 ≠ 0} ⊂ {1, … , 𝑚}  (8) 

and |𝜙𝑗| denotes the number of elements in 𝜙𝑗. 

From this result, the problem of how to choose an agent 
with a smallest transfer function order boils down to the 
problem of how to find j ∈ [1, n]  with the smallest |𝜙𝑗| . 

Unfortunately however no analytic methods exists within the 
author's knowledge that can characterize the smallest |𝜙𝑗|  in 

general. 

Example 1 Suppose five identical agents in network 
topology of Fig. 1share the same dynamics given by:  

 𝑔𝑎(𝑠) =
𝑦𝑖(𝑠)

𝑢𝑖(𝑠)
=

1

𝑠2 + 𝑠 + 1
 (9) 

whose transfer function order is O(𝑔𝑎) = 2.  

Note that 𝑢𝑖
𝑒𝑥𝑡 = 0 implicitly holds for all i ≠ j in Fig. 1 

when j ∈ [1,5] is a single agent to be controlled under the SAC 
scheme. Numerical computations give five distinct eigenvalues 
of 𝐿 in the first line of Table 1. Other lines give agent labels j ∈
[1,5] in the left and corresponding graph angles 𝛼𝑗𝑘  in the right. 

The transfer function of an agent j ∈ [1,5] is given 𝑔𝑗(𝑠) in (6) 

with {𝛼𝑗𝑘}  in Table 1 and 𝑏(𝑠) = 1, 𝑎(𝑠) = 𝑠2 + 𝑠 + 1 . In 

addition, from Lemma 1, the order of 𝑔𝑗(𝑠)  is given by 2 |𝜙𝑗|  
where the number 2 is the order of the isolated transfer function 
(9).  By counting the number of non-zero angles in Table 1, one 
can find the quantity {𝜙𝑗 } shown in Fig. 2 inside of circles 

denoting agents. For examples, the transfer function order of 
agent 3 is given as 2 |𝜙3| = 2 × 3 = 6  whereas that of agent 
1 is 2 |𝜙3| = 2 × 5 = 10. 

TABLE I.  EIGENVALUES AND GRAPH ANGLES 

 4.3028 3.6180 1.3820 0.6972 0.0000 

1,2 0.6768 0.5117 0.1954 0.2049 0.4472 

3 0.0000 0.6325 0.6325 0.0000 0.4472 

4,5 0.2049 0.1954 0.5117 0.6768 0.4472 

 

III. TRANSFER FUNCTIONS 

There are 1, 2, 6, 21 different network topologies, equivalently 
connected undirected graphs, for multi-agent systems 
composed of 2, 3, 4 and 5 agents (vertices), respectively. 

 

Figure 1 A Consensus System 

 

 

Figure 2  Transfer Function Orders 

 
 For all 30 network topologies, the Laplacian eigenvalues, 

graph angles and network topologies are given in Table 2. Our 
ordering and representations of graphs follow those in [10] 
(Appendix B).  

For each network topology in Table 2, circles in the right 
side denote agents and numbers beside circles are agent labels. 
The multiplication factor |𝜙𝑗| of the transfer function order of 

agent j ∈ [1, n] is written as a number inside of a circle, as we 
did in Fig. 2. In the left side of table, the first line shows the 
Laplacian eigenvalues with subscripts denoting multiplicities. 
Other lines give agent labels in the left and their graph angles 
in the right. The zero angles are emphasized with bold fonts. 

The number of connections that an agent has is called as a 
degree in graph theory. The possible correlation between 
degree and multiplication factor  |𝜙𝑗|   of an agent is very 

complicated and no theoretical results are available yet except 
for hub agents.  

A rather unexpected result in Table 2 is that a larger degree 
is not significantly beneficial for a smaller multiplication factor. 
One can easily find many cases where agents with smaller 
degrees have smaller multiplication factors including the index 
25, for an example. 

Note that our previous example with the Laplacian matrix 
(10) corresponds to the index 24 of Table 2.  

IV. CONCLUSION 

With no analytic methods available, we numerically 
characterized transfer functions of a controlled agent in general 
liner consensus systems composed of less than five agent under 
all possible network topologies. From mathematical viewpoint, 
our result can be seen as a specification of Laplacian graph 
angles of connected graphs with less than five vertices.    
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TABLE II.  EIGENVALUES AND GRAPH ANGLES
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TABLE II.  EIGENVALUES AND GRAPH ANGLES (CONTINUED) 

 
 

 

Vol. 5 Issue 03, March-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS030065

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

19



TABLE II.      EIGENVALUES AND GRAPH ANGLES (CONTINUED)
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TABLE II.  EIGENVALUES AND GRAPH ANGLES (CONTINUED)
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