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Abstract:- The purpose of the system to cut down network 

traffic cost. Map out a novel intermediate data participant 

schema. The map reduce type simplifies the large scale data 

deal with product group even though many times effort have 

been made to maximize the execution of map reduce work. 

They ignore the network effects which conclude. A 

fundamental part in implementation update. A hash capacity 

made use of session middle of the topology among minimizes 

the task even so is note movement valued in network topology. 

At last board reproduced outcome that shows at the proposed 

algorithm can together minimize network cost under both 

offline and online cases. 
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I  INTRODUCTION 

Map Reduce is one of the most popular computer 

frameworks for big data processing. Hadoop is a java based 

programming language. Hadoop having map reduce and 

hadoop distributed file system. Map Reduce divides a 

computation into map and reduce, which carried out by 

several map tasks and reduce tasks, respectively. In the 

map phase, map tasks are launched in parallel to convert 

the original input splits into intermediate data in a form of 

key/value pairs. Local machine stored all the key/value pair 

and organized into multiple data partitions. Each cut off 

task fetches its own share of data partitions from all map 

tasks to create the final result. There will be a shuffle step 

between map and reduce phase. The data produced by the 

map phase are ordered cause of data and transferred to the 

appropriate machines implement the reduce phase. The 

outcome of network traffic pattern are all map tasks to all 

reduce tasks can create a great volume of network traffic, 

imposing a serious control the efficiency of data analytic 

Applications.  By default, intermediate data are shuffled 

according to a hash function in Hadoop. This would lead to 

vast network traffic because it ignores network topology 

and data size associated with each key. It manipulates right 

away after a map task solely for its cause data, fails to use 

the data aggregation opportunities among multiple tasks on 

different machines. Map Reduce job purpose is to 

minimize the total network traffic.  

 

II RELATEDWORK 

Related work on mapreduce performance 

improvement by optimizing data by lead of an optimizing 

network usage. System performance better and found but 

high network utilization and network congestion occurred 

simultaneously with good performance. Network traffic 

can be reduced by locality-awareness in the shuffle phase 

generated in the cloud data center. 

Distribution of intermediate key/value pairs to improve the 

load balance for ignoring the network traffic during the 

shuffle phase. Mapreduce job have introduced a combine 

function but reduces the amount of data to due shuffled and 

merged reduce task. 

 

III   EXISTING WORK 

 

In existing system, the system proposes a Map 

Reduce algorithm to solve the ER problem for a enormous 

collection of entities with multiple keys. The algorithm is 

characterized in the combination-based blocking and the 

load-balanced matching. The combination-based blocking 

utilizes the multiple keys to sort out necessary entity pairs 

for future matching. The load-balanced matching evenly 

distributes the required similarity computations to all the 

reducers in the matching step so as to eliminate the 

bottleneck of skewed matching computations for a single 

node in a Map Reduce framework. The effectiveness and 

scalability of Map Reduce based implementations of 

complex data intensive tasks depend on a just redistribution 

of data between maps and reduce tasks. 

 

IV PROPOSED WORK 

  

Map Reduce is based programming model with map 

function and reduce function. This Map Reduce job is 

ruined over a distributed system composed at a master and 

a set of workers input. It is divided into chunks that are 

assigned to map tasks. Output divided into as many 

partitions as the number of reducers for the job.  

The network traffic of the DDA algorithm is about 3:4105, 

while the traffic cost of our algorithm is only 1:7 105, with 

a decrement of 50%. In contrast to DDA and DDA, the 

curve of DA amplify slowly because most map outputs are 

aggregated and traffic-aware partition chooses closer 

reduce tasks for each key/value pair, which are beneficial 

to network reduction in the shuffle phase. 
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Fig.1. Network traffic cost versus data reduction ratio 

 

 The performance of three algorithms under different 

values of changing its value from 0.2 to 1.0. A small value 

of indicates a lower aggregation efficiency for the 

intermediate data. We observe that network traffic 

increases as the growth of under both DA and HRA. When 

is 0.2, DA carry out the lowest traffic cost of 1:1 105. On 

the other hand, network traffic of HNA keeps stable 

because it does not conduct data aggregation. 

 

V DISTRIBUTED ALGORITHM DESIGN 

 

Distributed algorithm design using highly efficient 

approximation algorithms is solving an additional 

challenge in big data for map reduce job. An additional 

challenge arises in dealing with the map Reduce job for big 

data. The problem on multiple machines in a parallel 

manner is solved using distributed algorithm design.  
 

A. Network Traffic Traces  
 Distributed algorithm can be using real trace in a 

cluster of 5 virtual machines with 1GB memory and 2GHz 

CPU.  

This network topology is based on three tier architectures: 

an access tier, an aggregation tier and a core tier. The 

access tier is made up of cost effective Ethernet switches 

connecting rack VMs. The access switches are connected 

via Ethernet to a set of aggregation switches which in turn 

are connected to a layer of core switches. An inter rack link 

is the most contentious resource as all the VMs hosted on a 

rack transfer data across the link to the VMs on other racks.  

 
Fig.2. three tier architecture 

 

Real data source from latest dumps files in Wikimedia are 

used to test real network traffic cost in hadoop.  

VI   ONLINE ALGORITHM 

 

In online algorithm before starting reduce tasks. 

We need to wait all mapper to finish their process.  

OPT ONE SHOT:  

               Min CM(t) + X p∈P C p (t)        Map and reduce 

tasks may partially overlap in execution to maximize 

system throughput; it is hard to assess system parameters at 

a high accuracy for big data applications.  

 

VII  PERFORMANCE COSIDERATION 

 

To evaluate the performance of our proposed 

distributed algorithm DA. We compare DA with HNA, and 

compared with the HRA.  

 • HNA: Hash-based partition with No Aggregation. It 

exploits the traditional hash partitioning for the 

intermediate data. It is the default method in Hadoop.  

• HRA: Hash-based partition with Random Aggregation. It 

adds a random aggregator placement algorithm based on 

the traditional Hadoop. It aims to reducing the network 

traffic cost in the comparison of traditional method in 

Hadoop.  

 

A. Simulation results of offline cases  

Distributed algorithm and the optimal solution 

obtained by solving the MILP formulation. Due to the high 

computational complexity of the MILP formulation. 

Performance of our distributed algorithm is very close to 

the optimal solution. Although network traffic cost 

increases as the number of keys grows for all algorithms, 

the performance enhancement of our proposed algorithms 

to the other two schemes becomes larger contrast to HRA 

and HNA, the curve of DA increases slowly because more 

map outputs are aggregated and traffic-aware partition 

chooses closer reduce tasks for each key/value pair reduce 

the network traffic reduction in the shuffle phase. 

 

B. Process outcome of online cases 

We noticed that network traffic rises at first and 

tend. 

 

 
Fig.3. network traffic cost versus number of keys 

 

To became stable according to our online algorithm. 

Network traffic of OHRA and OHNA keep stable 

constantly because OHNA follow the same hash partition 

scheme. We notice that online algorithm work much better 

than two algorithms. 
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VIII   CONCLUSIONS 

 

The joint optimization of intermediate data 

partition and aggregation in Map Reduce to minimize 

network traffic cost for big data applications. Map Reduce 

to decrease network traffic cost for big data applications. 

We programming distributed algorithm to clear a problem 

on multiple machine in additional. We extended our 

algorithm to deal with map reduce job in a online manner. 

The simulation results demonstrate that our proposals can 

effectively reduce network traffic cost under various 

network settings. 

 

IX   FUTURE ENHANCEMENT 

 

Fault tolerance mechanisms consume major extra 

energy to detect and recover from the failures. Fault 

tolerant describes a computer system or component 

designed. so that, component fails, in that event a backup 

component or procedure can immediately take place with 

no loss of service. Fault tolerance is not just a function of 

individual machines; it may also characterize the rules by 

which they interact. Fault tolerance is the function that 

enables a system to proceeding operating properly in the 

event of the failure of some of its components. 
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