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Abstract—An activation function helps a neural network
understand and map non linear relationship between data
points. These functions are applied to each node of a network to
transform the values from a linear space to a non-linear one.
These functions thus help in better learning features of a real
world problem which can seldom be linear in nature. Choosing
an activation function has been an area of continual research
and certain functions are found to work well when applied to a
problem. Some popular functions are - ReLU, Sigmoid, Softmax,
and Tanh, these tend to work well under constrained settings
and have helped achieve state-of-the-art results with neural
networks on a wide array of applications. Commonly, a deep
neural network contains several layers each communicating with
the adjacent layers to get important features during forward
propagation and in return helping them with better parameter
values using chain rule in backpropagation. In a way these
activation functions help the information pass from one layer to
the next, when this is compared to a human network (with
people interacting with one another) there are significant
differences. With the activation functions the message passed to
the succeeding layer is either bounded between certain limits or
consists of a set of discrete values, human communication on the
other hand can be considered as a mixture of both of these.
Hence in this work, we intend to borrow ideas from human
communication and apply multiple activation functions in a
single layer of a deep neural network so that the features learnt
by the nodes are passed more efficiently to the subsequent layer.

I. INTRODUCTION

The field of Deep Learning is evolving and neural networks
are now being used to solve most of the problems which were
once solved using complex Machine Learning models. The
major reason behind the change is the Neural Network's
success, it's ability to learn the complex relations which maps
the input to the output. In majority of cases the relation
between input and output are too complex to be derived.

A neural Network is formed by attaching finite number of
layers each of which contains a finite number of perceptrons.
The Developer makes the entire structure of the network with
a large number of unknown parameters and the process of
training these parameters is done by understanding the
relation between input and output values.

There is communication of data between consecutive layers of
the network. The communication consists of getting the data,
manipulating it, and giving it to the next layer as input. the
manipulation consists of passing the data from a function.
These functions are applied to the input of each perceptron of
the network and it transform the values from a linear space to
a non-linear one. These functions thus help in better learning
features of a real world problem which can seldom be linear
in nature. These activation functions play the key role in
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finding the complex non-linear relations between input values
and output labels.Some popular functions are - ReLU,
Sigmoid, Softmax, and Tanh.

The trends in functioning of successive layer has been an area
of continual research and on basis of the outcomes it can be
concluded that as the layers progress, the network tends to
extract more significant information out of the input
information, hence every next layer extracts and manipulate
the information which it has got from the previous layer.

With respect to the above context we can comply to the fact
that by improving the communication of data between the
layers, we can have a better learning of the parameters. This
Ideology forms the main theme of this paper.

We can compare the communication between two layers of
neural network with the communication between two humans,
and by doing this we can identify the factors of an efficient
communication and we can accordingly use these factors to
improve the communication between the neural network
layers.

We make an effort to classify each activation function as a
component of human conversation. A human conversation
consists of a combination of several classification and
regression and we tend to do the same with the activation
functions in each layer of neural network.

II. UNDERSTANDING THE BASIC IDEOLOGY

The paper deals with the attempt to find a relation between
the communication of data between two layers of neural
network and the communication between two humans. We
compare the components involved in both these
communication and this leads us to find the common
components.
Some of the components involved in human communication
are True, False, and magnitude while the components
involved in data communications are RelLU, Sigmoid,
Softmax, and Tanh. Each of these activation function can be
assumed to perform a particular task according to human
conversation as :

e Sigmoid :

—8 —6 —4 -2 2 1 G B
As we see from the representation of Sigmoid that it gives a
value between 0 and 1 . A value close to 0 can denote False
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while a value near to 1 can denote True. Hence Sigmoid adds
only True and False to the communication.

e Tanh:
1.0 B ]

0.0 '

1.0 b— = i i

-3 -2 -1 0 1 2 3

As we see from the representation of Tanh that it gives a
value between -1 and 1. A value close to -1 can denote False
while a value near +1 can denote True and additionally a
value near 0 can denote Neutral. Hence Tanh adds True, False
and Neutral to the communication.

e RelU:

As we see from the representation of ReLU that it gives a
value between 0 and infinity. A value close to 0 can denote
False while any other positive value denotes the magnitude
which we want to convey. Hence ReLU adds False and
magnitude to our conversation.

According to the general convention we use only one
activation function at a time and this leads to the lack of
components. In this paper we have come forward with the
idea of putting together more than one type of activation
function between two layers. By putting more than one type
of activation function we can include more number of
components into the communication of data from one layer to
other.\\

It can mathematically be noted that because of involvement
of different functions the non linearity increases . This
increase in non linearity helps the function to learn more
complex relations.

I1l. EXPERIMENTATION

The various experiments compare the three techniques of
mixing activations functions mentioned in the previous
section. We have tested our hypotheses on three standard
datasets - CIFAR 10, Fashion MNIST and MNIST.

A Brief Descriptions of Datasets

Before diving into the details of the experiments it is
necessary to understand the datasets and the problems
they solve.

e CIFARI10:

The CIFAR 10 contains images belonging to 10 classes -
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck. The database contains 60,000 images with 6,000
images belonging to each of the aforementioned classes. The
entire set is split into two parts - 50,000 images put in training
set and the rest 10,000 in testing set. Each image is of
dimension 32x32 and is a coloured (or RGB) image.

e Fashion MNIST :

Fashion MNIST contains 70,000 images of 10 different
classes of cloth. Each image is a black and white image of
dimension 28x28. The entire set is split into training set
containing 60,000 images and testing set containing 10,000
images. The various classes in the dataset are - T-Shirt/Top,
Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag,
Ankle boot.

e MNIST:

MNIST dataset consists of 70,000 images belonging to
10 classes. This contains handwritten digits from 0 till 9 as
28x28 grayscale images. The entire set is split like Fashion
MNIST with 60,000 images in the training set and 10,000
images in the testing set.

With a clear understanding of the data the model has been
trained on, we are in a position to dive deeper into the
experiments.

CIFAR 10

The basic structure of the convolution neural network used for
training the model has two convolution layers each followed
by a max pooling layer with a pool size of 2, this is followed
by three dense layers of 120, 84 and 10 nodes each
respectively. The final layer (generally referred to as the
output layer) has ten nodes as there are 10 different classes of
images in the CIFAR-10 database. The final layer is activated
using Softmax function which converts the floating point Z
values into a probability distribution.

The convolution layers use a five cross five (5x5) kernel size
(size of filters). The first convolution layers increases the
depth of the image from three to six, and the second one takes
the six layer deep image and converts it into a eight layer deep
image.

The base network uses ReLU (Rectified Linear Unit)
activation function after each convolution and fully connected
layers except the last one. The final layer is activated using
softmax function. The choice of the final activation remains
same for all the different variants of our proposed multi-
activation networks, but the functions before the final output
layer are modified. For the experiments we have made use of
three different activation functions for the preceding layers -
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sigmoid, tanh, ReLU. All the models were trained for five (5)
training iterations (epochs).

Table 1:Training accuracy for various models for CIFAR 10

Model Training Accuracy
Vanilla CNN 61%
Deterministic half (sigmoid, tanh) 5T%
Deterministic triple (sigmoid, tanh, ReLU) 58%
Double layerwise alternate (sigmoid, tanh) 60%

10id, tanh, ReLU) 58%
1wid, tanh) 58%

Iriple layerwise alternate

Once stochastic double

Once stochastic triple (sigmoid, tanh, ReLU) 60%

Everytime stochastic double (sigmoid, tanh) 61%

Everytime stochastic triple (sigmoid, tanh, ReLU) 61%

Once stochastic laverwise double (sigmoid, tanh) 62%

Omnce stochastic laverwise triple (sigmoid, tanh, ReLU) 64%

Everytime stochastic layverwise double (sigmoid. tanh) G2

Everytime stochastic layerwise triple (sigmoid, tanh, ReLU) 62%
MNIST

This model contains two fully connected networks. The first
layers takes in input of 784 pixel values (from the 28x28
grayscale images flattened into vectors). The first layers has
one thousand (1,000) nodes, this is followed by a softmax
output layer consisting of 10 (ten) different nodes which is
required for the 10 different classes of digits in the MNIST
database. The final layer converts all the Z values to a
probability distribution to denot the class a particular image
belongs to, this is done using the softmax activation function.
The base network (which is used for comparison) uses ReLU
(Rectified Linear Unit) activation function in first fully
connected layers except the last one. The final layer is
activated using softmax function. The choice of the final
activation remains same for all the different variants of our
proposed multi-activation networks, but the functions before
the final output layer are modified. For the experiments we
have made use of three different activation functions for the
preceeding layers - sigmoid, tanh, ReLU. All the models were
trained for five (5) training iterations (epochs). Since only a
single layer has the flexibility of handling multiple
activations, the layerwise techniques were not used in this.

Table 2:Training accuracy for various models for A\l.\l_.‘ﬂ

Model Training Accuracy
Vanilla NN 82%
Deterministic half (sigmoid, tanh) %
Deterministie triple (sigmoid, tanh, ReLU) | 8%
Double layerwise alternate (sigmoid, tanh) 81%

Triple laverwise alternate
Onee stochastic double (

I, tanh, ReLU) | 8%

igmoid, tanh) 8%

Onece stochastic triple (sigmoid, tanh, ReLU) | 81%
Everytime stochastic double (sigmoid, tanh) 81%
Evervtime stochastic triple (sigmoid. tanh, ReLU) 82%
Onee stochastic layerwise double (sigmoid, tanh) | 82%
Once stochastic layerwise triple (sigmoid, tanh, ReLU) 84%
Everytime stochastic laverwise double (sigmoid, tanh) | 83%
Evervtime stochastic laverwise triple (sigmoid, tanh, ReLU) [ 83%

Fashion MNIST
The model details are same as MNIST, Table 3 consolidates
the training accuracy results.

Table 3:Training accuracy for various models for Fashion MNIST

Model [ Training Accuracy
Vanilla NN 74%
Deterministic half (sigmoid, tanh) T0%
Deterministic triple (sigmoid, tanh, ReLU) | 70%

Double layerwise alternate (sigmoid, tanh) 73%

Triple layerwise alternate (sigmoid, tanh, ReLU) 70%
Omnce stochastic double (sigmoid, tanh) | T0%
Omnce stochastic triple (sigmoid, tanh, ReLU) | T4%
Everyvtime stochastic double (sigmoid, tanh) 73%
Everyvtime stochastic triple (sigmoid, tanh, ReLU) | T4%
Omce stochastic laverwise double (sigmoid, tanh) | T4%
Omnce stochastic laverwise triple (sigmoid, tanh, ReLU) | 75%
Everytime stochastic layverwise donble (sigmoid, tanh) | 5%
Everytime stochastic layerwise triple (sigmoid, tanh, ReLU) | TA%

IV. UNDERSTANDING THE EXPERIMENTATION

In the above sections we have given a brief about the 3
datasets which we have used for the experimentation purpose.
The table attached with every dataset represents the accuracy
which we get for the different models which we have used
with the given dataset.For every dataset we have trained 13
models, in which 1 is a standard model while the 12 others
being the experimental models made by us based on the
ideology mentioned in the above sections. In our approach to
a achieve an increase in accuracy over the existing models we
formed 12 entirely different models and each model differ
with each other and with the standard model on basis of the
activation function being used in it.

A brief description to each of the 13 models (including the
standard model) :

e VanillaNN :

Vanilla NNs are composed of an input layer, an

output layer, and an arbitrary number of “hidden” layers in
between that are “fully connected” (i.e. each neuron in one
layer is connected to each neuron in the next layer).
The output of each layer is fed through a nonlinear activation
function. This trick is what gives a vanilla neural net its
nonlinear descriptive powers and makes it fundamentally
different from linear regression. Researchers initially favored
sigmoid functions and in this case we have used sigmoid
function for every perceptron in every layer.

e Deterministic half (sigmoid, tanh) :

Now here we make changes in the vanilla network
and in this case we change the activation function in every
layer.In each layer we split the number of nodes into 2 equal
halves. To all the perceptrons in one half we give sigmoid
activation function while to other half we give tanh activation
function.

o Deterministic triple (sigmoid, tanh, ReLU)

Now here we make changes in the vanilla network and in
this case we change the activation function in every layer.In
each layer we split the number of nodes into 3 equal parts. To
all the perceptrons in one part we give sigmoid activation
function while to other part we give tanh activation function
and to the third part we give ReLU activation function.
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e Double layerwise alternate (sigmoid, tanh)

Now here we make changes in the vanilla network and in this
case we change the activation function in every layer.We
change the activation function of the layers in an alternate
fashion as to one layer we will give the sigmoid activation
function while to its neighbour layer we will give the tanh
activation function.This way every pair of consecutive layers
will have different activation functions.

e Triple layerwise alternate (sigmoid, tanh, ReLU):
Now here we make changes in the vanilla network
and in this case we change the activation function in every
layer.We change the activation function of the layers in an
alternate fashion as to one layer we will give the sigmoid
activation function while to its neighbour layer we will give
the tanh activation function and further to its neighbouring
layer we will gibe ReL.U activation function and this ways the
cycle will repeat. Hence every triplet of consecutive layers
will have different activation functions.

. Once stochastic double (sigmoid, tanh)

Now here we make changes in the vanilla network
and in this case we change the activation function in every
layer.During our first iteration of forward propagation through
the model then on reaching each layer we will make a random
split in the number of perceptrons present in that layer and
now we will assign the perceptrons sigmoid or tanh based on
the split proportion.

and we do all this for each layer only through the first feed
forward, hence the model gets permanent after one complete
feed forward.

. Once stochastic triple (sigmoid, tanh, ReL.U)

Now here we make changes in the vanilla network and in
this case we change the activation function in every
layer.During our first iteration of forward propagation through
the model then on reaching each layer we will make a random
split to 3 parts in the number of perceptrons present in that
layer and now we will assign the perceptrons sigmoid or tanh
or ReL. U based on the split proportions.

and we do all this for each layer only through the first feed

forward, hence the model gets permanent after one complete
feed forward.

e Everytime stochastic double (sigmoid, tanh) :
This technique has been inspired from dropout regularization
techinique it now here the models activation functions are not
fixed rather they keep changing with each feed forward of the
network.

We do 'Once stochastic double (sigmoid, tanh)' for each
feed forward of the neural network.

Therefor every time we will get a different split up for the
same layer while the setup for each layer will change with
each feed forward.

. Everytime stochastic triple (sigmoid, tanh,
ReLU) :

This technique has been inspired from dropout

regularization techinique it now here the models activation

functions are not fixed rather they keep changing with each
feed forward of the network.

We do 'Once stochastic triple (sigmoid, tanh, ReLU)' for
each feed forward of the neural network.

Therefor every time we will get a different split up for the
same layer while the setup for each layer will change with
each feed forward.

. Once stochastic layerwise double (sigmoid,
tanh) :

In this approach we split up on the number of
layers in the network ie we randomly choose layers where we
will use only sigmoid function and in the remaining layers we
will use only tanh function. This choice of layers randomly is
done only one time which is in the first forward pass.

When we are doing first feed forward then for each layer
we will randomly choose that the layer should get sigmoid or
tanh and then based on the choice the activation function is
assigned and is fixed for the network.

) Once stochastic layerwise triple (sigmoid, tanh,
ReLU) :

In this approach we split up on the number of
layers in the network ie we randomly choose layers where we
will use only sigmoid function and in the remaining layers we
will further split up to randomly choose whether to use tanh or
ReLU function. This choice of layers randomly is done only
one time which is in the first forward pass.

When we are doing first feed forward then for each layer
we will randomly choose that the layer should get sigmoid or
tanh or ReLU and then based on the choice the activation
function is assigned and is fixed for the network.

e Everytime stochastic layerwise double (sigmoid,

tanh) :

In this approach we do 'Once stochastic layerwise double
(sigmoid, tanh)' for every single feed forward motion ie every
time we do feed forward, we choose the activation function
for each layer randomly.

e Everytime stochastic layerwise triple (sigmoid,

tanh, ReLU) :

In this approach we do 'Once stochastic layerwise triple
(sigmoid, tanh, ReLU)' for every single feed forward motion
ie every time we do feed forward, we choose the activation
function for each layer randomly.

V. MATH
Use either the Microsoft Equation Editor or the MathType
add-on (http://www.mathtype.com) for equations in your
paper (Insert | Object | Create New | Microsoft Equation or
MathType Equation). “Float over text” should not be selected.

2
AR:Rp—Rap=—1M 1)
2 R +R|
Each formula should occupy one line. Consecutive
numbers should be marked in brackets. All equations should
be numbered (the numbers should be aligned at the right), and
cited (1) in the text.
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VI. CONCLUSION

Initially we formed an ideology to use different activation
function in random ways to give us an improved accuracy and
then went through multiple experimentations to verify the
ideology. On basis of the results of the experiments we can
conclude that the increase in accuracy for each of the 3
datasets ,used by us, can be given as :

CIFAR 10:

The observed maximum percentage increase in
accuracy is 3 percent. As we see that the accuracy given by
vanilla NN is 61 percent while the accuracy offered by our
mode 'Once stochastic layerwise triple (sigmoid, tanh, ReLU)'
is 64 percent , hence an increase of 3 percent is concluded.

MNIST :

The observed maximum percentage increase in
accuracy is 2 percent. As we see that the accuracy given by
vanilla NN is 82 percent while the accuracy offered by our
mode 'Once stochastic layerwise triple (sigmoid, tanh, ReLU)'
is 84 percent, hence an increase of 2 percent is concluded.

Fashion MNIST :

The observed maximum percentage increase in
accuracy is 1 percent. As we see that the accuracy given by
vanilla NN is 74 percent while the accuracy offered by our
mode 'Once stochastic layerwise triple (sigmoid, tanh, ReLU)'
is 75 percent, hence an increase of 1 percent is concluded.

Hence we can conclude that our assumption of using different
activation function has proven to provide an increase in
accuracy with respect to the standard neural networks for the
standard datasets. Meanwhile we also observe that among the
12 models which we experimented on, 'Once stochastic
layerwise triple (sigmoid, tanh, ReLU)' proves to be the most
efficient network, giving a rise in accuracy, hence we can use
this technique in other standard neural networks to get an
increase in accuracy.
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