
 Traffic-Aware Partition and Aggregation in

Map Reduce for Big Data Applications

M. Supriya
M.E Student,

Department of Computer Science and Engineering,

Institute of Road and Transport Technology,

Erode.

Abstract:- The purpose of the system to cut down network

traffic cost. Map out a novel intermediate data participant

schema. The map reduce type simplifies the large scale data

deal with product group even though many times effort have

been made to maximize the execution of map reduce work.

They ignore the network effects which conclude. A

fundamental part in implementation update. A hash capacity

made use of session middle of the topology among minimizes

the task even so is note movement valued in network topology.

At last board reproduced outcome that shows at the proposed

algorithm can together minimize network cost under both

offline and online cases.

Keywords— Data Aggregation, Decomposition-based distributed

Algorithm, Big Data, Online Hash-based Partition with

Aggregation, Online Hash-based Partition with Random

Aggregation.

I INTRODUCTION

Map Reduce is one of the most popular computer

frameworks for big data processing. Hadoop is a java based

programming language. Hadoop having map reduce and

hadoop distributed file system. Map Reduce divides a

computation into map and reduce, which carried out by

several map tasks and reduce tasks, respectively. In the

map phase, map tasks are launched in parallel to convert

the original input splits into intermediate data in a form of

key/value pairs. Local machine stored all the key/value pair

and organized into multiple data partitions. Each cut off

task fetches its own share of data partitions from all map

tasks to create the final result. There will be a shuffle step

between map and reduce phase. The data produced by the

map phase are ordered cause of data and transferred to the

appropriate machines implement the reduce phase. The

outcome of network traffic pattern are all map tasks to all

reduce tasks can create a great volume of network traffic,

imposing a serious control the efficiency of data analytic

Applications. By default, intermediate data are shuffled

according to a hash function in Hadoop. This would lead to

vast network traffic because it ignores network topology

and data size associated with each key. It manipulates right

away after a map task solely for its cause data, fails to use

the data aggregation opportunities among multiple tasks on

different machines. Map Reduce job purpose is to

minimize the total network traffic.

II RELATEDWORK

Related work on mapreduce performance

improvement by optimizing data by lead of an optimizing

network usage. System performance better and found but

high network utilization and network congestion occurred

simultaneously with good performance. Network traffic

can be reduced by locality-awareness in the shuffle phase

generated in the cloud data center.

Distribution of intermediate key/value pairs to improve the

load balance for ignoring the network traffic during the

shuffle phase. Mapreduce job have introduced a combine

function but reduces the amount of data to due shuffled and

merged reduce task.

III EXISTING WORK

In existing system, the system proposes a Map

Reduce algorithm to solve the ER problem for a enormous

collection of entities with multiple keys. The algorithm is

characterized in the combination-based blocking and the

load-balanced matching. The combination-based blocking

utilizes the multiple keys to sort out necessary entity pairs

for future matching. The load-balanced matching evenly

distributes the required similarity computations to all the

reducers in the matching step so as to eliminate the

bottleneck of skewed matching computations for a single

node in a Map Reduce framework. The effectiveness and

scalability of Map Reduce based implementations of

complex data intensive tasks depend on a just redistribution

of data between maps and reduce tasks.

IV PROPOSED WORK

Map Reduce is based programming model with map

function and reduce function. This Map Reduce job is

ruined over a distributed system composed at a master and

a set of workers input. It is divided into chunks that are

assigned to map tasks. Output divided into as many

partitions as the number of reducers for the job.

The network traffic of the DDA algorithm is about 3:4105,

while the traffic cost of our algorithm is only 1:7 105, with

a decrement of 50%. In contrast to DDA and DDA, the

curve of DA amplify slowly because most map outputs are

aggregated and traffic-aware partition chooses closer

reduce tasks for each key/value pair, which are beneficial

to network reduction in the shuffle phase.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTICCT - 2017 Conference Proceedings

Volume 5, Issue 17

Special Issue - 2017

1

Fig.1. Network traffic cost versus data reduction ratio

 The performance of three algorithms under different

values of changing its value from 0.2 to 1.0. A small value

of indicates a lower aggregation efficiency for the

intermediate data. We observe that network traffic

increases as the growth of under both DA and HRA. When

is 0.2, DA carry out the lowest traffic cost of 1:1 105. On

the other hand, network traffic of HNA keeps stable

because it does not conduct data aggregation.

V DISTRIBUTED ALGORITHM DESIGN

Distributed algorithm design using highly efficient

approximation algorithms is solving an additional

challenge in big data for map reduce job. An additional

challenge arises in dealing with the map Reduce job for big

data. The problem on multiple machines in a parallel

manner is solved using distributed algorithm design.

A. Network Traffic Traces
 Distributed algorithm can be using real trace in a

cluster of 5 virtual machines with 1GB memory and 2GHz

CPU.

This network topology is based on three tier architectures:

an access tier, an aggregation tier and a core tier. The

access tier is made up of cost effective Ethernet switches

connecting rack VMs. The access switches are connected

via Ethernet to a set of aggregation switches which in turn

are connected to a layer of core switches. An inter rack link

is the most contentious resource as all the VMs hosted on a

rack transfer data across the link to the VMs on other racks.

Fig.2. three tier architecture

Real data source from latest dumps files in Wikimedia are

used to test real network traffic cost in hadoop.

VI ONLINE ALGORITHM

In online algorithm before starting reduce tasks.

We need to wait all mapper to finish their process.

OPT ONE SHOT:

 Min CM(t) + X p∈P C p (t) Map and reduce

tasks may partially overlap in execution to maximize

system throughput; it is hard to assess system parameters at

a high accuracy for big data applications.

VII PERFORMANCE COSIDERATION

To evaluate the performance of our proposed

distributed algorithm DA. We compare DA with HNA, and

compared with the HRA.

 • HNA: Hash-based partition with No Aggregation. It

exploits the traditional hash partitioning for the

intermediate data. It is the default method in Hadoop.

• HRA: Hash-based partition with Random Aggregation. It

adds a random aggregator placement algorithm based on

the traditional Hadoop. It aims to reducing the network

traffic cost in the comparison of traditional method in

Hadoop.

A. Simulation results of offline cases

Distributed algorithm and the optimal solution

obtained by solving the MILP formulation. Due to the high

computational complexity of the MILP formulation.

Performance of our distributed algorithm is very close to

the optimal solution. Although network traffic cost

increases as the number of keys grows for all algorithms,

the performance enhancement of our proposed algorithms

to the other two schemes becomes larger contrast to HRA

and HNA, the curve of DA increases slowly because more

map outputs are aggregated and traffic-aware partition

chooses closer reduce tasks for each key/value pair reduce

the network traffic reduction in the shuffle phase.

B. Process outcome of online cases

We noticed that network traffic rises at first and

tend.

Fig.3. network traffic cost versus number of keys

To became stable according to our online algorithm.

Network traffic of OHRA and OHNA keep stable

constantly because OHNA follow the same hash partition

scheme. We notice that online algorithm work much better

than two algorithms.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTICCT - 2017 Conference Proceedings

Volume 5, Issue 17

Special Issue - 2017

2

VIII CONCLUSIONS

The joint optimization of intermediate data

partition and aggregation in Map Reduce to minimize

network traffic cost for big data applications. Map Reduce

to decrease network traffic cost for big data applications.

We programming distributed algorithm to clear a problem

on multiple machine in additional. We extended our

algorithm to deal with map reduce job in a online manner.

The simulation results demonstrate that our proposals can

effectively reduce network traffic cost under various

network settings.

IX FUTURE ENHANCEMENT

Fault tolerance mechanisms consume major extra

energy to detect and recover from the failures. Fault

tolerant describes a computer system or component

designed. so that, component fails, in that event a backup

component or procedure can immediately take place with

no loss of service. Fault tolerance is not just a function of

individual machines; it may also characterize the rules by

which they interact. Fault tolerance is the function that

enables a system to proceeding operating properly in the

event of the failure of some of its components.

REFERENCES

[1] J. Dean and S. Ghemawat, “Map reduce: simplified data

processing on large clusters,” Communications of the ACM, pp.
107–113, 2008.

[2] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K.

Elmeleegy, and R. Sears, “Map reduce online.” 2010.
[3] T. White, Hadoop: the definitive guide: the definitive guide.

”O’Reilly Media, Inc.”, 2009.

[4] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijay Kumar, “Map

reduce with communication overlap,” pp. 608–620, 2013.

[5] F. Chen, M.Kodialam, and T. Lakshman, “Joint scheduling of

processing and shuffle phases in mapreduce systems,” in
INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 1143–

1151.

[6] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Map task
scheduling in mapreduce with data locality: Throughput and

heavy-traffic optimality,” in INFOCO, IEEE, 2013, pp. 1609–

1617.

[7] R. Liao, Y. Zhang, J. Guan, and S. Zhou, “Cloudnmf: A

mapreduce implementation of nonnegative matrix factorization

for large-scale biological datasets,” Genomics, proteomics &

bioinformatics, vol. 12, no. 1, pp. 48–51, 2014.

[8] S.C. Hsueh, M.-Y. Lin, and Y.-C. Chiu, “A load-balanced map
reduce algorithm for blocking-based entity resolution with

multiple keys, ”Parallel and Distributed Computing 2014, p. 3,

2014.
[9] J. Lin and C. Dyer, “Data-intensive text processing with map

reduce, ”Synthesis Lectures on Human Language Technologies,

vol. 3, no. 1, pp. 1–177, 2010.
[10] P. Costa, A. Donnelly, A. I. Rowstron, and G. O’Shea,

“Camdoop: Exploiting in-network aggregation for big data

applications.” In NSDI, vol. 12, 2012, pp. 3–3.
[11] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen:

Locality/fairness-aware key partitioning for mapreduce in the

cloud,” in Cloud Computing Technology and Science
(CloudCom), IEEE, 2010, pp. 17– 24.

[12] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: locality-

aware resource allocation for mapreduce in a cloud,” Networking,
Storage and Analysis. ACM, 2011, p. 58.

[13] L. Fan, B. Gao, X. Sun, F. Zhang, and Z. Liu, “Improving the

load balance of mapreduce operations based on the key

distribution of pairs,” arXiv preprint arXiv:1401.0355, 2014.

[14] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib, and J. Wang,

“Introducing mapreduce to high end computing,” PDSW’08.
3rd. IEEE, 2008, pp. 1–6.

[15] W. Yu, G. Xu, Z. Chen, and P. Moulema, “A cloud computing
based architecture for cyber security situation awareness,” in

Communications and Network Security (CNS), 2013 IEEE

Conference on. IEEE, 2013, pp. 488–492.
[16] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S.

Schreiber, “Presto: distributed machine learning and graph

processing with sparse matrices,” in ACM, 2013, pp. 197– 210.
[17] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast:

Combining mapreduce and virtualization on distributed resources

for bioinformatics applications,” in eScience, 2008. IEEE, 2008,
pp. 222–229.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTICCT - 2017 Conference Proceedings

Volume 5, Issue 17

Special Issue - 2017

3

