Total Zero-Divisor Graph of A Field

Nandhini. R, Akshaya. G, Kayalvizhi. M Thassim Beevi Abdul Kader College for Women. Kilakarai

Abstract: Let F be a Field with z(F), its set of zero divisors. The total zero divisor graph of F, denoted $Z(\Gamma(F))$ is the undirected (simple) graph with vertices $Z(F)^*=Z(F)-\{0\}$, the set of nonzero, zero divisors of F, and for distinct $x, y \in z(F)^*$ the vertices x and y are adjacent if and only if $x+y \in z(F)$. In this paper, we study if $Z(\Gamma(F))$ is finite and every vertex of $Z(\Gamma(F))$ has a finite degree then F is finite and also prove that $\mathbf{Z}(\Gamma(F))$ connected with diam ≤ 3 .

INTRODUCTION I.

In this paper, we study the total zero divisor graph is the (undirected) graph with vertices $Z(F)^*=Z(F)-\{0\}$. The set of non-zero zero divisor of F and for distinct x, $y \in z(F)^*$, the vertices x and y are adjacent if and only if $x+y \in z(F)$. It is denoted by $Z(\Gamma(F))$ and is the (induced) subgraph of total graph. We show that $Z(\Gamma(F))$ is finite then F is finite and not an integral domain, if every vertex of $Z(\Gamma(F))$ has finite degree then F is finite and also prove that $Z(\Gamma(F))$ is connected with diam≤3. For some other recent papers on zero divisor graphs.

II. PRELIMINARIES

2.1Definition:

The number of edges incident with a vertex Vis called the degree of V and it is denoted by d(V). The minimum and maximum degree of a vertex of a graph are respectively denoted by δ and Δ .

2.2 Definition:

A graph G in which every vertex is adjacent to every other vertex is called a complete graph. Complete graph is represented as K_n where n is the number of vertices in K_n

2.3Definition:

The chromatic number of a zero-divisor graph of a ring R, denoted by $\chi(\Gamma_0(R))$ is the minimal number of colors required to assign each vertex in a zero-divisor graph a color so that no two adjacent vertices are assigned the same color.

2.4Definiton:

A graph $\Gamma_0(R)$ is a k-colorable if $\Gamma_0(R)$ can be colored with less than or equal to k colors.

2.5Defnition:

A graph G is said to be a connected graph. If there is at least one path between every pair of vertices in G. otherwise G is said to be a disconnected graph.

2.6Definition:

Any two distinct vertices a and b in graph G, the distance between a and b, denoted by d (a, b) is the length of a shortest path connecting a and b.

2.7Definition:

A ring R is called a coloring if $\chi(\Gamma_0(R))$ is finite.

2.8Definition:

An element x∈R is said to be a zero divisor if there exists some element $0 \neq y \in R$ such that xy=0.

2.9 Presumption:

$$\chi(\Gamma_0(R)) = 1$$
 if and only if $R = \{0\}$.

2.10presumption:

 $\chi(\Gamma_0(R)) = 2$ if and only if R is an integral domain, $R \cong \mathbb{Z}_4$ or $R \cong \mathbb{Z}_2[X]/(X)^2$.

2.11Definition:

The chromatic number of a zero-divisor graph of a ring R is equal to the clique number of the ring. That is, $\chi(\Gamma_0(R))$ =cl(R).

III. MAIN RESULT

3.1Theorem:

Let F be field then the total zero divisor graph if finite if and only if either or an integral domain. In particular if $1 \le$ $Z(\Gamma(F)) \le \infty$. Then F ia finite.

Proof;

Let F be a field and Z(F) be the set of zero divisors in F and Let $Z(\Gamma(F))$ be the total zero divisor graph. Then all vertices of $Z(\Gamma(F))$ is non-zero, zero divisor of F.

It is trivial that if F is finite then $Z(\Gamma(F))$ is also finite.

Suppose that $Z(\Gamma(F))$ is finite and non-empty. This implies that Z(F) is finite, suppose these are two elements u, $v \in F$, $u \neq 0$, $v \neq 0$. such that $u+v \in Z(F)$

Let I=Ann(Z), then $u+v\in I$

Since $u+v \in Z(F)$ this implies that $I \subseteq Z(F)$ further I is finite and $f(u+v) \in I$ for all $f \in F$. $[\because u+v \in I, f \in F \Longrightarrow f(u+v) \in I]$ suppose F is finite. Then there is an $i \in I$ such that $K = \{f \in F/f(u+v) = i\}$ is infinite.

For any f, $t \in K$

$$F(u+v) = i, t(u+v) = i$$

$$(f-t) (u+v) = 0$$

$$(f-t) \in Ann(u+v) \quad \{since, \quad K \subseteq Ann(u+v), \quad K \quad is$$

$$f-t \in J \Rightarrow f-tVAnn(u+v) \quad infinite)$$

Where $k\subseteq Ann(u+v)$

Since f-t \in Z(F)

i.e. $Ann(u+v) \subseteq Z(F)$, is infinite, a contradiction therefore F must be finite.

3.2Theorem:

Let f be a field with identity. Then $S = F \times \mathbb{Z}_2^0$ is a field without identity, S = Z(S), and $\Gamma_E(S) \cong \Gamma_E(F)$.

ISSN: 2278-0181 Vol. 9 Issue 02, February-2020

Proof: Clearly S = Z(S) and T has no identity. Define ϕ : $F/\sim S/\sim by \phi([u]) = [(u, 0)]$. It is easily verified that $Ann_F(u) = Ann_F(v)$ for $u, v \in F$ if and only if $Ann_S((u, 0)) = Ann_S((v, 0))$, and [(u, 0)] = [(u, 1)] for every $u \in F$. Thus, ϕ is a well-defined bijection. Moreover, ϕ restricts to a graph isomorphism from $\Gamma_E(F)$ to $\Gamma_E(S)$ since [(u, 0)] [(v, 0)] = [(0, 0)] if and only if [u][v] = [0].

3.3Theorem:

Let F be a field such that Z(F) Is not an ideal of F then Z(F) is connected with diamZ(F)=2

Proof: Each $u \in Z(F)^*$ is adjacent to 0. Thus, u0v is a path in Z(F) of length two between any two distinct $u, v \in Z(F)^*$ Moreover, there are non-adjacent $u, v \in Z(F)^*$ since Z(F) is not an ideal of F.

So, diamZ(F)=2. Hence proved

3.4Theorem: Let F be a field then Z(F) is connected with diam ≤ 3

Proof:

Let u, v be vertices in Z((F)),

There exists $u+z \in Z(F)$, $v+W \in Z(F)$

If $u+v \in Z(F)$ then uv is a path of length is perpendicular containing u, v.

If $u+v \in Z(F)$ and $w+z \in Z(F)$ then u and v are contained by a path uwv of length ≤ 3

If $u+v \in Z(F)$ and $w+z \in Z(F)$ then u and v are connected by a path uv of length=2.

Hence proved.

IV. REFERENCE

- I. Beck, coloring of commutative ring, J. Algebra, 116(1) (1988),208-226.
- [2] D.F. Anderson and P.S. Livingston, the zero-divisor graph of commutative ring, J. Algebra, 217(2) (1999), 434-447
- [3] A.R. Ashrafi and A. Tadayyonfar, The zero-divisor graph of 2×2 matrices over a field, vol.39., (2016), 977-990