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1Abstract—An activation function helps a neural network 

understand and map non linear relationship between data 

points. These functions are applied to each node of a network to 

transform the values from a linear space to a non-linear one. 

These functions thus help in better learning features of a real 

world problem which can seldom be linear in nature. Choosing 

an activation function has been an area of continual research 

and certain functions are found to work well when applied to a 

problem. Some popular functions are - ReLU, Sigmoid, Softmax, 

and Tanh, these tend to work well under constrained settings 

and have helped achieve state-of-the-art results with neural 

networks on a wide array of applications. Commonly, a deep 

neural network contains several layers each communicating with 

the adjacent layers to get important features during forward 

propagation and in return helping them with better parameter 

values using chain rule in backpropagation. In a way these 

activation functions help the information pass from one layer to 

the next, when this is compared to a human network (with 

people interacting with one another) there are significant 

differences. With the activation functions the message passed to 

the succeeding layer is either bounded between certain limits or 

consists of a set of discrete values, human communication on the 

other hand can be considered as a mixture of both of these. 

Hence in this work, we intend to borrow ideas from human 

communication and apply multiple activation functions in a 

single layer of a deep neural network so that the features learnt 

by the nodes are passed more efficiently to the subsequent layer. 

I. INTRODUCTION 

The field of Deep Learning is evolving and neural networks 

are now being used to solve most of the problems which were 

once solved using complex Machine Learning models. The 

major reason behind the change is the Neural Network's 

success, it's ability to learn the complex relations which maps 

the input to the output. In majority of cases the relation 

between input and output are too complex to be derived. 

A neural Network is formed by attaching finite number of 

layers each of which contains a finite number of perceptrons. 

The Developer makes the entire structure of the network with 

a large number of unknown parameters and the process of 

training these parameters is done by understanding the 

relation between input and output values. 

There is communication of data between consecutive layers of 

the network. The communication consists of getting the data, 

manipulating it, and giving it to the next layer as input. the 

manipulation consists of passing the data from a function. 

These functions are applied to the input of each perceptron of 

the network and it transform the values from a linear space to 

a non-linear one. These functions thus help in better learning 

features of a real world problem which can seldom be linear 

in nature. These activation functions play the key role in 

 
 

finding the complex non-linear relations between input values 

and output labels.Some popular functions are - ReLU, 

Sigmoid, Softmax, and Tanh. 

The trends in functioning of successive layer has been an area 

of continual research and on basis of the outcomes it can be 

concluded that as the layers progress, the network tends to 

extract more significant information out of the input 

information, hence every next layer extracts and manipulate 

the information which it has got from the previous layer. 

With respect to the above context we can comply to the fact 

that by improving the communication of data between the 

layers, we can have a better learning of the parameters. This 

Ideology forms the main theme of this paper. 

We can compare the communication between two layers of 

neural network with the communication between two humans, 

and by doing this we can identify the factors of an efficient 

communication and we can accordingly use these factors to 

improve the communication between the neural network 

layers.  

We make an effort to classify each activation function as a 

component of human conversation. A human conversation 

consists of a combination of several classification and 

regression and we tend to do the same with the activation 

functions in each layer of neural network. 

. 

II. UNDERSTANDING THE BASIC IDEOLOGY 

The paper deals with the attempt to find a relation between 

the communication of data  between two layers of neural 

network and the communication between two humans. We 

compare the components involved in both these 

communication and this leads us to find the common 

components. 

Some of the components involved in human communication 

are True, False, and magnitude while the components 

involved in data communications are ReLU, Sigmoid, 

Softmax, and Tanh. Each of these activation function can be 

assumed to perform a particular task according to human 

conversation as : 

 

• Sigmoid  :  

 
As we see from the representation of Sigmoid that it gives a 

value between 0 and 1 . A value close to 0 can denote False 
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while a value near to 1 can denote True. Hence Sigmoid adds 

only True and False to the communication. 

 

• Tanh :  

 

     As we see from the representation of Tanh that it gives a 

value between -1 and 1. A value close to -1 can denote False 

while a value near +1 can denote True and additionally a 

value near 0 can denote Neutral. Hence Tanh adds True, False 

and Neutral to the communication. 

 

• ReLU :  

 

 
   As we see from the representation of ReLU that it gives a 

value between 0 and infinity. A value close to 0 can denote 

False while any other positive value denotes the magnitude 

which we want to convey. Hence ReLU adds False and 

magnitude to our conversation. 

According to the general convention we use only one 

activation function at a time and this leads to the lack of 

components. In this paper we have come forward with the 

idea of putting together more than one type of activation 

function between two layers. By putting more than one type 

of activation function we can include more number of 

components into the communication of data from one layer to 

other.\\ 

 It can mathematically be noted that because of involvement 

of different functions the non linearity increases . This 

increase in non linearity helps the function to learn more 

complex relations. 

III. EXPERIMENTATION 

The various experiments compare the three techniques of 

mixing activations functions mentioned in the previous 

section. We have tested our hypotheses on three standard 

datasets - CIFAR 10, Fashion MNIST and MNIST. 

 

 

 

 A Brief Descriptions of Datasets 

 

Before diving into the details of the experiments it is 

necessary to understand the datasets and the problems 

they solve. 

 

• CIFAR10 :  

The CIFAR 10 contains images belonging to 10 classes - 

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, 

truck. The database contains 60,000 images with 6,000 

images  belonging to each of the aforementioned classes. The 

entire set is split into two parts - 50,000 images put in training 

set and the rest 10,000 in testing set. Each image is of 

dimension 32x32 and is a coloured (or RGB) image. 

 

• Fashion MNIST : 

Fashion MNIST contains 70,000 images of 10 different 

classes of cloth. Each image is a black and white image of 

dimension 28x28. The entire set is split into training set 

containing 60,000 images and testing set containing 10,000 

images. The various classes in the dataset are - T-Shirt/Top, 

Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, 

Ankle boot. 

 

• MNIST : 

MNIST dataset consists of 70,000 images belonging to 

10 classes. This contains handwritten digits from 0 till 9 as 

28x28 grayscale images. The entire set is split like Fashion 

MNIST with 60,000 images in the training set and 10,000 

images in the testing set. 

 

With a clear understanding of the data the model has been 

trained on, we are in a position to dive deeper into the 

experiments. 

 

 

CIFAR 10 

The basic structure of the convolution neural network used for 

training the model has two convolution layers each followed 

by a max pooling layer with a pool size of 2, this is followed 

by three dense layers of 120, 84 and 10 nodes each 

respectively. The final layer (generally referred to as the 

output layer) has ten nodes as there are 10 different classes of 

images in the CIFAR-10 database. The final layer is activated 

using Softmax function which converts the floating point Z 

values into a probability distribution. 

The convolution layers use a five cross five (5x5) kernel size 

(size of filters). The first convolution layers increases the 

depth of the image from three to six, and the second one takes 

the six layer deep image and converts it into a eight layer deep 

image. 

The base network uses ReLU (Rectified Linear Unit) 

activation function after each convolution and fully connected 

layers except the last one. The final layer is activated using 

softmax function. The choice of the final activation remains 

same for all the different variants of our proposed multi-

activation networks, but the functions before the final output 

layer are modified. For the experiments we have made use of 

three different activation functions for the preceding layers - 
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sigmoid, tanh, ReLU. All the models were trained for five (5) 

training iterations (epochs). 

 

 
 

MNIST 

This model contains two fully connected networks. The first 

layers takes in input of 784 pixel values (from the 28x28 

grayscale images flattened into vectors). The first layers has 

one thousand (1,000) nodes, this is followed by a softmax 

output layer consisting of 10 (ten) different nodes which is 

required for the 10 different classes of digits in the MNIST 

database. The final layer converts all the Z values to a 

probability distribution to denot the class a particular image 

belongs to, this is done using the softmax activation function. 

The base network (which is used for comparison) uses ReLU 

(Rectified Linear Unit) activation function in first fully 

connected layers except the last one. The final layer is 

activated using softmax function. The choice of the final 

activation remains same for all the different variants of our 

proposed multi-activation networks, but the functions before 

the final output layer are modified. For the experiments we 

have made use of three different activation functions for the 

preceeding layers - sigmoid, tanh, ReLU. All the models were 

trained for five (5) training iterations (epochs). Since only a 

single layer has the flexibility of handling multiple 

activations, the layerwise techniques were not used in this. 

 

 
Fashion MNIST 

The model details are same as MNIST, Table 3 consolidates 

the training accuracy results. 

 

IV. UNDERSTANDING THE EXPERIMENTATION 

 

In the above sections we have given a brief about the 3 

datasets which we have used for the experimentation purpose. 

The table attached with every dataset represents the accuracy 

which we get for the different models which we have used 

with the given dataset.For every dataset we have trained 13 

models, in which 1 is a standard model while the 12 others 

being the experimental models made by us based on the 

ideology mentioned in the above sections. In our approach to 

a achieve an increase in accuracy over the existing models we 

formed 12 entirely different models and each model differ 

with each other and with the standard model on basis of the 

activation function being used in it.  

A brief description to each of the 13 models (including the 

standard model) : 

 

• Vanilla NN : 

Vanilla NNs are composed of an input layer, an 

output layer, and an arbitrary number of “hidden” layers in 

between that are “fully connected” (i.e. each neuron in one 

layer is connected to each neuron in the next layer). 

The output of each layer is fed through a nonlinear activation 

function. This trick is what gives a vanilla neural net its 

nonlinear descriptive powers and makes it fundamentally 

different from linear regression. Researchers initially favored 

sigmoid functions and in this case we have used sigmoid 

function for every perceptron in every layer. 

 

• Deterministic half (sigmoid, tanh) : 

Now here we make changes in the vanilla network 

and in this case we change the activation function in every 

layer.In each layer we split the number of nodes into 2 equal 

halves. To all the perceptrons in one half we give sigmoid 

activation function while to other half we give tanh activation 

function. 

 

• Deterministic triple (sigmoid, tanh, ReLU) 

Now here we make changes in the vanilla network and in 

this case we change the activation function in every layer.In 

each layer we split the number of nodes into 3 equal parts. To 

all the perceptrons in one part we give sigmoid activation 

function while to other part we give tanh activation function 

and to the third part we give ReLU activation function. 
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• Double layerwise alternate (sigmoid, tanh) 

Now here we make changes in the vanilla network and in this 

case we change the activation function in every layer.We 

change the activation function of the layers in an alternate 

fashion as to one layer we will give the sigmoid activation 

function while to its neighbour layer we will give the tanh 

activation function.This way every pair of consecutive layers 

will have different activation functions. 

 

• Triple layerwise alternate (sigmoid, tanh, ReLU): 

 Now here we make changes in the vanilla network 

and in this case we change the activation function in every 

layer.We change the activation function of the layers in an 

alternate fashion as to one layer we will give the sigmoid 

activation function while to its neighbour layer we will give 

the tanh activation function and further to its neighbouring 

layer we will gibe ReLU activation function and this ways the 

cycle will repeat. Hence every triplet of consecutive layers 

will have different activation functions. 

 

• Once stochastic double (sigmoid, tanh) 

 Now here we make changes in the vanilla network 

and in this case we change the activation function in every 

layer.During our first iteration of forward propagation through 

the model then on reaching each layer we will make a random 

split in the number of perceptrons present in that layer and 

now we will assign the perceptrons sigmoid or tanh based on 

the split proportion. 

    and we do all this for each layer only through the first feed 

forward, hence the model gets permanent after one complete 

feed forward. 

 

• Once stochastic triple (sigmoid, tanh, ReLU) 

Now here we make changes in the vanilla network and in 

this case we change the activation function in every 

layer.During our first iteration of forward propagation through 

the model then on reaching each layer we will make a random 

split to 3 parts in the number of perceptrons present in that 

layer and now we will assign the perceptrons sigmoid or tanh 

or ReLU based on the split proportions. 

    and we do all this for each layer only through the first feed 

forward, hence the model gets permanent after one complete 

feed forward. 

 

• Everytime stochastic double (sigmoid, tanh) : 

This technique has been inspired from dropout regularization 

techinique it now here the models activation functions are not 

fixed rather they keep changing with each feed forward of the 

network. 

    We do 'Once stochastic double (sigmoid, tanh)' for each 

feed forward of the neural network. 

    Therefor every time we will get a different split up for the 

same layer while the setup for each layer will change with 

each feed forward. 

 

• Everytime stochastic triple (sigmoid, tanh, 

ReLU) : 

 This technique has been inspired from dropout 

regularization techinique it now here the models activation 

functions are not fixed rather they keep changing with each 

feed forward of the network. 

    We do 'Once stochastic triple (sigmoid, tanh, ReLU)' for 

each feed forward of the neural network. 

    Therefor every time we will get a different split up for the 

same layer while the setup for each layer will change with 

each feed forward. 

 

• Once stochastic layerwise double (sigmoid, 

tanh) : 

 

 In this approach we split up on the number of 

layers in the network ie we randomly choose layers where we 

will use only sigmoid function and in the remaining layers we 

will use only tanh function. This choice of layers randomly is 

done only one time which is in the first forward pass. 

    When we are doing first feed forward then for each layer 

we will randomly choose that the layer should get sigmoid or 

tanh and then based on the choice the activation function is 

assigned and is fixed for the network. 

 

• Once stochastic layerwise triple (sigmoid, tanh, 

ReLU) : 

 In this approach we split up on the number of 

layers in the network ie we randomly choose layers where we 

will use only sigmoid function and in the remaining layers we 

will further split up to randomly choose whether to use tanh or 

ReLU function. This choice of layers randomly is done only 

one time which is in the first forward pass. 

    When we are doing first feed forward then for each layer 

we will randomly choose that the layer should get sigmoid or 

tanh or ReLU and then based on the choice the activation 

function is assigned and is fixed for the network. 

 

• Everytime stochastic layerwise double (sigmoid, 

tanh) : 

In this approach we do 'Once stochastic layerwise double 

(sigmoid, tanh)' for every single feed forward motion ie every 

time we do feed forward, we choose the activation function 

for each layer randomly. 

 

• Everytime stochastic layerwise triple (sigmoid, 

tanh, ReLU) : 

In this approach we do 'Once stochastic layerwise triple 

(sigmoid, tanh, ReLU)' for every single feed forward motion 

ie every time we do feed forward, we choose the activation 

function for each layer randomly. 

V. MATH 

Use either the Microsoft Equation Editor or the MathType 

add-on (http://www.mathtype.com) for equations in your 

paper (Insert | Object | Create New | Microsoft Equation or 

MathType Equation). “Float over text” should not be selected. 
2( )1

2
p ap

R R
R R R

R R

 

 

−
 = − = −

+
  (1) 

Each formula should occupy one line. Consecutive 

numbers should be marked in brackets. All equations should 

be numbered (the numbers should be aligned at the right), and 

cited (1) in the text. 
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VI. CONCLUSION 

Initially we formed an ideology to use different activation 

function in random ways to give us an improved accuracy and 

then went through multiple experimentations to verify the 

ideology. On basis of the results of the experiments we can 

conclude that the increase in accuracy for each of the 3 

datasets ,used by us, can be given as : 

 

CIFAR 10 : 

 The observed maximum percentage increase in 

accuracy is 3 percent. As we see that the accuracy given by 

vanilla NN is 61 percent while the accuracy offered by our 

mode 'Once stochastic layerwise triple (sigmoid, tanh, ReLU)' 

is 64 percent , hence an increase of 3 percent is concluded. 

 

MNIST : 

 The observed maximum percentage increase in 

accuracy is 2 percent. As we see that the accuracy given by 

vanilla NN is 82 percent while the accuracy offered by our 

mode 'Once stochastic layerwise triple (sigmoid, tanh, ReLU)' 

is 84 percent , hence an increase of 2 percent is concluded. 

 

Fashion MNIST : 

 The observed maximum percentage increase in 

accuracy is 1 percent. As we see that the accuracy given by 

vanilla NN is 74 percent while the accuracy offered by our 

mode 'Once stochastic layerwise triple (sigmoid, tanh, ReLU)' 

is 75 percent , hence an increase of 1 percent is concluded. 

 

Hence we can conclude that our assumption of using different 

activation function has proven to provide an increase in 

accuracy with respect to the standard neural networks for the 

standard datasets. Meanwhile we also observe that among the 

12 models which we experimented on, 'Once stochastic 

layerwise triple (sigmoid, tanh, ReLU)' proves to be the most 

efficient network, giving a rise in accuracy, hence we can use 

this technique in other standard neural networks to get an 

increase in accuracy. 
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